

ENGINEERS • PLANNERS • SCIENTISTS • CONSTRUCTION MANAGERS 434 South Yellowstone Drive, Suite 202 • Madison, WI 53719 • Phone 608 445 8543

April Marcangeli Regulatory Ecologist U.S. Army Corps of Engineers St. Paul District-Regulatory Division 250 N. Sunnyslope Road, Suite 296 Brookfield, WI 53005 Via email

ISO 9001:2008 CERTIFIED

March 18, 2025

Dear Ms. Marcangeli:

I am writing in regard to the previously approved December 23, 2022, prospectus for the Little Lacrosse River Headwaters site. Last autumn you and I spoke about modifications that KCI wishes to make to improve the project. Following that conversation, I have gathered and included updated information here for the IRT review.

Since the 2022 submission, KCI has received feedback from the IRT members (undated-File No. MVP-2022-02313-ANM received May 9, 2023), completed additional site evaluations and investigations, and consulted with local and state conservation agency professionals in the region. Based upon that feedback, we propose to modify the project with four small real estate additions to improve the ecological restoration of the site.

- Parcel A 4.6 acres, Schmitz land located to the east of the initial project
- Parcel B 30 acres, Lydon/Kolbo located to the east of the initial project
- Parcel C 1.7 acres, Wisconsin DOT Surplus property located to west of initial project
- Parcel D 0.57 acres Town of Jefferson property located to southwest of initial project

In addition to the real estate additions, we have also modified the stream restoration proposal based on feedback and input from agency resource professionals and IRT comments.

As we discussed this autumn, we would like to continue to work to develop the Mitigation Bank Instrument and Conservation Site Plan for the project. In an attempt to provide all necessary materials for your timely review, I have attached:

- project narrative explaining the additions including maps;
- updated credit projections;
- historical imagery;
- SQT worksheets, and
- wetland delineation report.

Employee-Owned Since 1988

Please do contact me if you want any additional information about these proposed modifications.

I would greatly appreciate some feedback from you on the process to consider this modification and how it affects project timelines.

Many thanks for your assistance,

Sincerely,

K-0 5. fall

Harald (Jordy) Jordahl

Attachments

Cc Brad Shoger, KCI Josh Sitz, KCI

Employee-Owned Since 1988

Employee-Owned Since 1988

ENGINEERS - PLANNERS - SCIENTISTS - CONSTRUCTION MANAGERS

434 South Yellowstone Drive, Suite 202 • Madison, WI 53719 • Phone 608 445 8543

Little Lacrosse River Headwaters Stream and Wetland Mitigation Bank Prospectus Addendum

March 18, 2025

KCI has previously received IRT approval for the December 23, 2022, prospectus for the Little Lacrosse River Headwaters site which included 43.9 acres. Since that time, KCI has had the opportunity to complete additional site evaluations, gather more data and consult with resource professionals in the region, and proposes to modify the project with four small real estate additions to improve the ecological restoration success of the site.

- Parcel A 4.6 acres, Schmitz wetland trade land trade located to the east of the initial project
- Parcel B 30 acres, Lydon/Kolbo located to the east of the initial project
- Parcel C 1.7 acres, Wisconsin DOT Surplus property located to west of initial project
- Parcel D 0.57 acres Town of Jefferson property located to southwest of initial project

We are submitting this addendum to the December 23, 2022, prospectus with updated information about the project reflecting the revised approximately 92-acre footprint and alterations to the stream restoration proposal.

Please see Map 1 showing real estate boundaries with Parcels A, B, C, D highlighted

Objectives for the Modification

Incorporation of Parcels A and B

• Includes expanded hydric soils and historic wetlands

The original project footprint included most of the Little Lacrosse River corridor flowing south to north between CTH F and the Wisconsin DNR (WDNR) conservation land. However, the zone of hydric soils and potentially restorable wetlands as identified by WDNR is currently divided by the N/S property line between KCI and Parcel A and Parcel B to the east. Attached Map 2 clearly shows this former wetland area extending throughout the KCI land and across and into the western edge of both new parcels. Incorporating Parcels A and B into our conservation project will allow for a more complete restoration. This new footprint will now encompass all of the potentially restorable wetlands in this block of lands between STH 27, CTH F and the existing wetlands to the north on WDNR fishery area.

• Fully control surface drainage

One of the primary objectives in the restoration will be to slow the flow and redirect surface waters to restored wetlands before they are eventually discharged into the Little Lacrosse River. Adding Parcels A and B significantly enhances our ability to do this for water from the south and east of the project area. The eastern expansion (Parcels A & B) now fully incorporates a field-line ditch running along the property line from south to north which carries water from the wetland area in the SE directly north

before turning slightly east and dropping through a deeply eroded ravine and discharging into the Little Lacrosse River on Parcel B outside of the original project area. This ditch also intercepts surface water from the east, preventing connection to the wetland area. Incorporating the SE corner on Parcel A and the 50' strip along the former property line in addition to adding Parcel B allows the project to redirect surface water flows in this ditch as well as incorporate any other surface flow into the wetland rehabilitation and reestablishment areas. Attached Map 3 highlights hydrologic modifications including ditching and drain tiles to the site.

• Disable drainage tile

Field investigations have identified drainage tiles in the agricultural field in both Parcel A and B. This expansion will facilitate disabling these tiles and restoring hydrology to the project wetland areas.

• Invasive species control

Current site conditions include extensive growth of invasive reed canary grass (*Phalaris arundinacea*), and a patch of phragmites (*Arundo phragmites*). Both species are found in the original project areas and along the borders with Parcels A and B. Incorporating these parcels into the project area surrounds the invasive species with land under conservation management with a buffer of active agricultural lands. This new footprint will reduce new colonization from outside the conservation project.

• Eliminates risk of hydraulic trespass

Incorporating Parcels A and B into the project also significantly reduces any unintended impacts and risk of hydraulic trespass on neighbors to the east of the restoration that could be associated with the wetland restoration.

Incorporation of Parcel C and Parcel D

• Stream restoration corridor

Following field investigations and consultations with staff from Wisconsin DNR fishery management, USDA NRCS, Monroe County and Wisconsin DATCP, we have modified the stream restoration proposal in the project. The December 2022 project envisioned restoration of Tributary 1 on the northern section of the project area. Incorporating the western parcels will allow us to realign the tributary into this current preferred location.

The restoration of Tributary 1 is now planned to initiate further south on the site (please see attached Map 4) supported by feedback from agency resource management staff. This alignment allows the restoration to begin at the upstream point where the waterway enters the site at the STH27 bridge and right-of-way. This alignment is also supported in historical imagery and Wisconsin and USGS waterway mapping (see attached Figure 1 - Historical Images). The existing ditched stream is located along the property line between KCI and land that formerly was part of the Wisconsin DOT highway and abandoned railroad right of way. In addition to improving the stream restoration on the project, this southern stream alignment will also benefit the re-establishment and rehabilitation of the wetland areas on the northwest side of the project.

• Eliminate risk of hydraulic trespass and simplify construction

These two parcels are remnants of historical transportation infrastructure that has been abandoned. Acquisition provides KCI full control of the site bordered by the right of way for STH27 on the west and CTH F on the south. Acquisition of these parcels will eliminate any concern about hydraulic trespass and greatly simplify the construction of the unnamed tributary by reducing permissions and permits that would be necessary if the DOT retained partial ownership of the waterway.

Other project changes since the original prospectus was submitted in 2022.

 Tributary 2 is no longer proposed for restoration as included in the original prospectus. Efforts to restore Tributary 2 in the southeast section of the project for mitigation credit remain under consideration and will be refined and finalized before submission of draft MBI. This ditched waterway is engaged with conservation easements associated with protection of the Little LaCrosse River (Wisconsin DNR Fisheries and Wisconsin DATCP/CREP). Immediately adjacent and to the east of this ditch is filled wetland area and two drainage ditches which will be restored as part of the wetland components of the project. KCI is actively working with our project designers and the conservation agencies and IRT to determine what – if any – stream restoration options may be possible in this ditch.

• Southwest agricultural lands

Because of the realigned stream restoration, the southwestern agricultural field currently owned by KCI is no longer excluded from the project area as was anticipated in the original prospectus. This approximately 10-acre field now provides buffer to the restored stream and is currently envisioned to be planted in a mesic forest community.

Status of real estate transactions

- Parcel A KCI has completed the real estate transaction to acquire Parcel A from Peacefull Valley Farm, LLC (Mike and Brian Schmitz)
- Parcel B KCI has a signed option and is planning to acquire Parcel B with closing planned Spring 2025.
- Parcel C Following a historic highway realignment and the abandonment of the railroad corridor, Parcel C has now been declared surplus by WDOT. KCI has an agreement to acquire this small, 1.7-acre rectangle with closing in Spring 2025.
- Parcel D KCI has an agreement with the Town of Jefferson to acquire this parcel in Spring 2025.

Credit generation

Successful completion of the restoration with the new modified footprint and preliminary conservation plan is projected to generate the following credits (Please see attached Map 5).

Floodplain	Mesic Forest	Shrub Carr	Wooded Swamp	Total Acres	Credit Ratio	Credits
	18.05	0.85	1.26	20.16	0.25:1	5.04
1.04				1.04		
		15.87	0.40	16.28	1.0:1	16.28
1		8.15	22.12	30.27	0.75:1	22.71
-			6.11	6.11	0.5:1	3.06
1.04	18.05	24.87	29.90	73.86		47.08
	Floodplain 1.04 1.04	Floodplain Mesic Floodplain Forest 18.05 1.04 1.04 1.04 18.05	Mesic Shrub Floodplain Forest Carr 18.05 0.85 1.04 15.87 8.15 8.15 1.04 24.87	Mesic Shrub Wooded Floodplain Forest Carr Swamp 18.05 0.85 1.26 1.04 15.87 0.40 8.15 22.12 6.11 1.04 24.87 29.90	Mesic Shrub Wooded Total Floodplain Forest Carr Swamp Acres 18.05 0.85 1.26 20.16 1.04 1.04 1.04 1.04 15.87 0.40 16.28 20.16 8.15 22.12 30.27 1.04 18.05 24.87 29.90 73.86	Mesic Shrub Wooded Total Credit Floodplain Forest Carr Swamp Acres Ratio 18.05 0.85 1.26 20.16 0.25:1 1.04 104 1.04 1.04 15.87 0.40 16.28 1.0:1 8.15 22.12 30.27 0.75:1 1.04 6.11 6.11 0.5:1 1.04 24.87 29.90 73.86

Wetland Re-Establishment – 16.28 Acres

Approximately 16.28 acres of the site have been effectively drained by the installation of tile drainage, surface ditching, filling and the lateral effect resulting from the incision and channelization of stream

tributaries. All of these actions were implemented to allow land cultivation. These areas have hydric soils and no wetland vegetative communities. These areas will be restored through the reestablishment of historic drainage patterns, disabling of drain tile/ditching, re-establishment of microtopography, and re-vegetation to targeted wetland communities. The targeted wetland type within these areas is shrub carr. The proposed credit ratio in this area is 1:1. Successful restoration of these areas will generate 16.28 credits.

Wetland Re-habilitation 1 – 30.27 acres

Approximately 30.27 acres on site are affected by hydrologic impacts of ditching, draining, and stream channelization. These areas exhibit some level of hydrologic functionality but have been vegetatively altered in the past (cleared, farmed, grazed) resulting in increased presence of invasive species, primarily reed canary grass (*Phalaris arundinacea*), buckthorn (*Rhamnus cathartica*) and bush honeysuckle (*Lonicera maackii*). Although these areas are identified as wetland in the delineation report, field ditches and drain tiles have been identified in these zones. These alterations have impacted flood storage capacity, nutrient processing, and wetland wildlife habitat. The vegetative community in these areas has been simplified and now lacks diversity. These areas will be rehabilitated through disabling drainage features, re-establishing historic drainage patterns, and revegetating to targeted wetland communities. Targeted wetland types within these areas are wooded swamp, and shrub carr. The proposed credit ratio in this area is 0.75:1. Successful restoration of these areas will generate 22.71 credits.

Wetland Re-habilitation 2 – 6.11 acres

Approximately 6.11 acres on site are affected by hydrologic impacts of ditching, draining, and stream channelization and agricultural history impacting the wetland plant community. These areas exhibit a higher level of hydrologic functionality but have been vegetatively altered and simplified in the past (cleared, farmed, grazed in the 1930-1960 era as documented in the historic images and ditched) resulting in increased presence of invasive species, primarily reed canary grass which has limited diversity of native species. Although this area is identified as wetland in the delineation report, historic alterations include ditching have been identified in this zone. These alterations have impacted flood storage capacity, nutrient processing, and wetland wildlife habitat. These areas will be rehabilitated through restoration of historic water movement across the site to the main stem of the Little LaCrosse River, eradication of invasive species, and revegetation of targeted wetland communities. Targeted wetland types within these areas are wooded swamp, and shrub carr. The proposed credit ratio in this area is 0.5:1. Successful restoration of these areas will generate 3.06 credits.

Buffer – 20.16 Acres

A buffer between the restored site and adjacent non-conservation land uses will be established. These areas are primarily on the periphery of the site and will buffer the restored system from impacts arising from adjacent land uses. Either wetland or upland communities will be established and maintained where they do not exist. Microtopography development and replanting will be the primary means of upland restoration. This buffer is currently expected to be a minimum of 50 ft. in width and will be documented and finalized during the full design process. The site shares a common boundary with the WDNR's LaCrosse River Comprehensive Fisheries Area along the northern boundary and no buffer is proposed between state owned and managed conservation property.

A stream buffer zone will be established outside the effective riparian area along the restored unnamed tributary in the southwest zone on the site. The proposed credit ratio in this stream buffer zone is 0.25:1. Successful restoration of all buffer areas will generate 5.04 credits.

WDNR holds a 66' wide Fisheries Stream Easement along both banks of the Little La Crosse River as it transects the site. In addition, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) holds a CREP easement forming a 30' wide strip adjacent to the WDNR easement. The total of these two easements is 9.13 acres and is not included in the 19.83-acre buffer.

Stream Restoration

The project as revised and expanded will result in the priority 1 restoration of 1,456 LF of an un-named tributary to the Little La Crosse River yielding 389 functional feet of lift using the MN SQT and 2024 field data. For the MBI, we will gather additional field data and complete the MNWI SQT spreadsheet. (MNSQT project assessment worksheets attached). Attached Map 6 provides information about stream reaches for the attached updated SQT calculations.

Reach	Existing	Proposed	Functional Change	Credits
UNT-1 R1	1054.2	800.9	0.35	229
UNT-1 R2	23.0	17.5	0.53	9
UNT-1 R3	839.3	637.6	0.31	151
Total	1916.5	1456.0		389

Adjacent owners contact information

With the real estate additions, below is an updated list of adjacent landowners. Names in capital letters below are adjacent only to the newly added parcels. Attached Map 7 shows parcels and landowner names.

East Side

Steven J. Schmitz, Brian Schmitz 23794 Lamplighter Road Norwalk, WI 54648

Michael J. Lydon, Brenda J. Kolbo 11531 County Highway F Cashton WI 54619

HAROLD W. DE WITT & MICHELE M. VON RUDEN 11526 MARSH RD CASHTON, WI 54619

PATRICK W. & SUSANNE M. PECK 11569 COUNTY HIGHWAY F CASHTON, WI 54619 CEDAR PEAK FARM LLC 7262 ICEHOUSE AVE SPARTA, WI 54656

South Side James S. & Dorcas N. Horning 11012 Mascot Ave. Cashton WI 54619

BRUCE A BERNETT IRREVOCABLE TRUST & DOROTHY E BERNETT IRREVOCABLE TRUST 11278 MASCOT AVE CASHTON, WI 54619

BRIAN L. HOPKINS PO BOX 3161 LA CROSSE, WI 54602

West Side

Susan K. Cooley 25181 State Highway 27 Cashton, WI 54619

Wisconsin Department of Transportation 3550 Mormon Coulee Rd. La Crosse, WI 54601

ELDRID L FISHER 626 CENTRAL DR CASHTON, WI 54619

VILLAGE OF MELVINA 604 CENTRAL DR CASHTON, WI 54619

North Side

Wisconsin Department of Natural Resources 101 S Webster St. Madison, WI 53707-7921

1909 USGS Quad map

22.04

note Southern tributary Eastern tributary

A N

1939 aerial image - earliest available note western waterway from STH 27 bridge ditched waterway from south Halls Valley

Legend

a

A N

1946 aerial image note

Western waterway relocated to DOT ditch alignment waterway from east interrupted by property line ditching

Little 1200886 River

Google Earth-

Image USDA/FPAC/GEO

A N

LIUS LEGGERE RI

1965 aerial image note Western waterway in present alignment northeast forest cleared

 \mathbb{A} N

1982 Aerial image

note SE CTH F ditch

Image © 2025 Airbus

N

Little Portosse Riter

2010 Google Earth Aerial image note stream bank vegetation cleared

N

Little Agence Ritter

Current USGS image

note Western and eastern tributaries

 \mathbb{N}

1000 ft

Programmatic Goals

Mitigation - Credits

Reach Description						
Reach ID:	UNT-1 R	1				
Describe t This strea greomorp driveway,	this reach and reach break criteria: m segment is currently a single, channel hic and vegetative character down to ar /culvert.	ized ditch of similar n existing field				
Lat:	43.809557					
Long:	-90.76893					
Reference	Stream Type:	C				

Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MNSQT.

Describe the rationale used to select the reference stream type: A C channel was chosen for the reference stream type based on the likely historic channel and constructibility. The restored channel may evolve into a C/E system, and may eventualy be occupied by the beaver population currently on the Little La Crosse River main stem. The wide alluvial valley, slope, preliminary sinuosity, and natural bed-form fall within the C/E stream type. The specific reference stream type will be verified during the early design process.

NOTICE: If you find errors or problems, please email StPaulSQT@usace.army.mil

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District

Contributing Agencies: U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

Restoration Approach

Expand on the programmatic goals of this project: This project seeks to restore approximatley 1,456 LF of stream to produce 389 function feet stream credits for sale as a private mitigation bank. The project provides further ecological lifty through the rehabilitation of approximatley 26 acres of wetland adjacent to the stream channles. The tributaries being restored include the confluence with a Class 1 trout stream and will provide additional nursery habitat currently degraded beyond use. Mitigation credits produced at this site will offsite impacts to the Upper Mississippi - Black Root Watershed Cataloguing Unit.

Explain the restoration potential of this project based on the programmatic goals (based on catchment assessment form):

This project will be a partial restoration of UNT-1 on property owned by KCI Technologies, Inc.. No assessment of physiochemical components will be performed or targeted for uplift in this project. The straightened, ditched stream on KCI property will be restored to a natural CS channel based upon reference reach survey data collected from the Jackson Marsh State Natural Area stream. The initial Catchment Assessment indicated the catchment was in Fair condition with the majority of the contributing watershed in rural development, agruculture, and forest. The recieving stream, Little La Crosse Rive,r is rated a Class 1 trout stream in Fair to Poor condition as reported by WI DNR in thier 2022 assessment.

Explain the goals and objectives for this project:

Goals:

1. Improve floodplain connectivity through planfrom, profile, and crosssectional area adjustments.

2. Improve instream-habitat through the incorporation of large woody debris and riffle/pool sequences to diversify flow regimes.

3. Improve riparian habitat through the installation of native vegetation.

Objectives:

 Reach runoff will improve slightly in the lateral drainage area by vegetating soil in agriculture.

Bedform diversity will improve with the installation of pool/riffle sequences.

3. Riparian buffer diversity and width will be increased through riparian species planting and protection.

Insert Aerial Photo of Project Reach

 Catchment Name and Number:
 UNT to Little La Crosse North

 Watershed Name (HUC 8) and Number:
 La Crosse-Pine 70400006

Rater(s): Timothy Guess Date: 1/16/24

Overall Watershed Condition	Р	Purpose: This form is used to determine the project's restoration potential. The catchment
Restoration Potential	Partial	assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream which restricts movement/recovery of fishes.

						MN DNR WHAF Website:	https://arcgis.dnr.state.mn.us/ewr/what2/
	Catagorias		Description of Catchment Condition	-	Rating		WHAF score equivalents:
	Categories	Poor	Fair	Good	(P/F/G)	WHAF Index/Metric	0-40 = Poor; 41-70=Fair; 71-100=Good
1	Flow Alteration - Water Use (Hydrology)	Substantial reduction or augmentation of natural flow regime.	Moderate reduction or augmentation of natural flow regime.	Minimal reduction or augmentation of natural flow regime.	F	Flow Alteration INDEX: Water withdrawal	There has been a moderate amount of flow augmentation including road drainages and course alteration into roadside ditches and surface ditching through the ag field.
2	Impervious Cover (Hydrology)	Impervious Cover (IC) Index Score of 40% or less.	IC Index Score Between 41% and 70%.	IC Index score of 71% or greater.	Р	INDEX: Impervious Cover (time series)	The catchment is very small and there is limited impervious cover within.
3	Land Use Change (Hydrology)	Perennial Cover (PC) Index Score of 40% or less = % PC remaining -> Highly Altered Landscape.	PC Index Score of 41 to 70% or less -> Altered Landscape.	PC Index Score of 71% or greater -> Minimally Altered Landscape.	Р	INDEX: Perennial Cover (time series)	Approximatley 87% of the catchement is in perrenial cover.
4	Roads (Hydrology)	Major roads located in or adjacent to project reach and/or high road density in catchment.	Few major or minor roads in or adjacent to project reach. Moderate road density in catchment.	No major or minor roads in or adjacent to project reach. Low road density in catchment.	F	INDEX: Aquatic Connectivity	The headwaters of the catchment flow under STH 27 adjacent to the site before flowing into the restoration reach.
5	Percent Forested (Hydrology)	≤20%	>20% and <70%	≥70%	Р	NLCD Land Use Charts, Ecoregions	The catchment is approximately 50% forested.
e	Percent Agricultural Land (Hydrology/Physicochemical)	≥ 70%	>20% and <70%	≤20%	F	NLCD Land Use Charts, 'Cultivated' land	The catchment is approximatley 8% cultivated land.
7	Flashiness Index (Hydrology)	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 40% or less.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of between 41% to 70%.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 71% or more.	G	Major Flow Variability Matrics Worksheet: Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of HighLow Pulses metric (H_M_FV_FDP)	The catchment is likely somewhat flashy given the degree of headwater streams contributing to the system. This was the basis of the Fair scoring as Wisconsin does not provide a current index to utilize.
8	Riparian Connectivity - Vegetation (Geomorphology)	Riparian Connectivity (RC) Index Score of 40% or less.	RC Index Score Between 41% and 70%.	RC Index score of 71% or greater.	Р	INDEX: Riparian Connectivity	The riparian corridor for he project reach is narrow and mostly cleared of perrenial vegetation.
ç	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 40% or less.	Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores between 41 to 70%.	Low sediment supply. Upstream bank erosion and surface runoff is minimal. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 71% or greater.	G	INDEX: Soil Erosion Susceptibility; Steep Slopes Near Streams	The percent of perrenial cover throughout the catchment indicates this system likely has low upstream sediment supply The lower stream through the project resach slated for restoration has been ditcherd with unstable, eroded slopes, but is a small portion of the overall catchment.
1	Minnesota Integrated Report (305(b) and 303(d)) designated use support status (Note: impairments with atmospheric deposition as a source should be excluded*)	On or immediately upstream or downstream of a waterbody in Category 5 OR in Category 4c (i.e., designated use impairment not actively being mitigated).	On or immediately upstream or downstream of a waterbody in Category 4a or 4b (i.e., active mitigation of designated use impairment through approved TMDL or other control mechanisms).	No adjacent waterbodies listed as not supporting a designated use (i.e., all designated uses either unassessed or in Category 1, 2, or 3).	Ρ	Impairments INDEX: Aquatic Life Assessments DATA: Impaired Waters	The project reach flows into the Little la Crosse River at the downstream end of the project. The river is listed as a catergory 5 stream for phosphorus.
1	Localized Potential Pollution Sources, Animal Units (Physicochemical)	Extensive Livestock (animal units) in area and potential access to stream - scores of 40% or less.	Moderate Livestock (animal units) in area and potential access to stream - scores between 41% and 70%.	Low levels of Livestock (animal units) in area and low likely access to stream - scores of 71% or greater.	G	INDEX: Animal Unit metric DATA: Feedlots	Livestock pasture occupies approximatley 2.5% of the catchement and have low access to contributing drainages.
1:	2 Longitudinal Connectivity of the stream network (Biology)	Aquatic Connectivity (AC) Index Score of 40 or less.	AC Index Score Between 41% and 70%.	AC Index score of 71% or greater.	G	Inline Impoundments INDEX: Aquatic Connectivity DATA: Dams , bridges, culverts	The catchment is small and passes through only 1 bridge along its length.
1	3 Organism Recruitment (Biology)	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 40% or less.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores between 41 to 70%.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 71% or greater.	Р	Organism Recruitment INDEX: Stream Species, Aquatic Life Assessments DATA: Fish, Invert IBI, Mussel site, fully supporting reaches	No biotic community data on these ditched stream channels are available, however, based on flow regime and altered status, it is likely the scores for these channels would be in the Poor range.
1	4 Ditched or straightened streams (Hydrology)	Altered Watercourse Index Score of 40% or less.	Altered watercourse score between 41 and 70%.	Altered watercourse score - 71% or greater.	Р	INDEX: Altered Watercourse DATA: Altered Watercourse; Public watercourses/Ditch (DNR data access)	The main channel within the catchment, including the project reach, has been straightened and ditched. Most contributing ephemeral tributaries upstream are along their natural planfrom.
1	5 Other						

Site Information and				
Reference S	Selection			
Project Name:	LLR Headwaters Restoration			
Reach ID:	UNT1 Reach 1			
Restoration Potential:	Partial			
Existing Stream Type:	F			
Reference Stream Type:	с			
Woody Vegetation Natural Component:	Yes			
Use Class:	2B			
River Nutrient Regions:				
Drainage Area (sq.mi.):	0.44			
Proposed Bed Material:	Sand			
Existing Stream Length (ft):	1054.17			
Proposed Stream Length (ft):	800.9			
Macroinvertebrate IBI Class:				
Fish IBI Class:	Southern Coldwater			
Valley Type:	Unconfined Alluvial			
Flow Permanence:	Intermittent			
Strahler Stream Order:	First			

	Notes				
1. Users input val	ues that are highlighte	d based or	restoration po	tential	
2. U	sers select values from	a pull-dov	vn menu		
3. Leave val	ues blank for field valu	es that we	re not measure	ed .	
FUNCTIONAL CHANGE SU	MMARY		MITI	GATION SUN	IMARY
Existing Condition Score (ECS)	0.17		229	(FF)	Lift
Proposed Condition Score (PCS)	0.51				
Change in Functional Condition (PCS - E	0.34				
Existing Stream Length (ft)	1054.17				
Proposed Stream Length (ft)	800.9				
Change in Stream Length (ft)	-253.27				
Existing Functional Feet (FF)	179				
Proposed Functional Feet (FF)	408				
Proposed FF - Existing FF	229				
Percent Change in FF (%)	128%				
FF Yield (FF/ft)	0.29				

dition Score (PCS)	0.51
nctional Condition (PCS - E	0.34
m Length (ft)	1054.17
am Length (ft)	800.9
eam Length (ft)	-253.27
ional Feet (FF)	179
ctional Feet (FF)	408
Existing FF	229
ge in FF (%)	128%
:)	0.29

	FUNCTION BASED PARAMETERS SI	JMMARY		
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter	
Hydrology	Reach Runoff	0.49	0.79	
Hydraulics	Floodplain Connectivity	0.12	1.00	
	Large Woody Debris	0.00	0.38	
	Lateral Migration	0.67	1.00	
Geomorphology	Bed Material Characterization			
	Bed Form Diversity	0.33	0.97	
	Riparian Vegetation	0.02	0.69	
	Temperature			
Physicochemical	Dissolved Oxygen			
	Total Suspended Solids			
Biology	Macroinvertebrates			
Diology	Fish			

FUNCTIONAL CATEGORY REPORT CARD							
Functional Category	ECS	PCS	Functional Change				
Hydrology	0.49	0.79	0.30				
Hydraulics	0.12	1.00	0.88				
Geomorphology	0.25	0.76	0.51				
Physicochemical							
Biology							

	EXISTING CONDIT	ION ASSESSMENT			Roll Up Scoring		
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	75	0.29			Euroctioning At
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.49	0.49	Rick
		Concentrated Flow Points / 1,000 feet	1	0.69			TO A
Hydraulics	Floodolain Connectivity	Bank Height Ratio	5.3	0.00	0.12	0.12	Not Euroctioning
,		Entrenchment Ratio	1.4	0.23			
	Large Woody Debris	LWD Index	0	0.00	0.00		
		No. of LWD Pieces / 100 meters					
	Lateral Migration	Dominant BEHI/NBS	H/L	0.40			
		Percent Streambank Erosion (%)	6	0.94	0.67		
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)				0.25	
Geomorphology	Bed Form Diversity	Pool Spacing Ratio	0	0.00			Not Euroctioning
		Pool Depth Ratio	3.5	1.00	0.33		Not Fulletioning
		Percent Riffle (%)	89.3	0.00	0.55		
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	34.1	0.06			
	Rinarian Vegetation	Canopy Cover (%)	43.3	0.00	0.02		
	inputati regetatori	Herbaceous Strata Vegetation Cover (%)	8.3	0.00	0.01		
		Woody Stem Basal Area (sqm/hectare)	0.03	0.00			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
5101051	Fish	Fish IBI					

	PROPOSED CONI	DITION ASSESSMENT			R	oll Up Sco	ring
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	70	0.58		Category 0.79 1.00 0.75	
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.79		Functioning
		Concentrated Flow Points / 1,000 feet	0	1.00			
Hudroulier	Eleadelain Connectivity	Bank Height Ratio	1	1.00	1.00	1.00	Euroctioning
iyuraulics	Floodplain connectivity	Entrenchment Ratio	5	1.00	1.00	1.00	Functioning
	Large Woody Debris	LWD Index	240	0.38	0.38		
	carge woody beans	No. of LWD Pieces / 100 meters			0.50	0.76	
		Dominant BEHI/NBS	L/L	1.00			
	Lateral Migration	Percent Streambank Erosion (%)	5	1.00	1.00		
		Percent Armoring (%)					Evectioning
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Conservation		Pool Spacing Ratio	5	1.00			
Geomorphology	Red Form Diversity	Pool Depth Ratio	2.7	0.91	0.07		Functioning
	bed Form Diversity	Percent Riffle (%)	45	1.00	0.57		
		Aggradation Ratio			0.91 1.00 0.97		
		Effective Vegetated Riparian Area (%)	100	1.00			
	Rippring Mogetation	Canopy Cover (%)	55	0.16	0.60		
	Riparian vegetation	Herbaceous Strata Vegetation Cover (%)	90	1.00	0.05		
		Woody Stem Basal Area (sqm/hectare)	12	0.60			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Piology	Macroinvertebrates	Macroinvertebrate IBI					
5101051	Fish	Fish IBI					

Programmatic Goals

Mitigation - Credits

Reach Description							
Reach ID: UNT-1 R2							
Describe The reach function.	Describe this reach and reach break criteria: The reach exists within a field driveway culvert and exhibits no stream function.						
Lat:	Lat: 43.809557						
Long:	Long: -90.76893						
Reference Stream Type: C							

Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MNSQT.

Describe the rationale used to select the reference stream type: A C channel was chosen for the reference stream type based on the likely historic channel and constructibility. The restored channel may evolve into a C/E system, and may eventualy be occupied by the beaver population currently on the Little La Crosse River main stem. The wide alluvial valley, slope, preliminary sinuosity, and natural bed-form fall within the C/E stream type. The specific reference stream type will be verified during the early design process. Expand on the programmatic goals of this project:

This project seeks to restore approximatley 1,456 LF of stream to produce 389 function feet stream credits for sale as a private mitigation bank. The project provides further ecological lifty through the rehabilitation of approximatley 26 acres of wetland adjacent to the stream channles. The tributaries being restored include the confluence with a Class 1 trout stream and will provide additional nursery habitat cureently degraded beyond use. Mitigation credits produced at this site will offsite impacts to the Upper Mississippi - Black Root Watershed Cataloguing Unit.

Restoration Approach

Explain the restoration potential of this project based on the programmatic goals (based on catchment assessment form):

This project will be a partial restoration of UNTLR1 on property owned by KCI Technologies, Inc.. No assessment of physiochemical components will be performed or targeted for uplift in this project. The straightened, ditched stream on KCI property will be restored to a natural CS channel based upon reference reach survey data collected from the Jackson Marsh State Natural Area stream. The initial Catchment Assessment indicated the catchment was in Fair condition with the majority of the contributing watershed in rural development, agruculture, and forest. The recieving stream, Little La Crosse Rive,r is rated a Class 1 trout stream in Fair to Poor condition as reported by WI DNR in thier 2022 assessment.

Explain the goals and objectives for this project:

Goals:

1. Improve floodplain connectivity through planfrom, profile, and crosssectional area adjustments.

2. Improve instream-habitat through the incorporation of large woody debris and riffle/pool sequences to diversify flow regimes.

3. Improve riparian habitat through the installation of native vegetation.

Objectives:

1. Reach runoff will improve slightly in the lateral drainage area by vegetating soil in agriculture.

Bedform diversity will improve with the installation of pool/riffle sequences.

3. Riparian buffer diversity and width will be increased through riparian species planting and protection.

NOTICE: If you find errors or problems, please email <u>StPaulSQT@usace.army.mil</u>

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District

Contributing Agencies: U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

Insert Aerial Photo of Project Reach

 Catchment Name and Number:
 UNT to Little La Crosse North

 Watershed Name (HUC 8) and Number:
 La Crosse-Pine 70400006

Rater(s): Timothy Guess Date: 1/16/24

Overall Watershed Condition	Р	Purpose: This form is used to determine the project's restoration potential. The catchment
Restoration Potential	Partial	assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream which restricts movement/recovery of fishes.

		CATCH		MN DNR WHAF Website:	https://arcgis.dnr.state.mn.us/ewr/what2/		
	Cotonorios		Description of Catchment Condition		Rating		WHAF score equivalents:
	Categories	Poor	Fair	Good	(P/F/G)	WHAF Index/Metric	0-40 = Poor; 41-70=Fair; 71-100=Good
1	Flow Alteration - Water Use (Hydrology)	Substantial reduction or augmentation of natural flow regime.	Moderate reduction or augmentation of natural flow regime.	Minimal reduction or augmentation of natural flow regime.	F	Flow Alteration INDEX: Water withdrawal	There has been a moderate amount of flow augmentation including road drainages and course alteration into roadside ditches and surface ditching through the ag field.
2	Impervious Cover (Hydrology)	Impervious Cover (IC) Index Score of 40% or less.	IC Index Score Between 41% and 70%.	IC Index score of 71% or greater.	Р	INDEX: Impervious Cover (time series)	The catchment is very small and there is limited impervious cover within.
3	Land Use Change (Hydrology)	Perennial Cover (PC) Index Score of 40% or less = % PC remaining -> Highly Altered Landscape.	PC Index Score of 41 to 70% or less -> Altered Landscape.	PC Index Score of 71% or greater -> Minimally Altered Landscape.	Р	INDEX: Perennial Cover (time series)	Approximatley 87% of the catchement is in perrenial cover.
4	Roads (Hydrology) Major roads located in or adjacent to project reach and/or high road density in catchment. Few major or minor roads in or adjacent to project reach. Moderate road density in catchment. No major or minor roads in or adjacent to project reach. Low road density in catchment.		The headwaters of the catchment flow under STH 27 adjacent to the site before flowing into the restoration reach.				
5	Percent Forested (Hydrology)	≤20%	>20% and <70%	≥70%	Р	NLCD Land Use Charts, Ecoregions	The catchment is approximately 50% forested.
e	Percent Agricultural Land (Hydrology/Physicochemical)	≥ 70%	>20% and <70%	≤20%	F	NLCD Land Use Charts, 'Cultivated' land	The catchment is approximatley 8% cultivated land.
7	Flashiness Index (Hydrology)	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 40% or less.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of between 41% to 70%.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 71% or more.	F	Major Flow Variability Matrics Worksheet: Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of HighLow Pulses metric (H_M_FV_FDP)	The catchment is likely somewhat flashy given the degree of headwater streams contributing to the system. This was the basis of the Fair scoring as Wisconsin does not provide a current index to utilize.
8	Riparian Connectivity - Vegetation (Geomorphology)	Riparian Connectivity (RC) Index Score of 40% or less.	RC Index Score Between 41% and 70%.	RC Index score of 71% or greater.	Р	INDEX: Riparian Connectivity	The riparian corridor for he project reach is narrow and mostly cleared of perrenial vegetation.
ç	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 40% or less.	Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores between 41 to 70%.	Low sediment supply. Upstream bank erosion and surface runoff is minimal. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 71% or greater.	G	INDEX: Soil Erosion Susceptibility; Steep Slopes Near Streams	The percent of perrenial cover throughout the catchment indicates this system likely has low upstream sediment supply The lower stream through the project resach slated for restoration has been ditcherd with unstable, eroded slopes, but is a small portion of the overall catchment.
1	Minnesota Integrated Report (305(b) and 303(d)) designated use support status (Note: impairments with atmospheric deposition as a source should be excluded*)	On or immediately upstream or downstream of a waterbody in Category 5 OR in Category 4c (i.e., designated use impairment not actively being mitigated).	On or immediately upstream or downstream of a waterbody in Category 4a or 4b (i.e., active mitigation of designated use impairment through approved TMDL or other control mechanisms).	No adjacent waterbodies listed as not supporting a designated use (i.e., all designated uses either unassessed or in Category 1, 2, or 3).	Ρ	Impairments INDEX: Aquatic Life Assessments DATA: Impaired Waters	The project reach flows into the Little la Crosse River at the downstream end of the project. The river is listed as a catergory 5 stream for phosphorus.
1	Localized Potential Pollution Sources, Animal Units (Physicochemical)	Extensive Livestock (animal units) in area and potential access to stream - scores of 40% or less.	Moderate Livestock (animal units) in area and potential access to stream - scores between 41% and 70%.	Low levels of Livestock (animal units) in area and low likely access to stream - scores of 71% or greater.	G	INDEX: Animal Unit metric DATA: Feedlots	Livestock pasture occupies approximatley 2.5% of the catchement and have low access to contributing drainages.
1:	Longitudinal Connectivity of the stream network (Biology)	Aquatic Connectivity (AC) Index Score of 40 or less.	AC Index Score Between 41% and 70%.	AC Index score of 71% or greater.	G	Inline Impoundments INDEX: Aquatic Connectivity DATA: Dams , bridges, culverts	The catchment is small and passes through only 1 bridge along its length.
1	3 Organism Recruitment (Biology)	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 40% or less.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores between 41 to 70%.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 71% or greater.	Ρ	Organism Recruitment INDEX: Stream Species, Aquatic Life Assessments DATA: Fish, Invert IBI, Mussel site, fully supporting reaches	No biotic community data on these ditched stream channels are available, however, based on flow regime and altered status, it is likely the scores for these channels would be in the Poor range.
1	Ditched or straightened streams (Hydrology)	Altered Watercourse Index Score of 40% or less.	Altered watercourse score between 41 and 70%.	Altered watercourse score - 71% or greater.	Р	INDEX: Altered Watercourse DATA: Altered Watercourse; Public watercourses/Ditch (DNR data access)	The main channel within the catchment, including the project reach, has been straightened and ditched. Most contributing ephemeral tributaries upstream are along their natural planfrom.
1	5 Other					-	

Site Information and				
Reference Selection				
Project Name:	LLR Headwaters Restoration			
Reach ID:	UNT-1 R2			
Restoration Potential:	Partial			
Existing Stream Type:	G			
Reference Stream Type:	с			
Woody Vegetation Natural Component:	Yes			
Use Class:	2B			
River Nutrient Regions:				
Drainage Area (sq.mi.):	0.44			
Proposed Bed Material:	Sand			
Existing Stream Length (ft):	23			
Proposed Stream Length (ft):	17.5			
Macroinvertebrate IBI Class:				
Fish IBI Class:	Southern Coldwater			
Valley Type:	Unconfined Alluvial			
Flow Permanence:	Intermittent			
Strahler Stream Order:	Second			

	N	otes			
1. Users input v	alues that are high	lighted based o	n restoration p	otential	
2.	Users select value:	from a pull-do	wn menu		
3. Leave v	alues blank for fiel	d values that w	ere not measur	ed	
FUNCTIONAL CHANGE S	UMMARY	٦	MITI	GATION SUN	MARY
Existing Condition Score (ECS)	0.00		9	(FF)	Lift
Proposed Condition Score (PCS)	0.53				
Change in Functional Condition (PCS - E	0.53				
Existing Stream Length (ft)	23				
Proposed Stream Length (ft)	17.5				
Change in Stream Length (ft)	-5.5				
Existing Functional Feet (FF)	0				
Proposed Functional Feet (FF)	9				
Proposed FF - Existing FF	9				
Percent Change in FF (%)					
FF Yield (FF/ft)	0.53				

0.53
0.53
23
17.5
-5.5
0
9
9
0.53

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Reach Runoff	0.00	0.79			
Hydraulics	Floodplain Connectivity	0.00	1.00			
	Large Woody Debris	0.00	0.80			
	Lateral Migration	0.00	1.00			
Geomorphology	Bed Material Characterization					
	Bed Form Diversity	0.00	0.97			
	Riparian Vegetation	0.00	0.69			
	Temperature					
Physicochemical	Dissolved Oxygen					
	Total Suspended Solids					
Riology	Macroinvertebrates					
Biology	Fish					

FUNCTIONAL CATEGORY REPORT CARD					
Functional Category	ECS	PCS	Functional Change		
Hydrology	0.00	0.79	0.79		
Hydraulics	0.00	1.00	1.00		
Geomorphology	0.00	0.87	0.87		
Physicochemical					
Biology					

EXISTING CONDITION ASSESSMENT						Roll Up Scoring		
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category	
	Reach Runoff	Land Use Coefficient	100	0.00				
Hydrology		BMP MIDS Rv Coefficient			0.00	0.00	Not Functioning	
		Concentrated Flow Points / 1,000 feet						
Hydraulics	Eloodolain Connectivity	Bank Height Ratio	5	0.00	0.00	0.00	Not Euroctioning	
riyuruunca	ribbophan connectivity	Entrenchment Ratio	0	0.00	0.00	0.00	Not Fulletioning	
	Large Woody Debris	LWD Index			0.00			
	cuipe woody beans	No. of LWD Pieces / 100 meters	0	0.00			Not Exectioning	
		Dominant BEHI/NBS	Ex/Ex	0.00		0.00		
	Lateral Migration	Percent Streambank Erosion (%)	100	0.00	0.00			
		Percent Armoring (%)						
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)						
Geomorphology	Bed Form Diversity	Pool Spacing Ratio	0	0.00	0.00			
B)		Pool Depth Ratio	0	0.00			Not Fulletioning	
		Percent Riffle (%)	0	0.00				
		Aggradation Ratio						
		Effective Vegetated Riparian Area (%)	0	0.00				
	Rinarian Vegetation	Canopy Cover (%)	0	0.00	0.00			
	inputati vegetation	Herbaceous Strata Vegetation Cover (%)	0	0.00	0.00			
		Woody Stem Basal Area (sqm/hectare)	0	0.00				
	Temperature	Summer Average (°C)						
Physicochemical	Dissolved Oxygen	DO (mg/L)						
	Total Suspended Solids	TSS (mg/L)						
Biology	Macroinvertebrates	Macroinvertebrate IBI						
0.0057	Fish	Fish IBI						

	PROPOSED CONI	DITION ASSESSMENT			R	oll Up Sco	ring
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	70	0.58			
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.79	0.79	Functioning
		Concentrated Flow Points / 1,000 feet	0	1.00			
Hudroulier	Electrologic Connectivity	Bank Height Ratio	1	1.00	1.00	1.00	Euroctioning
nyuraulies	Pidoupian connectivity	Entrenchment Ratio	5	1.00	1.00	1.00	runctioning
	Large Weeds Debric	LWD Index			0.90		
	carge woody beons	No. of LWD Pieces / 100 meters	18	0.80	0.80		
		Dominant BEHI/NBS	L/L	1.00	1.00	0.87	
	Lateral Migration	Percent Streambank Erosion (%)	5	1.00			
		Percent Armoring (%)					Euroctioning
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Conservation		Pool Spacing Ratio	6	1.00	0.97		
Geomorphology	Red Form Diversity	Pool Depth Ratio	2.7	0.91			Functioning
	bed Form Diversity	Percent Riffle (%)	45	1.00			
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	100	1.00			
	Rippring Mogetation	Canopy Cover (%)	55	0.16	0.60		
	Riparian vegetation	Herbaceous Strata Vegetation Cover (%)	90	1.00	0.05		
		Woody Stem Basal Area (sqm/hectare)	12	0.60			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Piology	Macroinvertebrates	Macroinvertebrate IBI					
5101051	Fish	Fish IBI					

Programmatic Goals

Reach ID:

Mitigation - Credits

Reach Description

Describe this reach and reach break criteria:

This stream segment is currently a single, channelized ditch of similar greomorphic and vegetative character from an existing field driveway/culvert down to the confluence with the Little La Crosse River. The natural channel was moved and shaped to allow for efficient drainage of the neighboring agricultural fields while maximizing planting area. This reach has recently undergone additional tree clearing along the entire length to be further assessed.

UNT-1 R3

Lat:	43.809557		
Long:	-90.76893		
Reference Stream Type:		С	

Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MMSQT.

Describe the rationale used to select the reference stream type: A C channel was chosen for the reference stream type based on the likely historic channel and constructibility. The restored channel may evolve into a C/E system, and may eventualy be occupied by the beaver population currently on the Little La Crosse River main stem. The wide alluvial valley, slope, preliminary sinuosity, and natural bed-form fall within the C/E stream type. The specific reference stream type will be verified during the early design process.

Restoration Approach

Expand on the programmatic goals of this project:

This project seeks to restore approximatley 1,456 LF of stream to produce 389 function feet stream credits for sale as a private mitigation bank. The project provides further ecological lifty through the rehabilitation of approximatley 26 acres of wetland adjacent to the stream channles. The tributaries being restored include the confluence with a Class 1 trout stream and will provide additional nursery habitat cureently degraded beyond use. Mitigation credits produced at this site will offsite impacts to the Upper Mississippi - Black Root Watershed Cataloguing Unit.

Explain the restoration potential of this project based on the programmatic goals (based on catchment assessment form):

This project will be a partial restoration of UNTLR1 on property owned by KCI Technologies, Inc.. No assessment of physiochemical components will be performed or targeted for uplift in this project. The straightened, diched stream on KCI property will be restored to a natural C5 channel based upon reference reach survey data collected from the Jackson Marsh State Natural Area stream. The initial Catchment Assessment indicated the catchment was in Fair condition with the majority of the contributing watershed in rural development, agruculture, and forest. The recieving stream, Little La Crosse River is rated a Class 1 trout stream in Fair to Poor condition as reported by WI DNR in thier 2022 assessment.

Explain the goals and objectives for this project:

Goals:

1. Improve floodplain connectivity through planfrom, profile, and crosssectional area adjustments.

2. Improve instream-habitat through the incorporation of large woody debris and riffle/pool sequences to diversify flow regimes.

3. Improve riparian habitat through the installation of native vegetation.

Objectives:

 Reach runoff will improve slightly in the lateral drainage area by vegetating soil in agriculture.

Bedform diversity will improve with the installation of pool/riffle sequences.

3. Riparian buffer diversity and width will be increased through riparian species planting and protection.

NOTICE: If you find errors or problems, please email StPaulSQT@usace.army.mil

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District

Contributing Agencies: U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

Insert Aerial Photo of Project Reach

 Catchment Name and Number:
 UNT to Little La Crosse North

 Watershed Name (HUC 8) and Number:
 La Crosse-Pine 70400006

Rater(s): Timothy Guess Date: 1/16/24

Overall Watershed Condition	Р	Purpose: This form is used to determine the project's restoration potential. The catchment
Restoration Potential	Partial	assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream which restricts movement/recovery of fishes.

CATCHMENT ASSESSMENT						MN DNR WHAF Website:	https://arcgis.dnr.state.mn.us/ewr/whaf2/	
	Cotonorios	Description of Catchment Condition			Rating		WHAF score equivalents:	
	Categories	Poor Fair		Good (P/F		WHAF Index/Metric	0-40 = Poor; 41-70=Fair; 71-100=Good	
1	Flow Alteration - Water Use (Hydrology)	Substantial reduction or augmentation of natural flow regime.	Moderate reduction or augmentation of natural flow regime.	Minimal reduction or augmentation of natural flow regime.	F	Flow Alteration INDEX: Water withdrawal	There has been a moderate amount of flow augmentation including road drainages and course alteration into roadside ditches and surface ditching through the ag field.	
2	Impervious Cover (Hydrology)	Impervious Cover (IC) Index Score of 40% or less.	IC Index Score Between 41% and 70%.	IC Index score of 71% or greater.	Р	INDEX: Impervious Cover (time series)	The catchment is very small and there is limited impervious cover within.	
3	Land Use Change (Hydrology)	Perennial Cover (PC) Index Score of 40% or less = % PC remaining -> Highly Altered Landscape.	PC Index Score of 41 to 70% or less -> Altered Landscape.	PC Index Score of 71% or greater -> Minimally Altered Landscape.	Р	INDEX: Perennial Cover (time series)	Approximatley 87% of the catchement is in perrenial cover.	
4	Roads (Hydrology)	Major roads located in or adjacent to project reach and/or high road density in catchment.	Few major or minor roads in or adjacent to project reach. Moderate road density in catchment.	No major or minor roads in or adjacent to project reach. Low road density in catchment.	F	INDEX: Aquatic Connectivity	The headwaters of the catchment flow under STH 27 adjacent to the site before flowing into the restoration reach.	
5	Percent Forested (Hydrology)	≤20%	>20% and <70%	≥70%	Р	NLCD Land Use Charts, Ecoregions	The catchment is approximately 50% forested.	
e	Percent Agricultural Land (Hydrology/Physicochemical)	≥ 70%	>20% and <70%	≤20%	F	NLCD Land Use Charts, 'Cultivated' land	The catchment is approximatley 8% cultivated land.	
7	Flashiness Index (Hydrology)	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 40% or less.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of between 41% to 70%.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 71% or more.	F	Major Flow Variability Matrics Worksheet: Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of HighLow Pulses metric (H_M_FV_FDP)	The catchment is likely somewhat flashy given the degree of headwater streams contributing to the system. This was the basis of the Fair scoring as Wisconsin does not provide a current index to utilize.	
8	Riparian Connectivity - Vegetation (Geomorphology)	Riparian Connectivity (RC) Index Score of 40% or less.	RC Index Score Between 41% and 70%.	RC Index score of 71% or greater.	Р	INDEX: Riparian Connectivity	The riparian corridor for he project reach is narrow and mostly cleared of perrenial vegetation.	
ç	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 40% or less.	Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores between 41 to 70%.	Low sediment supply. Upstream bank erosion and surface runoff is minimal. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 71% or greater.	G	INDEX: Soil Erosion Susceptibility; Steep Slopes Near Streams	The percent of perrenial cover throughout the catchment indicates this system likely has low upstream sediment supply The lower stream through the project resach slated for restoration has been ditcherd with unstable, eroded slopes, but is a small portion of the overall catchment.	
1	Minnesota Integrated Report (305(b) and 303(d)) designated use support status (Note: impairments with atmospheric deposition as a source should be excluded*)	On or immediately upstream or downstream of a waterbody in Category 5 OR in Category 4c (i.e., designated use impairment not actively being mitigated).	On or immediately upstream or downstream of a waterbody in Category 4a or 4b (i.e., active mitigation of designated use impairment through approved TMDL or other control mechanisms).	No adjacent waterbodies listed as not supporting a designated use (i.e., all designated uses either unassessed or in Category 1, 2, or 3).	Ρ	Impairments INDEX: Aquatic Life Assessments DATA: Impaired Waters	The project reach flows into the Little la Crosse River at the downstream end of the project. The river is listed as a catergory 5 stream for phosphorus.	
1	Localized Potential Pollution Sources, Animal Units (Physicochemical)	Extensive Livestock (animal units) in area and potential access to stream - scores of 40% or less.	Moderate Livestock (animal units) in area and potential access to stream - scores between 41% and 70%.	Low levels of Livestock (animal units) in area and low likely access to stream - scores of 71% or greater.	G	INDEX: Animal Unit metric DATA: Feedlots	Livestock pasture occupies approximatley 2.5% of the catchement and have low access to contributing drainages.	
1:	2 Longitudinal Connectivity of the stream network (Biology)	Aquatic Connectivity (AC) Index Score of 40 or less.	AC Index Score Between 41% and 70%.	AC Index score of 71% or greater.	G	Inline Impoundments INDEX: Aquatic Connectivity DATA: Dams , bridges, culverts	The catchment is small and passes through only 1 bridge along its length.	
1	3 Organism Recruitment (Biology)	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 40% or less.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores between 41 to 70%.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 71% or greater.	Ρ	Organism Recruitment INDEX: Stream Species, Aquatic Life Assessments DATA: Fish, Invert IBI, Mussel site, fully supporting reaches	No biotic community data on these ditched stream channels are available, however, based on flow regime and altered status, it is likely the scores for these channels would be in the Poor range.	
1	Ditched or straightened streams (Hydrology)	Altered Watercourse Index Score of 40% or less.	Altered watercourse score between 41 and 70%.	Altered watercourse score - 71% or greater.	Р	INDEX: Altered Watercourse DATA: Altered Watercourse; Public watercourses/Ditch (DNR data access)	The main channel within the catchment, including the project reach, has been straightened and ditched. Most contributing ephemeral tributaries upstream are along their natural planfrom.	
1	5 Other					-		

Site Information and					
Reference Selection					
Project Name:	LLR Headwaters Restoration				
Reach ID:	UNT 1 Reach 3				
Restoration Potential:	Partial				
Existing Stream Type:	G				
Reference Stream Type:	с				
Woody Vegetation Natural Component:	Yes				
Use Class:	2B				
River Nutrient Regions:					
Drainage Area (sq.mi.):	0.44				
Proposed Bed Material:	Sand				
Existing Stream Length (ft):	839.3				
Proposed Stream Length (ft):	637.6				
Macroinvertebrate IBI Class:					
Fish IBI Class:	Southern Coldwater				
Valley Type:	Unconfined Alluvial				
Flow Permanence:	Intermittent				
Strahler Stream Order:	First				

Notes						
1. Users input va	1. Users input values that are highlighted based on restoration potential					
2. l	Jsers select values	from a pull	-down menu			
3. Leave va	lues blank for field	values that	t were not me	asured		
FUNCTIONAL CHANGE SU	IMMARY	1	N	ITIGAT	ON SUN	MARY
Existing Condition Score (ECS)	0.23		151		(FF)	Lift
Proposed Condition Score (PCS)	0.54					
Change in Functional Condition (PCS - E	0.31					
Existing Stream Length (ft)	839.3					
Proposed Stream Length (ft)	637.6					
Change in Stream Length (ft)	-201.7					
Existing Functional Feet (FF)	193					
Proposed Functional Feet (FF)	344	1				
Proposed FF - Existing FF	151					
Percent Change in FF (%)	78%	1				
FF Yield (FF/ft)	0.24	1				

dition Score (PCS)	0.54
ctional Condition (PCS - E	0.31
n Length (ft)	839.3
am Length (ft)	637.6
am Length (ft)	-201.7
onal Feet (FF)	193
tional Feet (FF)	344
Existing FF	151
e in FF (%)	78%
	0.24

I	FUNCTION BASED PARAMETERS SUMMARY								
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter						
Hydrology	Reach Runoff	0.77	0.92						
Hydraulics	Floodplain Connectivity	0.24	1.00						
	Large Woody Debris	0.00	0.38						
	Lateral Migration	0.20	1.00						
Geomorphology	Bed Material Characterization								
	Bed Form Diversity	0.29	0.97						
	Riparian Vegetation	0.00	0.69						
	Temperature								
Physicochemical	Dissolved Oxygen								
	Total Suspended Solids								
Piology	Macroinvertebrates								
BIOLOGY	Fish								

FUNCTIONAL CATEGORY REPORT CARD					
Functional Category	ECS	PCS	Functional Change		
Hydrology	0.77	0.92	0.15		
Hydraulics	0.24	1.00	0.76		
Geomorphology	0.12	0.76	0.64		
Physicochemical					
Biology					

EXISTING CONDITION ASSESSMENT					Roll Up Scoring		
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
	Reach Runoff	Land Use Coefficient	71	0.53	0.77	0.77	Functioning
Hydrology		BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet	0	1.00			
Hydraulics	Eloodolain Connectivity	Bank Height Ratio	4.3	0.00	0.74	0.74	Not Euroctioning
nyuraulics	rioouplain connectivity	Entrenchment Ratio	1.8	0.47	0.24	0.24	Not Pulletioning
	Large Woody Debris	LWD Index	0	0.00	0.00	0.12	
		No. of LWD Pieces / 100 meters					
	Lateral Migration	Dominant BEHI/NBS	H/L	0.40			
		Percent Streambank Erosion (%)	100	0.00	0.20		
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology	Bed Form Diversity	Pool Spacing Ratio	0	0.00	0.29		Not Functioning
		Pool Depth Ratio	2.6	0.88			
		Percent Riffle (%)	98.9	0.00			
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	8.2	0.00			
	Rinarian Vegetation	Canopy Cover (%)	0.5	0.00	0.00		
	inputati vegetation	Herbaceous Strata Vegetation Cover (%)	12.8	0.00			
		Woody Stem Basal Area (sgm/hectare)	0	0.00			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)				1	
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
00005	Fish	Fish IBI					

	PROPOSED CONI	DITION ASSESSMENT	ON ASSESSMENT			Roll Up Scoring		
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category	
		Land Use Coefficient	55	0.84	0.92 0.92			
drology	Reach Runoff	BMP MIDS Rv Coefficient				0.92	Functioning	
		Concentrated Flow Points / 1,000 feet	0	1.00				
Hudroulier	Eleadelain Connectivity	Bank Height Ratio	1	1.00	1.00	1.00	Euroctioning	
iyuraulics	Floodplain connectivity	Entrenchment Ratio	5	1.00	1.00	1.00	Functioning	
	Large Woody Debris	LWD Index	240	0.38	0.38			
	carge woody beans	No. of LWD Pieces / 100 meters			0.50			
		Dominant BEHI/NBS	L/L	1.00	1.00 0.97			
	Lateral Migration	Percent Streambank Erosion (%)	5	1.00				
		Percent Armoring (%)						
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)						
		Pool Spacing Ratio	6	1.00		0.76 F	Functioning	
Geomorphology	Red Form Diversity	Pool Depth Ratio	2.7	0.91				
	bed Form Diversity	Percent Riffle (%)	45	1.00				
		Aggradation Ratio						
		Effective Vegetated Riparian Area (%)	100	1.00				
	Rippring Mogetation	Canopy Cover (%)	55	0.16	0.69			
	Riparian vegetation	Herbaceous Strata Vegetation Cover (%)	90	1.00				
		Woody Stem Basal Area (sqm/hectare)	12	0.60				
	Temperature	Summer Average (°C)						
Physicochemical	Dissolved Oxygen	DO (mg/L)						
	Total Suspended Solids	TSS (mg/L)						
Piology	Macroinvertebrates	Macroinvertebrate IBI						
5101051	Fish	Fish IBI						

Assured Wetland Delineation Report

Little La Crosse River Mitigation Site Addition

Town of Jefferson, Monroe County, Wisconsin December 2, 2024

Project Number: 20241365

506 Springdale Street | Mount Horeb, WI 53572 | www.heartlandecological.com

Little La Crosse River Mitigation Site Addition

Town of Jefferson, Monroe County, Wisconsin December 2, 2024

Prepared for:

Mr. Harald Jordahl

KCI Technologies, Inc.

300 2nd Street North, Suite 350

La Crosse, WI 54601

Prepared by:

Heartland Ecological Group, Inc.

506 Springdale Street

Mount Horeb, WI 53572

608-490-2450

www.heartlandecological.com

Preparation Assistant: Jenny Grimes, Senior Scientist

hut Ann_

Lead Investigator: Scott Fuchs, Senior Scientist

Solutions for people, projects, and ecological resources.

Table of Contents

1.0	Introduction
2.0	Methods
2.1	Wetlands 5
3.0	Results and Discussion
3.1	Desktop Review
Ta	able 1. Summary of NRCS Mapped Soils within the Study Area
3.2	Field Review 10
Ta	able 2. Summary of Wetlands Identified within the Study Area
3.3	Other Considerations
4.0	Conclusion 15
5.0	References 17

Appendix A | Figures

- Appendix B | APT Analysis
- Appendix C | Wetland Determination Data Sheets
- Appendix D | Site Photographs
- Appendix E | Delineator Qualifications

Appendix F | Off-Site Analysis

Appendix G | Previous Wetland Mapping

Solutions for people, projects, and ecological resources.

ASSURED WETLAND DELINEATION REPORT

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

1.0 Introduction

Heartland Ecological Group, Inc. ("Heartland") completed an assured wetland determination and delineation on the Little La Crosse River Mitigation Site Addition on October 5, 2024 at the request of KCI Technologies, Inc. Fieldwork was completed by Scott Fuchs, Senior Scientist, an assured delineator qualified via the Wisconsin Department of Natural Resources' (WDNR's) Wetland Delineation Assurance Program (Appendix E, Qualifications). The 37.63-acre site (the "Study Area") consists of two separate areas, one of which is adjacent to the State Trunk Highway (STH 27) right-of-way north of its intersection with County Trunk Highway (CTH) F, and the second of which is located 1/3-mile to the east of the intersection of STH 27 and CTH F, in Sections 5 and 6, T15N, R3W, Town of Jefferson, Monroe County, WI (Figure 1, Appendix A). The purpose of the wetland delineation was to determine the location and extent of wetlands within the Study Area.

Three (3) wetland areas totaling approximately 23.86 acres were delineated and mapped within the Study Area (Figure 7, Appendix A). Five (5) tributaries of the Little La Crosse River and the Little La Crosse River itself were also identified and mapped within the Study Area. Wetlands, waterways, and water bodies discussed in this report may be subject to federal regulation under the jurisdiction of the U.S. Army Corps of Engineers (USACE), state regulation under the jurisdiction of the WDNR, and local zoning authorities. Heartland recommends this report be submitted to local authorities, the WDNR, and USACE for final jurisdictional review and concurrence.

Solutions for people, projects, and ecological resources.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

2.0 Methods

2.1 Wetlands

Wetlands were determined and delineated using the criteria and methods described in the USACE Wetland Delineation Manual, T.R. Y-87-1 ("1987 Corps Manual") and the applicable *Regional Supplement to the Corps of Engineers Wetland Delineation Manual.* In addition, the *Guidance for Submittal of Delineation Reports to the St. Paul District USACE and the WDNR* (WDNR, 2015) was followed in completing the wetland delineation and report.

Determinations and delineations utilized available resources including the U.S. Geological Survey's (USGS) *WI 7.5 Minute Series (Topographic) Map* (Figure 2, Appendix A), the U.S. Department of Agriculture (USDA) Natural Resource Conservation Service's (NRCS) Soil Survey Geographic Database (SSURGO) *Web Soil Survey* (Figure 3, Appendix A), the WDNR's *Wetland Indicator* data layer (Figure 4, Appendix A), the WDNR's *Wisconsin Wetland Inventory* data layer (Figure 5, Appendix A), the WNDR's *24k Hydro Flowlines (Rivers and Streams)* data layer (Figure 2 and 5, Appendix A), the WDNR's *Color-Stretch LiDAR and Hillshade Image Service Layer* (Figure 6, Appendix A), and aerial imagery available through the USDA Farm Service Agency's (FSA) National Agriculture Imagery Program (NAIP).

Wetland determinations were completed on-site at sample points, often along transects, using the three (3) criteria (vegetation, soil, and hydrology) approach per the 1987 Corps Manual and the Regional Supplement. Procedures in these sources were followed to demonstrate that, under normal circumstances, wetlands were present or not present based on a predominance of hydrophytic vegetation, hydric soils, and wetland hydrology.

Atypical conditions were encountered within the Study Area due to the presence of agricultural lands utilized for row cropping. Therefore, procedures for managed plant communities in the *Problematic hydrophytic vegetation* section described in Chapter 5 of the Regional Supplement were used. NAIP imagery was reviewed for evidence of crop stress, saturation, or inundation signatures. Sample point placements for the wetland delineation were partially determined based on such signatures.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

In actively farmed areas within the Study Area where hydric soils may be present, methods described in Chapter 5 (Difficult Wetland Situations) of the Regional Supplement were followed. Available aerial imagery was analyzed using procedures described in the Guidance for Offsite Hydrology/Wetland Determinations (USACE and Minnesota Board of Water and Soil Resources, July 2016 – "July 2016 Guidance"). An off-site aerial imagery analysis (Off-Site Analysis) was completed to document the presence or absence of wetland signatures and assist in the wetland determination. A wetland signature is evidence, recorded by aerial imagery, of ponding, flooding, or impacts of saturation for sufficient duration to meet wetland hydrology and possibly wetland vegetation criteria. Wetland signatures often vary based on the type and seasonal date of the aerial imagery. For example, there are seven (7) standardized signature types in actively farmed settings described in the July 2016 Guidance. To assist in interpretations of wetland signatures, a WETS analysis was used to compare antecedent precipitation in the three (3) months leading up to each aerial image to the long-term (30-year) precipitation averages and standard deviation to determine if antecedent precipitation conditions for each image was normal, wet, or dry. Areas within agricultural fields are typically determined to be wetland if hydric soils and wetland hydrology indicators are present and aerial images taken in the five (5) (or more) most recent normal antecedent precipitation images show at least one (1) of the wetland signatures per the July 2016 Guidance. Although the Off-Site Analysis concentrates on imagery taken under normal antecedent precipitation conditions, the images determined to be taken under wet and dry antecedent precipitation conditions were also analyzed and considered. Determinations and delineation of wetlands in agricultural areas are typically based on an outline of the largest wetland signature on an image taken under "normal" antecedent conditions and based on the consistency of the signatures (USDA, NRCS 1998).

Recent weather conditions influence the visibility or presence of certain wetland hydrology indicators. An assessment of recent precipitation patterns helps to determine if climatic/hydrologic conditions were typical when the field investigation was completed. Therefore, a review of antecedent precipitation in the 90 days leading up to the field investigation was completed. Using an Antecedent Precipitation Tool (APT) analysis developed by the USACE (Deters & Gutenson 2021), the amount of precipitation over these 90 days was compared to averages and standard deviation thresholds observed over the past 30 years to generally represent if conditions encountered during the investigation were

Solutions for people, projects, and ecological resources.

Page 6

normal, wet, or dry. Recent precipitation events in the weeks prior to the investigation were also considered while interpreting wetland hydrology indicators. Additionally, the Palmer Drought Severity Index was checked for long-term drought or moist conditions (NOAA, 2018).

The uppermost wetland boundary and sample points were identified and marked with wetland flagging and located with a Global Navigation Satellite System (GNSS) receiver capable of sub-meter accuracy. In some cases, wetland flagging was not utilized to mark the boundary and the location was only recorded with a GNSS receiver, particularly in active agricultural areas. The GNSS data was then used to map the wetlands using ESRI ArcGIS Pro[™] software.

3.0 Results and Discussion

3.1 Desktop Review

Climatic Conditions

According to the APT analysis using the previous 90 days of precipitation data, conditions encountered at the time of the fieldwork were expected to be drier than normal for the time of year (Appendix B). The Palmer Drought Severity Index was checked as part of the APT analysis, and the long-term conditions at the time of the fieldwork were in the mild wetness range. Fieldwork was completed outside the dry-season based on long-term regional hydrology data utilized in the WebWIMP Climatic Water Balance and computed as part of the APT analysis. The growing season was determined to still be underway based on observations of several species retaining live vegetation and soil temperatures above 41°F at a depth of 12 inches.

General Topography and Land Use

Topography within the larger portion of the Study Area was generally gently sloping west towards the Little La Crosse River, with a topographic high of approximately 862 feet above mean sea level present adjacent to CTH F, and a topographic low of approximately 838 feet above mean sea level within the northwest corner. The smaller portion of the Study Area along STH 27 had a topographic high of 864 feet above mean sea level along STH 27 and a topographic low of 856 feet above mean sea level within a ditch that runs parallel to the

eastern boundary (Figures 2, 6, and 7 Appendix A). General drainage is towards the Little La Crosse River. Land use within the Study Area and surrounding areas are primarily agricultural row cropping.

Soil Mapping

Soils mapped by the NRCS Soil Survey within the Study Area and their hydric status are summarized in Table 1. Wetlands identified during the field investigation are located primarily within areas mapped as predominantly hydric soils including wetland indicator soils (Figures 3 and 4, Appendix A).

Soil symbol: Soil Unit Name	Soil Unit Component	Soil Unit Component Percentage	Landform	Hydric status
20A: Palms and Houghton mucks, 0 to 1% slopes	Palms-Ponded	0-90	Depressions on stream terraces	Yes
	Houghton-Ponded	0-90	Depressions on stream terraces	Yes
	Ettrick	0-10	Flood plains	Yes
	Water	0-5	_	No
126B: Barremills silt loam, 1 to 6% slopes	Barremills	85-100	Hills	No
	Toddville	3-10	Stream terraces	No
	Arenzville	2-10	Drainageways on stream terraces	No
202D2: Lambeau silt loam, 12 to 20% slopes, moderately eroded	Lambeau	90-100	Hills	No
	Hixton	2-10	Hills	No
628A: Orion silt loam, 0 to 3% slopes, occasionally flooded	Orion-Occasionally flooded	80-95	Drainageways, flood plains	No
	Arenzville- Occasionally flooded	3-10	Flood plains, drainageways	No

Table 1. Summary of NRCS Mapped Soils within the Study Area

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Soil symbol: Soil Unit Name	Soil Unit Component	Soil Unit Component Percentage	Landform	Hydric status
	Ettrick-Frequently flooded	1-5	Depressions on flood plains	Yes
	Bearpen-Rarely flooded	1-5	Flood plains	No
1743F: Council- Elevasil-Norden complex, 20 to 45% slopes, rocky	Council	30-35	Valley sides	No
	Elevasil	25-35	Rock pediments, valley sides	No
	Norden	25-30	Knolls	No
	Seaton-Driftless valley	0-10	Knolls	No
	Urne	0-8	Valley sides	No
	Boone	0-5	Valley sides	No
	Rock outcrop- Sandstone	0-2	Valley sides	No

Wetland Mapping

The Wisconsin Wetlands Inventory (WWI) mapping (Figure 5, Appendix A) depicts two (2) wetland areas within the eastern portion of Study Area. One (1) emergent/wet (E1Kg) meadow is depicted in the southwestern corner of the eastern portion of the Study Area and one (1) wet meadow/forested/riverine wetland complex (T3K/T3/E1K/S3/E1Kg) is depicted in the northwestern part of the eastern portion of the Study Area.

Waterway Mapping

The WDNR's Rivers and Streams data layer (Figure 5, Appendix A) depicts one (1) waterway within the Study Area. The Little La Crosse River is mapped flowing through the northwest corner of the eastern portion of the Study Area.

Previous Delineations

Heartland previously completed a wetland delineation within the property in between the two portions of the current Study Area in 2023. Boundaries identified during the previous

delineation effort were extended within the Study Area where applicable. A map figure showing the results of the previous wetland delineation is included as Appendix G.

Off-Site Analysis

Agricultural fields within the Study Area have significant mapped hydric or potentially hydric soils and were the focus of the Off-Site Analysis (OSA) (Appendix F). From the aerial imagery, the secondary wetland hydrology indicators of "Saturation Visible on Aerial Imagery" (C9) and "Stunted or Stressed Plants" (D1) were noted.

A total of 20 aerial images were selected and reviewed based on availability and quality of the imagery. Of these images, 12 were taken under normal antecedent precipitation conditions. Signatures were noted in two (2) areas within the Study Area within landscape positions described by the NRCS to support hydric soil components and were the focus of the OSA. At least one (1) of the seven (7) described wetland signatures per the July 2016 Guidance were consistently noted in both of these areas on imagery taken under normal antecedent precipitation conditions. Based on the off-site analysis, both areas were likely to be wetland prior to the fieldwork.

3.2 Field Review

Three (3) wetlands were identified and delineated within the Study Area. Wetland determination data sheets (Appendix C) were completed at 17 sample points that were representative of the wetland and upland conditions near the boundary and where potential wetlands may be present based on the desktop review and field reconnaissance. Appendix D provides photographs, typically taken at the sample point locations within wetlands and adjacent uplands. The wetland boundary and sample point locations are shown on Figure 7 (Appendix A) and the wetlands are summarized in Table 2 and detailed in the following sections.

Wetland ID	Wetland Description	*Surface Water Connections	*NR151 Protective Area	Acreage (on-site)
W-1	Wet Meadow / Unvegetated Ditch	Contiguous with the Little La Crosse River	Less susceptible, 10-30 feet	0.25

Table 2. Summary of Wetlands Identified within the Study Area

Solutions for people, projects, and ecological resources.

Page **10**

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

		Connections	Protective Area	(on-site)
W-2	Wet Meadow / Farmed Wet Meadow	Contiguous with the Little La Crosse River	Moderately susceptible, 50 feet	1.69
W-3	Farmed Wet Meadow / Wet Meadow / Sedge Meadow / Shallow Marsh / Shrub Carr / Forested Wetland Complex	Contiguous with the Little La Crosse River	Moderately susceptible, 50 feet	21.91

wetland and waterway protective areas under NR 151 lies with the WDNR. Local zoning authorities may have additional restrictions. USACE has authority for determining federal jurisdiction of wetlands and waterways.

23.86

Wetland 1 (W-1)

Wetland W-1 is a 0.25-acre ditch present parallel to the eastern boundary of the western portion of the Study Area. The wetland area consists of the bottom of a ditch, which contains an intermittent waterway (WW-1). Hydrology within W-1 appeared quite flashy based on the erosion and drift deposits observed within the ditch, yet primary wetland hydrology indicators were observed during a drier than normal condition, which is indicative of longer-persisting wetland hydrology.

The ditch bottom was largely unvegetated, but vegetation present on the ditch sideslopes was documented to make a hydrophytic vegetation determination. Dominant vegetation present on the ditch sideslopes included clearweed (*Pilea pumila*, FACW), creeping jenny (*Lysimachia nummularia*, FACW), eastern cottonwood (*Populus deltoides*, FAC), and peach-leaved willow (*Salix amygdaloides*, FACW). Therefore, the wetland vegetation parameter was determined to be met.

The Redox Dark Surface (F6) hydric soil indicator was observed within W-1. A depleted matrix overlain by a 2/1 silty clay loam was observed at 12 inches and below at sample point P04, but a 6/2 sand layer was present from the surface to a depth of three inches. Professional judgement was used to determine that the Depleted Below Dark Surface (A11) indicator was applicable here.

The primary wetland hydrology indicators of High Water Table (A2), Saturation (A3), Drift Deposits (B3), and Sparsely Vegetated Concave Surface (B8) were noted in W-2, while secondary indicators included Drainage Patterns (B10), Geomorphic Position (D2), and a positive FAC-Neutral Test (D5). Therefore, the wetland hydrology parameter was met.

Wetland 2 (W-2)

Wetland 2 (W-2) is a 1.69-acre partially farmed wet meadow located in the southwestern portion of the eastern Study Area. The wetland area was mostly unfarmed at the time of the wetland delineation, but crop detritus was present along the edges. Based on a review of aerial imagery, the farmer only occasionally is able to crop the entire wetland area when conditions allow.

Dominant vegetation within unfarmed portions of W-2 consisted of a ruderal wet meadow dominated by reed canary grass (*Phalaris arundinacea*, FACW). Dominant vegetation along the farmed edges of the wetland consisted of fall witch grass (*Panicum dichotomiflorum*, FACW). Thus, the hydrophytic vegetation parameter was satisfied in both unfarmed and farmed portions of the wetland.

The Histosol (A1), Thick Dark Surface (A12), Loamy Mucky Mineral (F1), and Redox Dark Surface (F6) hydric soil indicators were observed at the sample points completed within W-2 and therefore the hydric soil parameter was met.

The primary wetland hydrology indicator of Saturation (A3) was observed within W-2, while the secondary indicators of Saturation Visible on Aerial Imagery (C9), Stunted or Stressed Plants (D1), Geomorphic Position (D2), and a positive FAC-Neutral Test (D5) were also observed. Therefore, the wetland hydrology parameter was satisfied.

The boundaries of W-2 were determined by the average extent of wetland hydrology signatures observed during normal years reviewed during the OSA and observations of the extent of hydric soil, crop stress, and hydrophytic vegetation observed during the field investigation.

Wetland 3 (W-3)

Wetland 3 (W-3) is a 21.91-acre wetland complex composed of a mosaic of farmed wet meadow, wet meadow, sedge meadow, shallow marsh, shrub carr, and forested wetland present in the northwestern part of the eastern portion of the Study Area. Wetland W-3 continues offsite to the north and west.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Dominant vegetation observed in the farmed wet meadow fringes of W-1 consisted of yellow nut sedge (*Cyperus esculentus*, FACW) and fall panic grass (*Panicum dichotomiflorum*, FACW). Dominant vegetation in wet meadow and shallow marsh portions of W-3 included reed canary grass, rice cut grass (*Leersia oryzoides*, OBL), and narrow-leaved cattail (*Typha angustifolia*, OBL). Dominant vegetation in the partially wooded, northwestern portion of W-3 included American manna grass (*Glyceria grandis*, OBL), angelica (*Angelica atropurprea*, OBL), hairy-fruited sedge (*Carex trichocarpa*, OBL), jewelweed (*Impatiens capensis*, FACW), reed canary grass (*Phalaris arundinacea*, FACW), clearweed (*Pilea pumila*, FACW), Bebb's willow (*Salix bebbiana*, FACW), buckthorn (*Rhamnus cathartica*, FAC), peach-leaved willow (*Salix amygdaloides*, FACW), elderberry (*Sambucus nigra*, FACW), speckled alder (*Alnus incana*, FACW), quaking aspen (*Populus tremuloides*, FAC), box elder (*Acer negundo*, FAC), and American elm (*Ulmus americana*, FACW). Therefore, the wetland vegetation parameter was met.

The Histosol (A1), Depleted Matrix (F3), and Redox Dark Surface (F6) hydric soil indicators were noted at the sample points completed within W-3 and therefore the hydric soil parameter was satisfied.

The High Water Table (A2) and Saturation (A3) primary wetland hydrology indicators were observed within W-3, while secondary indicators included Saturation Visible on Aerial Imagery (C9), Stunted or Stressed Plants (D1), Geomorphic Position (D2), and a positive FAC-Neutral Test (D5). Thus, the wetland hydrology criteria were met.

The boundaries of wet meadow / farmed wet meadow portions of W-3 were determined by the average extent of wetland hydrology signatures observed in normal years reviewed during the OSA and by the extent of hydrophytic vegetation, hydric soils, and wetland hydrology indicators observed during the field investigation. W-3 is contiguous with several unnamed tributaries of the Little La Crosse River and the Little La Crosse River itself, which flows through the northwestern corner of the eastern half of the Study Area.

<u>Waterways</u>

Six (6) waterways, the Little La Crosse River and five (5) unnamed tributaries of the Little La Crosse River, were observed within the Study Area. The approximately ordinary high water mark (OHWM) of the Little La Crosse River and the approximate centerlines of the unnamed tributaries are mapped on Figure 7. The Little La Crosse River flows through the

northwestern corner of the eastern half of Study Area and is considered an Area of Special Natural Resource Interest (ASNRI) Trout Stream by WDNR within the Study Area.

3.3 Other Considerations

This report is limited to the identification and delineation of wetlands within the Study Area. Other regulated environmental resources that result in land use restrictions may be present within the Study Area that were not evaluated by Heartland (e.g. navigable waterways, floodplains, cultural resources, and threatened or endangered species).

Wisconsin Act 183 provides exemptions to permitting requirements for certain nonfederal wetlands. Nonfederal wetlands are wetlands that are not subject to federal jurisdiction. Exemptions apply to projects in urban areas with wetland impacts up to 1-acre per parcel. An urban area is defined as an incorporated area; an area within ½ mile of an incorporated area; or an area served by a sewerage system. Exemptions for nonfederal wetlands also apply to projects in rural areas with wetland impacts up to three (3) acres per parcel. Exemptions in rural areas only apply to structures with an agricultural purpose such as buildings, roads, and driveways. The determination of federal and nonfederal wetlands MUST be made by the USACE through an Approved Jurisdictional Determination (AJD). This report may be submitted to the USACE to assist with their determination.

Wis. Adm. Code NR 151 ("NR 151") requires that a "protective area" (buffer) be determined from the Ordinary High-Water Mark (OHWM) of lakes, streams and rivers, or at the delineated boundary of wetlands. Per NR 151.12, the protective area width for "less susceptible" wetlands is determined by using 10% of the average wetland width, no less than 10 feet or more than 30 feet. "Moderately susceptible" wetlands, lakes, and perennial and intermittent streams identified on recent mapping require a protective area width of 50 feet; while "highly susceptible wetlands" are associated with outstanding or exceptional resource waters in areas of special natural resource interest and require protective area width of 75 feet. Table 2 above lists the potential wetland buffers per NR 151 for each wetland identified based on Heartland's professional opinion. Please note that jurisdictional authority on wetland and waterway protective areas under NR 151 lies with the WDNR. Local zoning authorities and regional planning organizations may have additional land use restrictions within or adjacent to wetlands.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

4.0 Conclusion

Heartland completed an assured wetland determination and delineation within the Little La Crosse River Mitigation Site Addition on October 5, 2024 at the request of KCI Technologies, Inc. Fieldwork was completed by Scott Fuchs, Senior Scientist, an assured delineator qualified via the WDNR's Wetland Delineation Assurance Program (Appendix E). The Study Area is made up of two separate areas within Sections 5 and 6, T15N, R3W, Town of Jefferson, Monroe County, WI (Figure 1, Appendix A).

Three (3) wetland areas were delineated and mapped within the 37.63-acre Study Area (Figure 7, Appendix A). The wetlands, which may be classified as an excavated ditch, farmed wet meadow, wet meadow, and a wetland complex containing wet meadow, sedge meadow, shrub carr, and forested wetland communities, total approximately 23.86 acres within the Study Area. The Little La Crosse River and five (5) unnamed tributaries of the Little La Crosse River were observed and mapped within the Study Area.

Wetlands, waterways, and water bodies discussed in this report may be subject to federal regulation under the jurisdiction of the USACE, state regulation under the jurisdiction of the WDNR, and the local zoning authority. Heartland recommends this report be submitted to the USACE and WDNR for final jurisdictional review and concurrence. Review by local authorities may be necessary for determination of any applicable zoning and setback restrictions.

Heartland recommends that all applicable regulatory agency reviews and permits are obtained prior to beginning work within the Study Area or within or adjacent to wetlands or waterways. Heartland can assist with evaluating the need for additional environmental reviews, surveys, or regulatory agency coordination in consideration of the proposed activity and land use as requested but is outside of the scope of the wetland delineation.

Experienced and qualified professionals completed the wetland determination and delineation using standard practices and professional judgment. Wetland boundaries may be affected by conditions present within the Study Area at the time of the fieldwork. All final decisions on wetlands and their boundaries are made by the USACE, the WDNR, and/or sometimes a local unit of government. Wetland determination and boundary reviews by regulatory agencies may result in modifications to the findings presented to the Client. These modifications may result from varying conditions between the time the wetland

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

delineation was completed and the time of the review. Factors that may influence the findings may include but are not limited to precipitation patterns, drainage modifications, changes or modification to vegetation, and the time of year.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

5.0 References

Deters, J. & Gutenson, J. (2021). Antecedent Precipitation Tool (APT) [Electronic Source: python source code]. See: <u>https://github.com/erdc/Antecedent-Precipitation-Tool</u>

Eggers, S. D., & D. M. Reed. (2014). *Wetland Plants and Plant Communities of Minnesota and Wisconsin* (V. 3.1). U.S. Army Corps of Engineers, Regulatory Branch, St. Paul, MN District. See: <u>http://www.mvp.usace.army.mil/</u>.

Environmental Laboratory (1987). *Corps of Engineers Wetlands Delineation Manual*, Tech. Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Google Earth[™] Pro (2024). *Open Source Aerial Imagery*. Version 7.3.6.9796 (64-bit). Server: Kh.google.com.

Midwestern Regional Climate Center. (2014). *cli-MATE* [climate data access tool]. See: <u>http://mrcc.isws.illinois.edu/CLIMATE/</u>.

National Oceanic and Atmospheric Administration (NOAA). (2015) Regional Climate Centers Applied Climate Information System. *WETS table*. See: <u>http://aqacis.rcc-acis.org</u>.

NOAA National Center for Environmental Information. (2018) *Historic Palmer Drought Indices*. See: <u>https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-</u> <u>palmers/psi/201512-201601.</u>

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (USDA). (2018). *Soil Survey Geographic (SSURGO) Database*. See: <u>http://websoilsurvey.nrcs.usda.gov/</u> or <u>http://datagateway.nrcs.usda.gov/</u>.

Soil Survey Staff, Natural Resources Conservation Service, USDA. (2018). *Web Soil Survey*. See: <u>http://websoilsurvey.nrcs.usda.gov/</u>.

U.S. Army Corps of Engineers (USACE) and Wisconsin Department of Natural Resources (WDNR). (March 2015). *"Guidance for Submittal of Delineation Reports to the St. Paul District Army Corps of Engineers and the Wisconsin Department of Natural Resources"*. See: <u>http://dnr.wi.gov/topic/wetlands/documents/FinalWisconsinDelineationGuidance.pdf</u>.

USACE. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0). (2010). ed. J.S. Wakeley, R.W. Lichvar, and C.V. Noble. ERDC/EL TR-10-16. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

USACE. (2020). *National Wetland Plant List, version 3.5.* See <u>http://wetland-plants.usace.army.mil</u>.

USACE St. Paul District & Minnesota Board of Water & Soil Resources. (July 2016). *Guidance for Offsite Hydrology/Wetland Determinations*. See:

http://www.mvp.usace.army.mil/Missions/Regulatory/Delineation/.

United States Department of Agriculture (USDA), Farm Service Agency (FSA). (1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2008, 2010, 2013, 2015, 2017, 2018, 2020, 2022) [Monroe County, Wisconsin aerial photographs]. National Agriculture Imagery Program (NAIP). Salt Lake City, UT: Aerial Photography Field Office.

USDA, Natural Resource Conservation Service (NRCS). (2010). *Field Indicators of Hydric Soils in the United States*, Version 8.2. L.M. Vasilas, G.W. Hurt, and C.V. Noble (eds.). USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils.

United States Department of the Interior (USDI), U.S. Geological Survey (USGS). *Wisconsin 7.5 Minute Series (Topographic) Maps.* 1:24,000. Reston, VA.

USDI, USGS. National Hydrography Dataset (NHD) 24K scale data. See: <u>https://nhd.usgs.gov/</u>.

Wetland Training Institute, Inc (WTI). (2010). *Pocket guide to hydric soil field indicators.* (Robert J. Pierce, Ed.). (7th ed.). Glenwood, NM: Wetland Training Institute, Inc.

Willmott, C.J. and K. Matsuura. (2016). *Web-Based Water-Budget Interactive Modeling Program (WebWIMP)*. University of Delaware Department of Geography. Newark, DE. See: climate.geog.udel.edu/~wimp/.

WDNR, Surface Water Data Viewer Interactive Web-mapping Tool. (2023). See: <u>https://dnr.wi.gov/topic/surfacewater/swdv/</u>.

WDNR, Open Data Portal. (2023). [Wisconsin Wetland Inventory, 24k Hydro Flowlines (Rivers and Streams), Color-Stretch LiDAR and Hillshade Image Service Layer, Wetland Indicator Layer]. See: <u>https://data-wi-dnr.opendata.arcgis.com/</u>.

Woodward, D.E. ed. (1997). *Hydrology Tools for Wetland Determination*, WETS Analysis, Chapter 19. Engineering Field Handbook. USDA, NRCS, Fort Worth, TX.

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix A | Figures

Study Area (37.63 ac) NRCS Soil Survey Data Hydric (100%) Predominantly Hydric (85-99%) Partially Hydric (16-84%) Predominantly Non-Hydric (1-15%) Non-Hydric (0%)

Heartland Figure 3b. NRCS Hydric Soils

LLR Mitigation Site Addition Project #20241365 T15N, R3W, S05 & 06 T Jefferson, Monroe Co

2022 Orthophoto NRCS LRR: MW Figure Created: 12/2/2024

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix B | APT Analysis

K-H	Figures and tables made by the Antecedent Precipitation Tool
US Army Corps	Version 2.0
of Engineers.	Developed by:
	U.S. Army Corps of Engineers and
#FDDG	U.S. Army Engineer Research and
W LRDS	Development Center

				-			
Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
ONTARIO 3E	43.7194, -90.53	959.974	13.153	93.477	7.149	10788	84
HILLSBORO 0.5 WSW	43.6514, -90.3475	967.848	10.258	7.874	4.697	159	0
HILLSBORO	43.6542, -90.3339	939.961	10.784	20.013	5.069	160	0
HILLSBORO 2SW	43.6342, -90.3792	1042.979	9.562	83.005	5.097	242	6
CASHTON 3NNW	43.7861, -90.7953	938.976	14.02	20.998	6.603	2	0
LA FARGE	43.5733, -90.6319	798.885	11.307	161.089	6.91	2	0

Dec	Jan	Feb
2024	2025	2025

ondition Value	Month Weight	Product
1	3	3
1	2	2
3	1	3
		Drier than Normal - 8

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix C | Wetland Determination Data Sheets

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: LLR Mitigation Site Addition	City/County: Monroe Cou	nty Sampling Date: 2024-10-05
Applicant/Owner: KCI Technologies		_ State: Wisconsin Sampling Point: P01
Investigator(s): Scott Fuchs	Section, Township, Range	e: sec 05 T015N R003W
Landform (hillslope, terrace, etc.): Rise/Embankment	Local relief (co	ncave, convex, none): <u>Convex</u>
Slope (%): 0-2 Lat: 43.808945	Long: <u>-90.770250</u>	Datum: WGS84
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, occasi	onally flooded	NWI classification: None (WWI)
Are climatic / hydrologic conditions on the site typical for this time of	of year?Yes No _√	(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significa	antly disturbed? Are "No	rmal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturall	y problematic? (If need	ed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map show	ving sampling point loc	ations, transects, important features, etc.
Hydrophytic Vegetation Present? Ves / No		

Hydrophytic Vegetation Present?	Yes 🖌 N	lo	Is the Sampled Area		
Hydric Soil Present?	Yes N	lo 🖌	within a Watland?	Vac	No
Wetland Hydrology Present?	Yes N	lo	within a wetland?	res	NO <u></u>
Remarks:					

Sample point recorded on a rise/embankment adjacent to an excavated ditch. The embankment/berm is a former railway bed based on aerial imagery obtained for the previous wetland delineation. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1. Acer negundo	70	Y	FAC	That Are OBL, FACW, or FAC: (A)
2				Total Number of Dominant
3				Species Across All Strata: 2 (B)
4.				
5.				Percent of Dominant Species
	70.0	- Total Cov	rer	That Are OBL, FACW, OF FAC. (A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)	10.0	- 10(0100)		Prevalence Index worksheet:
1.				Total % Cover of:Multiply by:
2				OBL species $0 \times 1 = 0$
3				FACW species $0 \times 2 = 0$
3				FAC species 175 x 3 - 525
4	- <u></u>			$\frac{1}{100} = \frac{1}{100} = \frac{1}$
5			·	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
Herb Stratum (Plot size: 5' radius)	0	= Total Cov	rer	$\begin{array}{c} \text{OPL species} \underline{0} x \ 5 = \underline{0} \\ \text{OPL species} \underline{0} x \ 5 = \underline{0} \\ \text{OPL species} \underline{0} \\ \text{OPL species} \underline{0} \\ \text{OPL species} \underline{0} \\ \text{OPL species} \\ $
1 Hydrophyllum virginianum	70	V	FAC	Column Lotals: 201 (A) 629.00 (B)
	20	N	FAC	Prevalence Index = $B/A = -3.13$
	20	N		Hydrophytic Vegetation Indicators:
3. Rhamhus cathartica	10	<u> </u>	FAC	1 Papid Tast for Hydrophytic Vegetation
4. Hesperis matronalis	10	<u> </u>	FACU	
5. Lonicera X bella	8	N	FACU	$\sqrt{2}$ 2 - Dominance Test is >50%
6. Amphicarpaea bracteata	5	N	FAC	3 - Prevalence Index is ≤3.0
7. Osmorhiza claytonii	5	N	FACU	4 - Morphological Adaptations ¹ (Provide supporting
8. <u>Arctium minus</u>	3	Ν	FACU	data in Remarks or on a separate sheet)
9				— Problematic Hydrophytic Vegetation ¹ (Explain)
10.				
	131.0	= Total Cov	rer	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)				be present, unless disturbed or problematic.
1				Hadaan kata
2.				Vegetation
				Present? Yes √ No
	0	= Total Cov	rer	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

SOIL

HYDROLOGY

Wetland Hydrology Indicators:			
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)		
Surface Water (A1) Water-Stained Leaves (B9)	Surface Soil Cracks (B6)		
High Water Table (A2) Aquatic Fauna (B13)	Drainage Patterns (B10)		
Saturation (A3) True Aquatic Plants (B14)	Dry-Season Water Table (C2)		
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)		
Sediment Deposits (B2) Oxidized Rhizospheres on Living	Roots (C3) Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled S	coils (C6) Geomorphic Position (D2)		
Iron Deposits (B5) Thin Muck Surface (C7)	FAC-Neutral Test (D5)		
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9)			
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)			
Field Observations:			
Surface Water Present? Yes No Depth (inches):			
Water Table Present? Yes No Depth (inches):			
Saturation Present? Yes No _ ✓ Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No		
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe	ctions), if available:		
Remarks:			
no wetiand hydrology indicators observed.			

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	State:	Wisconsin Sampling Point: P02					
Investigator(s): Scott Fuchs	Section, Township, Range: <u>sec 05</u>	T015N R003W					
Landform (hillslope, terrace, etc.): Ditch	Local relief (concave, co	nvex, none): <u>Concave</u>					
Slope (%): <u>0-2</u> Lat: <u>43.808854</u>	Long: <u>-90.770094</u>	Datum: WGS84					
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, oc	casionally flooded	NWI classification: None (WWI)					
Are climatic / hydrologic conditions on the site typical for this ti	me of year? Yes No (If no	, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology sign	nificantly disturbed? Are "Normal Circ	umstances" present? Yes 🧹 No					
Are Vegetation, Soil, or Hydrology nat	urally problematic? (If needed, expla	n any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present?Yes \checkmark NoHydric Soil Present?Yes \checkmark No	Is the Sampled Area	Yos / No					

Wetland Hydrology Present?	Yes No	within a Wetland?	Yes_ <u>√</u>	No				
Remarks:								
Sample point recorded within a shallow excavated dirch adjacent to the western edge of an agricultural field. Hydrology appears somewhat flashy, but primary hydrology indicators observed during a								

Sample point recorded within a shallow excavated ditch adjacent to the western edge of an agricultural field. Hydrology appears somewhat flashy, but primary hydrology indicators observed during a drier than normal condition. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:		
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species		
1				That Are OBL, FACW, or FAC: 2 (A)		
2.						
3				I otal Number of Dominant Species Across All Strata: 2 (B)		
۵ ۸	·					
4	·			Percent of Dominant Species		
5	·			That Are OBL, FACW, or FAC: 100.00 (A/B))	
Capling (Christian (Distaine) 15' rodius	0	= Total Cov	rer	Brovalanca Index workshoot		
Sapling/Shrub Stratum (Plot size: 15 Tadius)						
1	·			I otal % Cover of: Multiply by:		
2				OBL species x 1 =0		
3				FACW species X 2 = 150		
4.				FAC species <u>5</u> x 3 = <u>15</u>		
5	·			FACU species $0 \times 4 = 0$		
	0	- Total Cov		$\frac{1}{1} = 0 \qquad x = 0$		
Herb Stratum (Plot size: 5' radius)		- 10101 000	CI	$\begin{array}{c} column Totalo: \\ \hline 80 \\ \hline (A) \\ \hline 165 \\ \hline 00 \\ \hline (P) \\ \hline \end{array}$		
1 Pilea pumila	50	Y	FACW	$\frac{100000}{100000}$		
2 Lysimachia nummularia	20	Y	FACW	Prevalence Index = $B/A = 2.06$		
3 Phalaris arundinacea	5	N	FACW	Hydrophytic Vegetation Indicators:		
Cryptotaenia canadensis	5	N	FAC	1 - Rapid Test for Hydrophytic Vegetation		
			1710	$\sqrt{2}$ - Dominance Test is >50%		
5	·		·	$\sqrt{3}$ - Prevalence Index is $\leq 3.0^{1}$		
ö	·			4. Marrielaniael Adaptationa ¹ (Drevide surrestin		
<i>1</i>	·		<u> </u>	data in Remarks or on a separate sheet)	g	
8	·			Problematic Hydrophytic Vegetation ¹ (Explain)		
9	·		<u> </u>			
10	·			1. The diserver of the defense it as a first the distribution of the destate of the second seco		
	80.0	= Total Cov	rer	Indicators of hydric soil and wetland hydrology must		
Woody Vine Stratum (Plot size: 30' radius)						
1				Hydrophytic		
2				Vegetation		
				Present? Yes <u>√</u> No		
	0	= Total Cov	rer			
Remarks: (Include photo numbers here or on a separate s	sheet.)					
Ditch bottom nearly completely unvegetated. Vegetation present on the banks recorded for hydrophytic vegetation determination.						

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth		Matrix			Redo	x Feature	s					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks			
0-7	2.5Y	6/2	100						S			
7-16	10YR	2/1	85	10YR	3/6	10	С	М	SIC			
				2.5Y	5/2	5	D	М	SIC			
16-24	2.5Y	5/1	100			<u> </u>			SIC			
						<u></u>						
1						<u></u>						
'Type: C=Co	oncentration	n, D=Dep	letion, RM=	Reduced	Matrix, MS	S=Masked	Sand Gra	ains.	² Location: PL=Pore Lining, M=Matrix.			
Hydric Soli I	ndicators:								Indicators for Problematic Hydric Solis":			
Histosol	(A1)				_ Sandy C	Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)			
Histic Ep	opedon (A2	2)			- Sandy F	Redox (S5)		— Dark Surface (S7)			
	STIC (A3) n Sulfida (/	(4)			_ Stripped	d Matrix (S	56) Sorol (E1)		Iron-Manganese Masses (F12)			
Hyuroge Stratifica		44) 5)		_		Cloved M	(F1)		Verv Shallow Dark Surface (TF12)			
2 cm Mu		5)		Loamy Gleyed Matrix (F2)					Other (Explain in Remarks)			
2 cm wa	Below Da	rk Surface	e (A11)	$\overline{\checkmark}$	Redox [Dark Surfa	ace (F6)					
Thick Da	rk Surface	(A12)	5 (711)	Peoleted Dark Surface (F7)					³ Indicators of hydrophytic vegetation and			
Sandy M	lucky Mine	(7.11 <u>–</u>) ral (S1)			Redox [Depressio	ns (F8)		wetland hydrology must be present.			
5 cm Mu	5 cm Mucky Peat or Peat (S3)					unless disturbed or problematic.						
Restrictive L	ayer (if ob	oserved):	/									
Туре:	•											
Depth (inc	ches):								Hydric Soil Present? Yes _ ✓ No			
Remarks:												
Strange soil p	orofile. San	d above c	layey mate	rial. Finer	soils wasł	ned away	by erosion	leaving s	and behind?			
	0.1/											
HYDROLO	GY											
Wetland Hyd	drology Inc	dicators:										
Primary Indic	ators (mini	mum of o	ne is requi	ed; check	all that ap	oply)			Secondary Indicators (minimum of two requi	<u>red)</u>		
Surface	Water (A1)			\	Vater-Sta	ined Leav	es (B9)		Surface Soil Cracks (B6)			
√ High Wa	ter Table (A	A2)		A	Aquatic Fa	auna (B13)		🖌 Drainage Patterns (B10)			
🖌 Saturatio	on (A3)			True Aquatic Plants (B14)					Dry-Season Water Table (C2)			

- - Hydrogen Sulfide Odor (C1)
 _____ Crayfish Burrows (C8)

 Oxidized Rhizospheres on Living Roots (C3)
 _____ Saturation Visible on Aerial Imagery (C9)

0

- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Soils (C6)

Iron Deposits (B5)		Thin Muck Surface (C7)	🖌 FAC-Neutral Test (D5)
Inundation Visible on A	erial Imagery (B7)	Gauge or Well Data (D9)	
✓ Sparsely Vegetated Cor	ncave Surface (B8)	Other (Explain in Remarks)	
Field Observations:			
Surface Water Present?	Yes No	✓ Depth (inches):	
Water Table Present?	Yes 🖌 No	Depth (inches): 2	

Wetland Hydrology Present? Yes _

____ Stunted or Stressed Plants (D1) Geomorphic Position (D2)

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Yes 🧹 No ____ Depth (inches): ____

Remarks:

Saturation Present?

____ Water Marks (B1) ____ Sediment Deposits (B2) ✓ Drift Deposits (B3)

____ Algal Mat or Crust (B4)

No

WETLAND DETERMINATION DATA FORM – Midwest Region

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05
Applicant/Owner: KCI Technologies	S	tate: Wisconsin Sampling Point: P03
Investigator(s): Scott Fuchs	Section, Township, Range: <u>s</u>	ec 05 T015N R003W
Landform (hillslope, terrace, etc.): Sideslope	Local relief (conca	ve, convex, none): <u>None</u>
Slope (%): <u>3-7</u> Lat: <u>43.807400</u>	Long: <u>-90.771167</u>	Datum: WGS84
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, occasio	onally flooded	NWI classification: None (WWI)
Are climatic / hydrologic conditions on the site typical for this time o	of year? Yes No	(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significa	ntly disturbed? Are "Norma	al Circumstances" present? Yes 🧹 No
Are Vegetation, Soil, or Hydrology naturally	v problematic? (If needed,	explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map show	ing sampling point locati	ons, transects, important features, etc.

Hydrophytic Vegetation Present? Yes No Is the Sampled Area Hydric Soil Present? Yes No within a Wetland? Yes No Wetland Hydrology Present? Yes No No Yes No	Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No Yes No	Is the Sampled Area within a Wetland?	Yes	No
---	---	----------------------------	---------------------------------------	-----	----

Remarks:

Gentle sideslope sloping downhill from STH 27 to the ditch/wetland/waterway. Occasionally mowed weedy ROW, evaluated as normal circumstances. This area historically disturbed when a temporary bridge was constructed during replacement of the main STH 27 bridge. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:				
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species				
1				That Are OBL, FACW, or FAC: (A)				
2				Total Number of Deminent				
3.				Species Across All Strata: 2 (B)				
4								
5	·			Percent of Dominant Species				
J		Tatal Car		That Are OBL, FACW, or FAC:(A/B)				
Sapling/Shrub Stratum (Plot size: 15' radius)			er	Prevalence Index worksheet:				
<u></u>				Total % Cover of: Multiply by:				
··	<u> </u>		·	OBI species $0 \times 1 = 0$				
2	·		·	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$				
3	·		<u> </u>	$\frac{1}{1} = \frac{1}{1} = \frac{1}$				
4	·			FACt species $100 \times 3 = 300$				
5	·		<u> </u>	FACU species 23 $x = 100$				
Lloth Strotum (Plot size, 5' radius)	0	= Total Cov	rer	UPL species $8 \times 5 = 40$				
<u>Held Stratum</u> (Flot size. <u>5 radius</u>)	50	V		Column Totals: <u>133</u> (A) <u>440.00</u> (B)				
	50	<u> </u>		Provolonoo Indox - P/A - 3.31				
2. Poa pratensis	50	<u> </u>	FAC	Prevalence index = B/A = <u>5.51</u>				
3. Trifolium pratense	10	N	FACU	Hydrophytic Vegetation Indicators:				
4. Plantago lanceolata	10	N	FACU	1 - Rapid Test for Hydrophytic Vegetation				
5. <u>Schedonorus pratensis</u>	5	N	FACU	\checkmark 2 - Dominance Test is >50%				
6. Daucus carota	5	Ν	UPL	3 - Prevalence Index is ≤3.0 ¹				
7. Pastinaca sativa	3	Ν	UPL	4 - Morphological Adaptations ¹ (Provide supporting				
8.				data in Remarks or on a separate sheet)				
9	·			— Problematic Hydrophytic Vegetation ¹ (Explain)				
10	<u> </u>		·					
10	122.0	Total Car		¹ Indicators of hydric soil and wetland hydrology must				
Woody Vine Stratum (Plot size: 30' radius)	155.0		er	be present, unless disturbed or problematic.				
1								
2	·			Hydrophytic				
2	·		·	Present? Yes \sqrt{NO}				
	0	= Total Cov	rer					
Remarks: (Include photo numbers here or on a separate sheet.)								
Weedy occasionally mowed ROW.								

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)											
Depth		Matrix			Redo	x Feature	s				
(inches)	Color (moist)	%	Color (r	noist)	%	Type ¹	Loc ²	Texture Remarks		
0-4	10YR	3/2	100						SL		
4-11	10YR	6/3	97	10YR	5/6	3	С	M/PL	SCL		
11-19	10YR	5/6	95	10YR	5/8	5	С	Μ	SCL		
19-24	10YR	5/6	90	10YR	5/8	10	C	М	SCL		
						·				_	
										_	
¹ Type: C=Co	oncentratio	n, D=Dep	letion, RM	=Reduced I	Matrix, MS	S=Masked	I Sand Gr	ains.	² Location: PL=Pore Lining, M=Matrix.	-	
Hydric Soil I	Indicators:								Indicators for Problematic Hydric Soils ³ :		
Histosol	(A1)				Sandy C	Bleyed Ma	atrix (S4)		Coast Prairie Redox (A16)		
Histic Ep	pipedon (A2	2)			- Sandy F	Redox (S5)		— Dark Surface (S7)		
Hvdroge	siic (A3) n Sulfide (A	44)			Loamv N	d Matrix (S Muckv Mir	56) heral (F1)		Iron-Manganese Masses (F12)		
Stratified	d Lavers (A	5)		Loamy Gleved Matrix (F2)					Very Shallow Dark Surface (TF12)		
2 cm Mu	ick (A10)	- /		Depleted Matrix (F3)			F3)		Other (Explain in Remarks)		
Depleted	d Below Da	rk Surface	e (A11)	Redox Dark Surface (F6)							
Thick Da	ark Surface	(A12)	. ,		Deplete	d Dark Su	irface (F7)		³ Indicators of hydrophytic vegetation and		
Sandy M	lucky Mine	ral (S1)			Redox E	Depressio	ns (F8)		wetland hydrology must be present,		
5 cm Mu	icky Peat o	r Peat (S3	3)						unless disturbed or problematic.		
Restrictive L	_ayer (if ob	oserved):									
Туре:											
Depth (inc	ches):								Hydric Soil Present? Yes No∕	-	
Remarks:											

HYDROLOGY

Wetland Hydrology Indicators:								
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)							
Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) True Aquatic Plants (B14) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Drift Deposits (B3) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc Iron Deposits (B5) Thin Muck Surface (C7) Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) 							
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)								
Field Observations:								
Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): (includes capillary fringe) Yes No Depth (inches):	Wetland Hydrology Present? Yes No∕							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	tions), if available:							
Remarks: No wetland hydrology indicators observed.								
Project/Site: LLR Mitigation Site Addition		_ City/County: Monroe County Sampling Date: 2024-10-05						
---	-------------------------	--	--	--	--	--	--	--
Applicant/Owner: KCI Technologies		State: Wisconsin Sampling Point: P04						
Investigator(s): Scott Fuchs		Section, Township, Range: sec 05 T015N R003W						
Landform (hillslope, terrace, etc.): Ditch		Local relief (concave, convex, none); Concave						
Slope (%): 0-2 at: 43 807361			70990	Datum: WGS84				
Solpe (70). 02 Lat. 40.007 001	occasionall	v floodod						
Soli Map Onit Name. Onon site loan, o to 5 percent slopes,	UCCASIONAI							
Are climatic / hydrologic conditions on the site typical for this	s time of ye	ar? Yes	No	_√ (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrologys	significantly	disturbed?	Are '	'Normal Circumstances" present? Yes No				
Are Vegetation, Soil, or Hydrology r	naturally pro	blematic?	(lf ne	eeded, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map	showing	samplin	g point l	ocations, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes N Hydric Soil Present? Yes N Wetland Hydrology Present? Yes N Remarks: Sample point recorded within a shallow ditch present on the performed with the USACE APT tool, which indicates that to be the performed with the USACE APT tool.	lo lo e western e	Is the with	e Sampled in a Wetlar gricultural fo	I Area nd? Yes No ield. An analysis of antecedent precipitation was r the time of year				
VEGETATION – Use scientific names of plants.								
	Absolute	Dominant	Indicator	Dominance Test worksheet:				
Tree Stratum (Plot size: 30' radius)	% Cover	Species?	Status	Number of Dominant Species				
1. Populus deltoides	50	Y	FAC	That Are OBL, FACW, or FAC: (A)				
2. <u>Salix amygdaloides</u>	30	<u>Y</u>	FACW	Total Number of Dominant				
3. Acer negundo	10	<u>N</u>	FAC	Species Across All Strata:4 (B)				
4				Percent of Dominant Species				
5				That Are OBL, FACW, or FAC: 100.00 (A/B)				
Sapling/Shrub Stratum (Plot size: 15' radius)	90.0	= Total Cov	rer	Prevalence Index worksheet:				
1.				Total % Cover of: Multiply by:				
2.				OBL species 8 x 1 = 8				
3.				FACW species 85 x 2 = 170				
4.				FAC species65 x 3 =195				
5.				FACU species x 4 =0				
	0	= Total Cov	rer	UPL species x 5 =0				
Herb Stratum (Plot size: 5' radius)				Column Totals: <u>158</u> (A) <u>373.00</u> (B)				
1. Lysimachia nummularia	30	Y	FACW	5 1 1 5 1 2 26				
2. Pilea pumila	20	Y	FACW	Prevalence Index = $B/A = 2.36$				
3. Angelica atropurpurea	5	N	OBL	Hydropnytic vegetation indicators:				
4. Cryptotaenia canadensis	5	<u>N</u>	FAC	1 - Rapid Test for Hydrophylic Vegetation				
5. Phalaris arundinacea	5	<u> </u>	FACW	$\sqrt{2}$ 2 - Dominance Test is >50%				
6. <u>Carex trichocarpa</u>	3	<u> N </u>	OBL	$\sqrt{2}$ 5 - Prevalence index is ≤ 3.0				
7				 4 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet) 				
8				Problematic Hydrophytic Vegetation ¹ (Explain)				
9								
10				¹ Indicators of hydric soil and wetland hydrology must				
Woody Vine Stratum (Plot size: 30' radius)	68.0	= Total Cov	rer	be present, unless disturbed or problematic.				
1. 2.				Hydrophytic Vegetation				

0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.)

Bottom of ditch is unvegetated except for a willow rooted in its center. Vegetation recorded on ditch sideslopes to make hydrophytic vegetation determination.

Yes 🖌 No _

Present?

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)											
Depth		Matrix			Redo	x Feature	S				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-3	2.5Y	6/2	100						S		
3-12	10YR	2/1	90	10YR	3/6	10	С	M/PL	SICL		
12-20	2.5Y	5/2	85	10YR	5/8	15	С	M/PL	SIC		
20-24	2.5Y	5/2	95	10YR	5/8	5	C	M	SIC		
'Type: C=Co	oncentration	n, D=Dep	etion, RM	Reduced	Matrix, MS	S=Masked	d Sand Gra	ains.	Loca ²	tion: PL=Pore Lining, M=Matrix.	
Hydric Soil	Indicators:								Indicators fo	or Problematic Hydric Soils":	
Histosol	(A1)				Sandy C	Bleyed Ma	atrix (S4)		Coast Pr	rairie Redox (A16)	
Histic Ep	Dipedon (A2	2)			- Sandy F	Redox (S5	5)		— Dark Su	rface (S7)	
Black Hi	STIC (A3)	\ <i>A</i> \			_ Stripped	Matrix (S	56) aarol (E1)		Iron-Mar	nganese Masses (F12)	
Hydroge		14 <i>)</i> 5)				Cloved M	(F1)		Very Shallow Dark Surface (TE12)		
2 cm Mu	ick (A10)	5)				d Matrix (E3)		Other (Explain in Remarks)		
	d Below Da	rk Surface	(A11) م	1	Redox [ark Surfa	n 3) ace (F6)				
Thick Da	ark Surface	(A12)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	Deplete	d Dark Su	urface (F7)		³ Indicators o	of hydrophytic vegetation and	
Sandy M	lucky Mine	() (12) ral (S1)			Redox [Depressio	ns (F8)		wetland hydrology must be present.		
5 cm Mu	icky Peat of	r Peat (S3	3)						unless disturbed or problematic.		
Restrictive I	Layer (if ob	served):	,								
Type:											
Depth (inc	ches):								Hydric Soil P	Present? Yes _√ No	
Remarks:											
Professional	opinion use	d to detei	mine A11	is applicab	le. Surfac	e sand teo	chnically d	isqualifies	it from meeting /	A11.	
	GY										
Wetland Hv	droloav Ind	dicators:									
Primary Indic	cators (mini	mum of o	ne is requi	red; check	all that ap	ply)			Secondary	y Indicators (minimum of two required)	
Surface	Water (A1)			\	Vater-Stai	ned Leav	es (B9)		Surfac	ce Soil Cracks (B6)	
✓ High Wa	ater Table (/	42)		A	Aquatic Fa	una (B13)		√ Draina	age Patterns (B10)	
√ Saturatio	on (A3)	,			rue Aqua	tic Plants	(B14)		Drv-S	eason Water Table (C2)	
Water M	larks (B1)			H	lydrogen	Sulfide O	dor (C1)		Crayfi	ish Burrows (C8)	

- - Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) ____ Saturation Visible on Aerial Imagery (C9)
 - Presence of Reduced Iron (C4)
 - Recent Iron Reduction in Tilled Soils (C6)
- Thin Muck Surface (C7)

Iron Deposits (B5)	_	Thin Muck Surface (C7)	✓ FAC-Neutral Test (D5)			
Inundation Visible on Aer	ial Imagery (B7)	Gauge or Well Data	(D9)				
✓ Sparsely Vegetated Cond	cave Surface (B8)	Other (Explain in Re	marks)				
Field Observations:							
Surface Water Present?	Yes No 🖌	<pre>/ Depth (inches):</pre>					
Water Table Present?	Yes 🖌 No 🔄	Depth (inches):	12				
Saturation Present? (includes capillary fringe)	Yes 🧹 No 🔄	Depth (inches):	9	Wetland Hydrology Present? Yes _ ✓ No			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:							

Remarks:

Hydrology appears somewhat flashy, but primary indicators still observed in a drier than normal condition.

Sediment Deposits (B2)

Algal Mat or Crust (B4)

✓ Drift Deposits (B3)

____ Stunted or Stressed Plants (D1) ✓ Geomorphic Position (D2)

Project/Site: LLR Mitigation Site Addition	City/County: Monroe	County Sampling Date: 2024-10-05						
Applicant/Owner: KCI Technologies		State: Wisconsin Sampling Point: P05						
Investigator(s): Scott Fuchs	Section, Township, R	Range: sec 05 T015N R003W						
Landform (hillslope, terrace, etc.): Toe Of Slope/Depression	Local relie	ef (concave, convex, none): <u>None</u>						
Slope (%): <u>0-2</u> Lat: <u>43.806274</u>	Long: <u>-90.766148</u>	Datum: WGS84						
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent	t slopes	NWI classification: E1Kg (WWI)						
Are climatic / hydrologic conditions on the site typical for this time	e of year? Yes No	(If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrology signific	cantly disturbed? Are	ly disturbed? Are "Normal Circumstances" present? Yes 🧹 No						
Are Vegetation, Soil, or Hydrology natura	ally problematic? (If r	oroblematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	Is the Sample within a Wetl	ed Area land? Yes∕No						

Remarks:

Sample point recorded within an unfarmed ruderal wet meadow in the southern portion of the eastern study area. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1	. <u> </u>			That Are OBL, FACW, or FAC: (A)
2				Total New Array (Developed)
3.				Species Across All Strata: 1 (B)
۸	·			
	·			Percent of Dominant Species
5	·		<u> </u>	That Are OBL, FACW, or FAC: 100.00 (A/B)
Sapling/Shruh Stratum (Plot size: 15' radius)	0	= I otal Cov	er	Prevalence Index worksheet
<u>Saping/Shiub Stratum</u> (Flot size. <u>For facility</u>)				Total % Cover of: Multiply by:
l	·		<u> </u>	
2	·			OBL species 0 $x_1 = 0$
3	·			FACW species 105 x 2 = 210
4				FAC species $2 \times 3 = 6$
5				FACU species x 4 = 8
	0	= Total Cov	er	UPL species 0 x 5 = 0
Herb Stratum (Plot size: 5' radius)				Column Totals: 109 (A) 224.00 (B)
1. Phalaris arundinacea	100	Y	FACW	
2. Panicum dichotomiflorum	3	Ν	FACW	Prevalence Index = $B/A = 2.06$
3. Setaria faberi	2	N	FACU	Hydrophytic Vegetation Indicators:
4. Ambrosia trifida	2	Ν	FAC	✓ 1 - Rapid Test for Hydrophytic Vegetation
5. Verbena hastata	2	N	FACW	✓ 2 - Dominance Test is >50%
6	·			$\sqrt{3}$ - Prevalence Index is ≤3.0 ¹
7			·	4 - Morphological Adaptations ¹ (Provide supporting
8	·			data in Remarks or on a separate sheet)
0	·			— Problematic Hydrophytic Vegetation ¹ (Explain)
9	·			
10				¹ Indicators of hydric soil and wetland hydrology must
Weady Vine Stratum (Plat aize: 30' radius)	109.0	= Total Cov	er	be present, unless disturbed or problematic.
Woody vine Stratum (Flot size. <u>30 radius</u>)				
1	·			Hydrophytic
2	·			Vegetation
	0	= Total Cov	er	Present? Yes \checkmark NO
Remarks: (Include photo numbers here or on a separate s	sheet.)			1
Ruderal wet meadow dominated by RCG.				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth		Matrix			Redo	ox Feature	S					
(inches)	Color	(moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-9	10YR	2/1	97	10YR	3/4	3	С	Μ	MMI	Mucky SiL		
9-20	Ν	2.5/0	70						MUCK	Peaty muck		
	10YR	2/2	30						MUCK			
20-24	10YR	2/2	60						PEAT	Mucky peat		
	N	2.5/0	40				·		PEAT			
						_	·					
							·					
		n D-Denl	etion RM	-Reduced	Matrix M	S=Masker	d Sand Gr	ains	21			
Hydric Soil	Indicators	:			matrix, m	0-masket			Indicator	's for Problematic Hydric Soils ³ :		
✓ Histosol	(A1)				Sandy	Gleyed Ma	atrix (S4)		Coas	Coast Prairie Redox (A16)		
Histic Ep	pipedon (A	2)			- Sandy I	Redox (S5	5)		— Dark Surface (S7)			
Black Hi	istic (A3)				Strippe	d Matrix (S	S6)		Iron-Manganese Masses (F12)			
Hydroge Stratified	en Sulfide (A4)		<u></u>	Loamy	MUCKY MI	neral (F1)		Very Shallow Dark Surface (TF12)			
2 cm Mi	u Layers (F ick (Δ10)	(3)				d Matrix (E3)		Othe	Other (Explain in Remarks)		
Depleter	d Below Da	ark Surface	(A11)	J	_ Depicte Redox	Dark Surf	ace (F6)					
Thick Da	ark Surface	e (A12)	()()))		Deplete	ed Dark Su	urface (F7)		³ Indicators of hydrophytic vegetation and			
Sandy N	/uckv Mine	eral (S1)			Redox	Depressio	ns (F8)		wetland hydrology must be present.			
5 cm Mu	ucky Peat of	or Peat (S3)			-1	- (- /		unless disturbed or problematic.			
Restrictive	Layer (if o	bserved):	,							· ·		
Туре:												
Depth (in	ches):								Hydric So	il Present? Yes _ ✓ No		
Remarks:									I			
Mucky SIL at	surface, re	emainder o	f soils are	organic.								
-				-								
	GV											
		dia atan-										
vvetiand Hy	urology In	uicators:		and the -l-	- 11 4b - 4				Carrie			
Primary India	cators (min	irnum of or	ie is requ	rea; check	all that ap	opiy)			Secon	bary indicators (minimum of two required)		

Primary indicators (minimum of one is re	equired; check all that apply)		Secondary Indicators (minimum of two required)				
Surface Water (A1)	Water-Stained Leav	res (B9)	Surface Soil Cracks (B6)				
High Water Table (A2)	Aquatic Fauna (B13)	Drainage Patterns (B10)				
✓ Saturation (A3)	True Aquatic Plants	(B14)	Dry-Season Water Table (C2)				
Water Marks (B1)	Hydrogen Sulfide O	dor (C1)	Crayfish Burrows (C8)				
Sediment Deposits (B2)	Oxidized Rhizosphe	eres on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3)	Presence of Reduce	ed Iron (C4)	Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4)	Recent Iron Reducti	on in Tilled Soils (C6)	✓ Geomorphic Position (D2)				
Iron Deposits (B5)	Thin Muck Surface ((C7)	🖌 FAC-Neutral Test (D5)				
Inundation Visible on Aerial Imager							
Sparsely Vegetated Concave Surfa	ce (B8) 🛛 🖌 Other (Explain in Re	emarks)					
Field Observations:							
Surface Water Present? Yes	No 🧹 Depth (inches):						
Water Table Present? Yes 🗸	No Depth (inches):	14					
Saturation Present? Yes∕ (includes capillary fringe)	No Depth (inches):	12 Wetland	_ Wetland Hydrology Present? Yes No				
Describe Recorded Data (stream gauge	, monitoring well, aerial photos, pr	evious inspections), if av	ailable:				
This location was unfarmed or otherwise featured wetland hydrology signatures in 92% of normal precipitation years reviewed during the OSA.							
Remarks:							
Other indicator: this area consistently av	pided by farmer, not farmed in mo	st of the NAIP/FSA image	es reviewed, occasionally appears mowed.				
, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,						

Project/Site: LLR Mitigation Site Addition	City/County: Monroe Count	y Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	State: Wisconsin Sampling Point: P06						
Investigator(s): Scott Fuchs	Section, Township, Range:	sec 05 T015N R003W					
Landform (hillslope, terrace, etc.): Sideslope	Local relief (concave, convex, none): None						
Slope (%): 0-2 Lat: 43.806493	Long: <u>-90.765858</u>	Datum: WGS84					
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, occasiona	ally flooded	NWI classification: None (WWI)					
Are climatic / hydrologic conditions on the site typical for this time of y	rear?YesNo_√	_ (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Norr	nal Circumstances" present? Yes No					
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes 🗸 No							

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No Yes No	Is the Sampled Area within a Wetland?	Yes No
Remarks:			

Sample point recorded along the average extent of wetland hydrology indicators observed during the OSA. Agricultural field planted with corn, not normal circumstances. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 1 (A)
2.				
3				I otal Number of Dominant Species Across All Strata: 1 (B)
۰	·			
4	·			Percent of Dominant Species
5	·			That Are OBL, FACW, or FAC: 100.00 (A/B)
Copling/Chruh Stratum (Plat size) 15' radius	0	= Total Cov	er	Prevalence Index worksheet:
Sapling/Shrub Stratum (Plot size: 15 radius)				
1				I otal % Cover or: Multiply by:
2				OBL species 0 x 1 = 0
3	. <u> </u>			FACW species <u>50</u> x 2 = <u>100</u>
4.				FAC species 0 x 3 = 0
5				FACU species $0 x 4 = 0$
···	0	- Total Cov	or	$ P \text{ species } 0 \qquad x 5 = 0$
Herb Stratum (Plot size: 5' radius)	0		ei	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
1 Panicum dichotomiflorum	50	Y	FACW	$\begin{array}{c} \text{Column rotals.} \underline{ 50} \\ (A) \\ \underline{ 100.00} \\ (B) \end{array}$
2		<u> </u>		Prevalence Index = $B/A = 2.0$
2				Hydrophytic Vegetation Indicators:
3	·			1 - Rapid Test for Hydrophytic Vegetation
4	·			$\frac{\sqrt{2}}{\sqrt{2}}$ Deminorpo Tost is $\gtrsim 50\%$
5	·			$\frac{\sqrt{2}}{\sqrt{2}}$ 2 - Dominance rest is >50%
6				\checkmark 3 - Prevalence Index is $\leq 3.0^{\circ}$
7	. <u> </u>			4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9.				— Problematic Hydrophytic Vegetation ¹ (Explain)
10	·			
10	50.0	Total Cau		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)		= 101al Cov	er	be present, unless disturbed or problematic.
1.				
2	·			Hydrophytic
۲	·			Present? Yes V
	0	= Total Cov	er	
Remarks: (Include photo numbers here or on a separate s	sheet.)			
This area does not appear to have been treated with herbid	ides this se	ason, ampl	e volunteer	Panicum dichotomiflorum present.

Profile Desc	ription: (I	Describe t	to the dep	th needed	to docur	nent the	indicator	or confirm	n the absence	e of indicators.)		
Depth		Matrix			Redo	x Feature	S					
(inches)	Color	(moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-8	10YR	2/1	100						SICL			
8-16	10YR	2/1	97	10YR	5/6	3	С	M/PL	SICL			
16-20	N	2.5/0	100						MUCK	Buried muck		
20-24	2.5Y	5/1	97	2.5Y	5/6	3	С	М	С			
							·					
¹ Type: C=Co	oncentratio	n, D=Depl	etion, RM:	=Reduced	Matrix, MS	S=Maske	d Sand Gr	ains.	² Lc	ocation: PL=Pore Lining, M=Matrix.		
Hydric Soil I	Indicators	:							Indicators	s for Problematic Hydric Soils ³ :		
Histosol	(A1)				_ Sandy C	Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)			
Histic Ep	pipedon (A2	2)			- Sandy F	Redox (S5	5)		— Dark Surface (S7)			
Hvdroge	suc (A3) in Sulfide (A4)			 Stripped Loamy I 	d Matrix (S Mucky Mi	56) neral (F1)		Iron-Manganese Masses (F12)			
Stratified	d Lavers (A	.5)			Loamy (Gleved M	atrix (F2)		Very Shallow Dark Surface (TF12)			
2 cm Mu	ick (A10)	- /			Deplete	d Matrix (F3)		Other (Explain in Remarks)			
Depleted	d Below Da	ark Surface	e (A11)	\checkmark	Redox [Dark Surfa	ace (F6)					
🖌 Thick Da	ark Surface	e (A12)			Deplete	d Dark Su	urface (F7)		³ Indicator	³ Indicators of hydrophytic vegetation and		
Sandy M	lucky Mine	ral (S1)			Redox [Depressio	ns (F8)		wetlar	nd hydrology must be present,		
5 cm Mu	icky Peat c	or Peat (S3	3)						unles	s disturbed or problematic.		
Restrictive L	_ayer (if ol	bserved):										
Туре:												
Depth (inc	ches):								Hydric Soi	il Present? Yes∕_ No		
Remarks:									•			

Wetland Hydrology Indicators:									
Primary Indicators (minimum of one is required; chee	Secondary Indicators (minimum of two required)								
Surface Water (A1)	Water-Stained Leaves (B9)	Surface Soil Cracks (B6)							
High Water Table (A2)	Aquatic Fauna (B13)	Drainage Patterns (B10)							
Saturation (A3)	True Aquatic Plants (B14)	Dry-Season Water Table (C2)							
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)							
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3	 J ✓ Saturation Visible on Aerial Imagery (C9) 							
Drift Deposits (B3)	Presence of Reduced Iron (C4)	✓ Stunted or Stressed Plants (D1)							
Algal Mat or Crust (B4)	✓ Geomorphic Position (D2)								
Iron Deposits (B5)	✓ FAC-Neutral Test (D5)								
Inundation Visible on Aerial Imagery (B7)									
Sparsely Vegetated Concave Surface (B8)	Other (Explain in Remarks)								
Field Observations:									
Surface Water Present? Yes No _√	_ Depth (inches):								
Water Table Present? Yes 🖌 No	_ Depth (inches):20								
Saturation Present? Yes <u>√</u> No (includes capillary fringe)	_ Depth (inches):18 Wetland	d Hydrology Present? Yes/_ No							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Sample point recorded on the edge of signature area. Signature area not farmed or otherwise featured wetland hydrology signatures in 92% of normal precipitation years.									
Remarks:									
Potential algal matting present, difficult to differentiate out based on remaining stubble.	e from manure spreading. Crop has been har	vested but there appears to have been stress/drown							

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05							
Applicant/Owner: KCI Technologies	Sta	ate: Wisconsin Sampling Point: P07							
Investigator(s): Scott Fuchs	Section, Township, Range: se	_ Section, Township, Range: <u>sec 05 T015N R003W</u>							
Landform (hillslope, terrace, etc.): Sideslope	Local relief (concav	ve, convex, none): <u>None</u>							
Slope (%): 0-2 Lat: 43.806703	Long: <u>-90.765527</u>	Datum: WGS84							
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, occas	ionally flooded	NWI classification: None (WWI)							
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes No ((If no, explain in Remarks.)							
Are Vegetation, Soil, or Hydrology signific	antly disturbed? Are "Normal	Circumstances" present? Yes No							
Are Vegetation, Soil, or Hydrology natural	lly problematic? (If needed, e	explain any answers in Remarks.)							
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	Is the Sampled Area	Yes No∕							

Remarks:

Sample point recorded within a recently harvested agricultural field that was planted with corn this season, not normal circumstances. Sample point recorded beyond the average extent of hydrology indicators observed during the OSA. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1	. <u> </u>			That Are OBL, FACW, or FAC: 1 ((A)
2.					
3				I otal Number of Dominant	
3	·				(D)
4	·			Percent of Dominant Species	
5	·			That Are OBL, FACW, or FAC: 50.00 ((A/B)
	0	= Total Cov	rer		
Sapling/Shrub Stratum (Plot size: 15' radius)				Prevalence Index worksheet:	
1				Total % Cover of: Multiply by:	
2				OBL species 0 x 1 = 0	
3.				FACW species 3 x 2 = 6	
4				FAC species $0 \times 3 = 0$	
	·			EACU species 4 $x 4 = 16$	
5	·				
Horb Stratum (Dist size: 5' radius)	0	= I otal Cov	rer	$UPL \text{ species } \underbrace{0}_{$	
<u>Held Stratum</u> (Flot size. <u>3 radius</u>)	0	V		Column Totals: 7 (A) 22.00	(B)
	3	<u> </u>	FACW	Drevelance lader D/A 214	
2. Portulaca oleracea	3	<u>Y</u>	FACU	Prevalence Index = B/A = <u>3.14</u>	
3. <u>Setaria faberi</u>	1	N	FACU	Hydrophytic Vegetation Indicators:	
4				1 - Rapid Test for Hydrophytic Vegetation	
5.				2 - Dominance Test is >50%	
6	·			3 - Prevalence Index is ≤3.0 ¹	
7	·			4 - Morphological Adaptations ¹ (Provide suppo	ortina
/·	·			data in Remarks or on a separate sheet)	Jung
8	·			Problematic Hydrophytic Vegetation ¹ (Explain	
9	·				1)
10					
	7.0	= Total Cov	er	Indicators of hydric soil and wetland hydrology me	ust
Woody Vine Stratum (Plot size: 30' radius)				be present, unless disturbed of problematic.	
1	. <u> </u>			Hudrophy tio	
2.				Vegetation	
				Present? Yes No √	
	0	= Total Cov	rer		
Remarks: (Include photo numbers here or on a separate s	sheet.)				

Profile Desc	cription: (I	Describe	to the dep	th needed	to docun	nent the	indicator	or confirn	n the absence of	f indicators.)			
Depth	0.1	Matrix			Redo	x Feature	s	1 2					
(inches)	Color	(moist)	<u>%</u>	Color (moist)	%	lype	Loc	lexture	Remarks			
0-13	7.5YR	2.5/1	100						SIL				
13-18	2.5Y	5/2	92	2.5Y	5/6	8	С	Μ	С				
18-24	2.5Y	5/2	97	2.5Y	5/6	3	С	М	<u> </u>				
			·				·						
¹ Type: C=C	oncentratio	n, D=Depl	letion, RM	=Reduced	Matrix, MS	S=Masked	d Sand Gra	ains.	² Locat	tion: PL=Pore Lining, M=Matrix.			
Hydric Soil	Indicators	:							Indicators fo	or Problematic Hydric Soils ³ :			
Histosol	(A1)				_ Sandy C	Bleyed Ma	atrix (S4)		Coast Pr	Coast Prairie Redox (A16)			
Histic Ep	pipedon (A	2)			- Sandy F	edox (S5	5)		— Dark Surface (S7)				
Hvdroge	en Sulfide (A4)			Stripped Loamy I	l Matrix (S Jucky Mi	56) neral (F1)		Iron-Manganese Masses (F12)				
Stratified	d Layers (A	(5)			Loamy (Gleyed M	atrix (F2)		Very Shallow Dark Surface (TF12)				
2 cm Mu	uck (A10)	,			Deplete	d Matrix (F3)		Other (Explain in Remarks)				
Deplete	d Below Da	ark Surface	e (A11)		Redox D	Dark Surfa	ace (F6)						
🖌 Thick Da	ark Surface	e (A12)			Deplete	d Dark Su	urface (F7)		³ Indicators of	f hydrophytic vegetation and			
Sandy N	Aucky Mine	eral (S1)			Redox E	Depressio	ns (F8)		wetland h	nydrology must be present,			
5 cm Mu	ucky Peat c	or Peat (S3	3)						unless di	isturbed or problematic.			
Restrictive	Layer (if ol	bserved):											
Туре:													
Depth (inches):								Hydric Soil P	resent? Yes 🧹 No				
Remarks:									1				

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (39) Surface Soil Cracks (B6)
High Water Table (A2) Aquatic Fauna (B13)	Drainage Patterns (B10)
Saturation (A3) True Aquatic Plants (B1	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor	C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Ir	n (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction i	Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9	
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remain	ks)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes 🖌 No Depth (inches):?	4
Saturation Present? Yes <u>√</u> No <u>Depth</u> (inches): <u>2</u> (includes capillary fringe)	2 Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	us inspections), if available:
Sample point recorded beyond the extent of wetland hydrology signatures obs	rved in normal years.
Remarks:	
No crop stress apparent based on remaining stubble.	

Project/Site: LLR Mitigation Site Addition	C	City/County: Monroe C	County	Sam	oling Date: 2024-10)-05
Applicant/Owner: KCI Technologies			State: Wisconsin	Sampli	ng Point: P08	
Investigator(s): Scott Fuchs	S	Section, Township, Ra	inge: sec 05 T015N R	003W		
Landform (hillslope, terrace, etc.): Sidelsope		Local relief	(concave, convex, nor	ne): None	•	
Slope (%): 0-2 Lat: 43.809431	L	ong: -90.765659	•	Datur	m: WGS84	
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 perce	nt slopes	;	NWI class	sification:	None (WWI)	
Are climatic / hydrologic conditions on the site typical for this tim	ne of vea	r? Yes No	√ (If no, explain i	n Remark	(S.)	
Are Vegetation \checkmark . Soil . or Hydrology signi	ificantlv d	listurbed? Are	"Normal Circumstance	s" presen	, t? Yes N	0 √
Are Vegetation . Soil . or Hydrology natu	rally prob	ematic? (If ne	eeded. explain anv ans	wers in R	Remarks.)	
SUMMARY OF FINDINGS – Attach site map sho	owing	sampling point i	ocations, transed	sts, imp	ortant feature	s, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	 ✓	Is the Sampled within a Wetla	d Area nd? Yes _		No	
VEGETATION – Use scientific names of plants.	tool, whic	ch indicates that cond	itions are drier than no	rmal for th	he time of year.	
Troo Stratum (Plot size: 30' radius) 4/	bsolute	Dominant Indicator	Dominance Test w	orksheet	:	
1			Number of Dominan That Are OBL, FAC	t Species N, or FAC	; C: <u> </u>	(A)
2	·		Total Number of Dor Species Across All S	minant Strata:	2	(B)
4			Percent of Dominan That Are OBL, FAC	t Species W, or FAC	D: <u>50.00</u>	(A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)	=	= Total Cover	Prevalence Index v	vorkshee	t:	
1			Total % Cover of	of:	Multiply by:	
2			OBL species	0	x 1 =0	_
3			FACW species	3	x 2 =6	_
4			FAC species	0	x 3 =0	_
5			FACU species	2	x 4 = 8	

1				Total % Cover of: Multiply by:
2	<u> </u>			OBL species x 1 =0
3	<u> </u>			FACW species <u>3</u> x 2 = <u>6</u>
4	<u> </u>			FAC species x 3 =0
5	<u> </u>			FACU species x 4 = 8
	0	= Total Cov	/er	UPL species x 5 =0
Herb Stratum (Plot size: 5' radius)				Column Totals: <u>5</u> (A) <u>14.00</u> (B)
1. Panicum dichotomiflorum	3	Y	FACW	
2. <u>Setaria faberi</u>	2	Y	FACU	Prevalence Index = $B/A = 2.8$
3				Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5.				2 - Dominance Test is >50%
6.				\checkmark 3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
8				Problematic Hydrophytic V/castation ¹ (Explain)
9			. <u> </u>	
10			. <u> </u>	
Woody Vine Stratum (Plot size: 30' radius)	5.0	_ = Total Cov	/er	be present, unless disturbed or problematic.
1				Hydrophytic
2				Vegetation
	0	_ = Total Cov	/er	Present? Yes <u>√</u> No
Remarks: (Include photo numbers here or on a separate	sheet.)			

Profile Desc	ription: (D	Describe	to the dep	th needed	to docur	nent the i	indicator	or confirn	n the absence of ind	icators.)			
Depth		Matrix			Redo	x Feature	s						
(inches)	Color (moist)	%	Color (I	noist)	%	Type ¹	Loc ²	Texture	Remar	ks		
0-16	10YR	3/2	100				. <u> </u>		SIL				
16-24	10YR	4/2	90	10YR	3/4	10	C	M/PL	SICL				
						<u> </u>	·						
						<u>.</u> .			·				
¹ Type: C=Co	oncentratio	n, D=Depl	letion, RM	=Reduced I	Matrix, M	S=Masked	d Sand Gra	ains.	² Location:	PL=Pore Linin	g, M=Matrix.		
Hydric Soil	Indicators:								Indicators for Pre	Indicators for Problematic Hydric Soils ³ :			
Histosol	(A1)				Sandy (Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)				
Histic Ep	pipedon (A2	2)			Sandy F	Redox (S5	5)		— Dark Surface (S7)				
Hvdroge	siic (A3) In Sulfide (A	44)			Loamy	d Matrix (S Mucky Mir	56) neral (F1)		Iron-Manganese Masses (F12)				
Stratified	d Layers (A	5)			Loamy	Gleyed Ma	atrix (F2)		Very Shallow Dark Surface (TF12)				
2 cm Mu	ick (A10)	,		_	Deplete	d Matrix (F3)		Other (Explain in Remarks)				
Depleted	d Below Da	rk Surface	e (A11)		Redox I	Dark Surfa	ace (F6)						
Thick Da	ark Surface	(A12)			Deplete	d Dark Su	urface (F7)		³ Indicators of hydrophytic vegetation and				
Sandy M	lucky Mine	ral (S1) • Deet (CC			Redox I	Depressio	ns (F8)		wetland hydrology must be present,				
5 CM MU	aver (if of	r Peat (53	3)							bed or problema	atic.		
Turner	Layer (II OL	Jsei veuj.											
Depth (inches):									Hydric Soil Prese	nt? Yes	No√		
Remarks:	,								-				
No hydric soi	l indicators	observed											

Wetland Hydrology Indicators:							
Primary Indicators (minimum of one is		Secondary Indicators (minimum of two required)					
Surface Water (A1)	_		Surface Soil Cracks (B6)				
High Water Table (A2)		Aquatic Fauna (B13)		Drainage Patterns (B10)			
Saturation (A3)		True Aquatic Plants (B14)		Dry-Season Water Table (C2)			
Water Marks (B1)		Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)			
Sediment Deposits (B2)		Oxidized Rhizospheres on Living	Roots (C3)	Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)		Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4)		Recent Iron Reduction in Tilled S	oils (C6)	Geomorphic Position (D2)			
Iron Deposits (B5)	_	Thin Muck Surface (C7)		FAC-Neutral Test (D5)			
Inundation Visible on Aerial Image	ry (B7)	Gauge or Well Data (D9)					
Sparsely Vegetated Concave Surf	ace (B8)	Other (Explain in Remarks)					
Field Observations:							
Surface Water Present? Yes	No 🖌	_ Depth (inches):					
Water Table Present? Yes	No 🖌	_ Depth (inches):					
Saturation Present? Yes (includes capillary fringe)	🖌 No	_ Depth (inches): 23	Wetland	Hydrology Present? Yes No _√			
Describe Recorded Data (stream gaug	e, monitoring	well, aerial photos, previous inspec	ctions), if ava	ailable:			
Sample point is beyond the average ex	tent of wetland	d hydrology indicators observed in	normal year	s during the OSA.			
Remarks:							
No crop stress / drown out apparent ba	sed on corn st	tubble.					

_ City/County: Monitoe County Sampling Date: 2024-10-05									
State: Wisconsin Sampling Point: P09									
_ Section, Township, Range: <u>sec 05 T015N R003W</u>									
Local relief (concave, convex, none): None									
Long: <u>-90.765374</u> Datum: <u>WGS84</u>									
pes NWI classification: None (WWI)									
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)									
Jisturbed? Are "Normal Circumstances" present? Yes No									
problematic? (If needed, explain any answers in Remarks.)									
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Is the Sampled Area within a Wetland? Yes No									

Remarks:

Sample point recorded within unfarmed wetland area, ruderal wet meadow vegetation present. Evaluated as normal circumstances. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 1 (A)
2				Tetal New Jone (Demission)
3				Species Across All Strata: 1 (B)
A.				
				Percent of Dominant Species
o	·			That Are OBL, FACW, or FAC: 100.00 (A/B)
Sopling/Shrub Stratum (Plot size: 15' radius)	0	= Total Cov	ver	Prevalence Index worksheet
<u>Saphing/Sindo Stratum</u> (Flot Size. 10 radius)				Total % Cover of: Multiply by:
1				
2	·	<u> </u>		OBL species 10 x 1 = 10
3				FACW species <u>105</u> $x 2 = 210$
4				FAC species x 3 =0
5				FACU species x 4 =
	0	= Total Cov	ver	UPL species x 5 = 0
Herb Stratum (Plot size: 5' radius)				Column Totals: 115 (A) 220.00 (B)
1. Phalaris arundinacea	100	Y	FACW	
2. Verbena hastata	5	Ν	FACW	Prevalence Index = $B/A = 1.91$
3. Leersia oryzoides	5	N	OBL	Hydrophytic Vegetation Indicators:
4 Typha angustifolia	3	N	OBL	✓ 1 - Rapid Test for Hydrophytic Vegetation
5. Scirpus cyperinus	2	N	OBI	$\sqrt{2}$ - Dominance Test is >50%
				$\sqrt{3}$ - Prevalence Index is $\leq 3.0^{1}$
0				4. Marphalagical Adaptations ¹ (Dravida supporting
7				data in Remarks or on a separate sheet)
8	·	<u> </u>		
9				
10				
	115.0	= Total Cov	/er	Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)				be present, unless disturbed of problematic.
1				Hydrophytic
2				Vegetation
				Present? Yes √ No
	0	= Total Cov	ver	
Remarks: (Include photo numbers here or on a separate s	sheet.)			
Ruderal wet meadow vegetation present.				

Profile Desc	ription: (I	Describe f	the dep	th needed	to docu	ment the	indicator	or confirn	n the absenc	e of indicators.)		
Depth		Matrix		Redox Features								
(inches)	Color	(moist)	%	$\underline{\text{Color (moist)}} \underline{\text{%}} \underline{\text{Type}^{1}} \underline{\text{Loc}^{2}}$				Loc ²	Texture	Remarks		
0-9	10YR	4/2	95	10YR	4/6	5	С	M/PL	SICL			
9-16	Ν	2.5/0	100						MUCK	Buried muck		
16-24	Ν	2.5/0	60				. <u></u>		MUCK	Peaty muck		
	7.5YR	2.5/2	40						MUCK			
						<u> </u>						
			otion PM	Poducod	Motrix M	S-Maskov			21	accetion: PL-Pore Lining M-Matrix		
Hydric Soil	Indicators	п, D=Depi :		-Neuuceu	vialita, ivi			airis.	Indicator	s for Problematic Hydric Soils ³ :		
Histosol	Histosol (A1)				Sandy Gleved Matrix (S4)					Coast Prairie Redox (A16)		
Histic Er	Histic Enjpedon (A2)				Sandy Redox (S5)							
Black Hi	stic (A3)	,			Stripped Matrix (S6)					— Dark Surface (S7)		
Hydroge	n Sulfide (A4)			Loamy Mucky Mineral (F1)					— Iron-Manganese Masses (F12)		
Stratified	d Layers (A	.5)			Loamy Gleyed Matrix (F2)					Very Shallow Dark Surface (TF12)		
2 cm Mu	ıck (A10)			✓ Depleted Matrix (F3)					Other	r (Explain in Remarks)		
Depleted	d Below Da	ark Surface	e (A11)	Redox Dark Surface (F6)								
Thick Da	ark Surface	e (A12)		Depleted Dark Surface (F7)					³ Indicators of hydrophytic vegetation and			
Sandy M	lucky Mine	ral (S1)		Redox Depressions (F8)					wetla	nd hydrology must be present,		
5 cm Mu	icky Peat c	or Peat (S3	3)						unles	s disturbed or problematic.		
Restrictive I	Layer (if ol	bserved):										
Туре:												
Depth (inches):									Hydric So	il Present? Yes∕_ No		
Remarks:												
Depleted mat	trix at surfa	ce over bu	iried muck									

Wetland Hydrology Indicators:					
Primary Indicators (minimum of one is required; check all t	Secondary Indicators (minimum of two required)				
Surface Water (A1) Wat	ter-Stained Leaves (B9)	Surface Soil Cracks (B6)			
High Water Table (A2) Aqu	uatic Fauna (B13)	Drainage Patterns (B10)			
✓ Saturation (A3) True	e Aquatic Plants (B14)	Dry-Season Water Table (C2)			
Water Marks (B1) Hyd	drogen Sulfide Odor (C1)	Crayfish Burrows (C8)			
Sediment Deposits (B2) Oxic	dized Rhizospheres on Living Roots (0	C3) 🗹 Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3) Pres	sence of Reduced Iron (C4)	✓ Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4) Rec	cent Iron Reduction in Tilled Soils (C6)	✓ Geomorphic Position (D2)			
Iron Deposits (B5) Thin	n Muck Surface (C7)	🖌 FAC-Neutral Test (D5)			
Inundation Visible on Aerial Imagery (B7) Gau	uge or Well Data (D9)				
Sparsely Vegetated Concave Surface (B8) Othe	er (Explain in Remarks)				
Field Observations:					
Surface Water Present? Yes No De	epth (inches):				
Water Table Present? Yes <u>√</u> No Dep	epth (inches): <u>14</u>				
Saturation Present? Yes _ ✓ No Dep (includes capillary fringe)	epth (inches): <u>12</u> Wetla	nd Hydrology Present? Yes 🧹 No			
Describe Recorded Data (stream gauge, monitoring well,	aerial photos, previous inspections), if	f available:			
This portion of the field was either unfarmed or featured wetland hydrology sign	gnatures in 100% of the normal precipitation years	reviewed during the OSA. C9 and D1 indicators observed during OSA.			
Remarks:					

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05			
Applicant/Owner: KCI Technologies	State: Wisconsin Sampling Point: P10				
Investigator(s): Scott Fuchs	Section, Township, Range: sec 05 T015N R003W				
Landform (hillslope, terrace, etc.): Toe Of Slope	Local relief (concave, convex, none): None				
Slope (%): 0-2 Lat: 43.810087	Long: <u>-90.764551</u>	Datum: WGS84			
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent slop	es	NWI classification: None (WWI)			
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?YesNo_√_ (If r	o, explain in Remarks.)			
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Normal Cir	cumstances" present? Yes No			
Are Vegetation, Soil, or Hydrology naturally pr	problematic? (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.					
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area				

Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No	Is the Sampled Area within a Wetland?	Yes No
Remarks:			

Sample point recorded within shallow marsh / wet meadow portion of the large wetland complex that juts out into ag field. Evaluated as normal circumstances. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 1 (A)
2				Tatal Number of Deminant
3.				Species Across All Strata: 1 (B)
4				
5				Percent of Dominant Species
J		Tatal Oa		That Are OBL, FACW, or FAC: 100.00 (A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)	0	= Total Cov	/er	Prevalence Index worksheet:
1				Total % Cover of: Multiply by:
·	·		·	$\frac{1}{1} \frac{1}{1} \frac{1}$
2	·		<u> </u>	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
3				FACTV species 10 $x_2 = 30$
4	·			FAC species 0 $x_3 = 0$
5			<u> </u>	FACU species $0 x 4 = 0$
	0	= Total Cov	ver	UPL species x 5 =0
Herb Stratum (Plot size: 5 radius)				Column Totals: <u>113</u> (A) <u>131.00</u> (B)
1. Leersia oryzoides	90	Y	OBL	
2. Phalaris arundinacea	10	N	FACW	Prevalence Index = $B/A = 1.16$
3. <u>Typha angustifolia</u>	5	N	OBL	Hydrophytic Vegetation Indicators:
4. Solidago gigantea	3	N	FACW	✓ 1 - Rapid Test for Hydrophytic Vegetation
5. Verbena hastata	3	N	FACW	\checkmark 2 - Dominance Test is >50%
6. Urtica dioica	2	Ν	FACW	\checkmark 3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
0				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)	113.0	= Total Cov	ver	be present, unless disturbed or problematic.
(Fiot Size:)				
l	·		<u> </u>	Hydrophytic
2				Vegetation
	0	= Total Cov	ver	
Remarks: (Include photo numbers here or on a separate s	sheet.)			
Wet meadow / shallow marsh vegetation present.				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth		Matrix			Redo	x Feature	S					
(inches)	Color	(moist)	%	Color (Color (moist) % Type ¹ Loc ²				Texture	Remarks		
0-10	10YR	3/1	93	10YR	3/6	7	С	Μ	SICL			
10-26	N	2.5/0	70				. <u> </u>		MUCK	Peaty muck		
	7.5YR	2.5/3	30						MUCK			
							<u> </u>					
						_						
						_						
¹ Type: C=C	oncentratio	n, D=Depl	etion, RM	=Reduced	Matrix, M	S=Masked	d Sand Gra	ains.	² Lc	ocation: PL=Pore Lining, M=Matrix.		
Hydric Soil	Indicators	:							Indicators	s for Problematic Hydric Soils ³ :		
🖌 Histosol	(A1)				Sandy (Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)			
Histic E	pipedon (A	2)			- Sandy I	Redox (S5	5)		— Dark Surface (S7)			
Black Hi	istic (A3)				_ Strippe	d Matrix (S	S6)					
Hydroge	en Sulfide (A4)			Loamy	Mucky Mi	neral (F1)		IIOII-Maliganese Masses (FT2)			
Stratifie	d Layers (A	(5)			Loamy	Gleyed M	atrix (F2)		Very Shallow Dark Surface (TF12)			
2 cm Mu	uck (A10)				_ Deplete	ed Matrix (F3)		Other (Explain in Remarks)			
Deplete	d Below Da	ark Surface	e (A11)	\checkmark	_ Redox I	Dark Surfa	ace (F6)		2			
Thick Da	ark Surface	e (A12)			_ Deplete	ed Dark Su	urface (F7)		Indicators of hydrophytic vegetation and			
Sandy N	/lucky Mine	eral (S1)			Redox	Depressio	ns (F8)		wetland hydrology must be present,			
5 cm Mu	ucky Peat c	or Peat (S3)						unles	s disturbed or problematic.		
Restrictive	Layer (if o	bserved):										
Туре:												
Depth (in	ches):								Hydric Soi	il Present? Yes∕ No		
Remarks:												
Mineral soils	over organ	ic material										

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that) Secondary Indicators (minimum of two required)
Surface Water (A1) Water-	d Leaves (B9) Surface Soil Cracks (B6)
✓ High Water Table (A2) Aquatio	a (B13) Drainage Patterns (B10)
✓ Saturation (A3) True A	Plants (B14) Dry-Season Water Table (C2)
Water Marks (B1) Hydrog	fide Odor (C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidize	ospheres on Living Roots (C3) \checkmark Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presen	Reduced Iron (C4) <u>√</u> Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent	eduction in Tilled Soils (C6) 🚽 Geomorphic Position (D2)
Iron Deposits (B5) Thin M	rface (C7) FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (B7) Gauge	I Data (D9)
Sparsely Vegetated Concave Surface (B8) Other (n in Remarks)
Field Observations:	
Surface Water Present? Yes No Depth	s):
Water Table Present? Yes _ ✓ No Depth	s): <u>12</u>
Saturation Present? Yes _ ✓ No Depth (includes capillary fringe)	s): Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aer	tos, previous inspections), if available:
This portion of the field was either unfarmed or featured wetland hydrology signatu	0% of the normal precipitation years reviewed during the OSA. C9 and D1 indicators observed during OSA.
Remarks:	

Project/Site: LLR Mitigation Site Addition		City/County:	Monroe C	ounty	Sam	npling Date	e: <u>2024-1</u>	0-05
Applicant/Owner: KCI Technologies				State: Wiscons	sin Samp	ling Point:	P11	
Investigator(s): Scott Fuchs	5	Section, Tow	nship, Rar	nge: sec 05 T015N	R003W			
Landform (hillslope, terrace, etc.): Sideslope		Lo	cal relief (concave, convex, n	one): <u>Non</u>	e		
Slope (%): 0-2 Lat: 43.811121	L	_ong: <u>-90.76</u> 3	3800		Datu	um: <u>WGS8</u>	34	
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent	nt slopes	3		NWI cla	assification	: None (W	WI)	
Are climatic / hydrologic conditions on the site typical for this tim	ne of vea	r? Yes	No	✓ (If no. explain	n in Remar	rks.)		
Are Vegetation \checkmark . Soil . or Hydrology signi	ificantly o	disturbed?	Are "	Normal Circumstand	ces" prese	nt? Yes	N	lo 🗸
Are Vegetation Soil or Hydrology nature	rally prof	plematic?	(If ne	eded explain any a	nswers in	Remarks)		
			(1110			i tomanto.)	•	
SUMMARY OF FINDINGS – Attach site map sho	owing	sampling	point lo	ocations, trans	ects, im	portant	feature	es, etc.
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Sample point recorded within a recently baryested agricultural	√ √ field that	Is the within	Sampled a Wetlan	Area d? Yes		No _√		of
VEGETATION – Use scientific names of plants.	tool, whi	ch indicates t	hat condit	ions are drier than r	normal for	the time of	year.	
At	bsolute	Dominant I	ndicator	Dominance Test	workshee	et:		
Tree Stratum (Plot size:30' radius) % 1	Cover	Species? Status	Number of Domina That Are OBL, FA	ant Specie CW, or FA	es \C:	0	(A)	
2				Total Number of D Species Across Al)ominant Il Strata:		0	(B)
4				Percent of Domina That Are OBL, FA	ant Specie CW, or FA	s \C:		(A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)	0 :	= Total Cove	r	Prevalence Index	workshe	et:		
1.				Total % Cove	r of:	Mult	iply by:	
2.			<u> </u>	OBL species	0	x 1 =	0	
3				FACW species	0	x 2 =	0	
4				FAC species	2	x 3 =	6	
5	_		_	FACU species	0	x 4 =	0	

I				
2.				OBL species x 1 =0
3.				FACW species0 x 2 =0
4.				FAC species $2 \times 3 = 6$
5				FACU species $0 x 4 = 0$
···	0	- Total Cov		$IIPI \text{ species } 0 \qquad x = 0$
Herb Stratum (Plot size: 5' radius)		_ = 101a1000		Column Totals: 2 (A) = 6.00 (B)
1. Setaria pumila	2	Ν	FAC	$\frac{1}{2} (A) = \frac{1}{2} (B)$
2				Prevalence Index = $B/A = \frac{3.0}{1000}$
3.				Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5.				2 - Dominance Test is >50%
6.				\checkmark 3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
10				
Woody Vine Stratum (Plot size: 30' radius)	2.0	= Total Cov	ver	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1				Hydrophytic
2	·			Vegetation
	0	_ = Total Cov	ver	Present? Yes No _√
Remarks: (Include photo numbers here or on a separate s	heet.)			
Very little veg present due to late growing season, ag land u	use, herbi	icide use.		

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth		Matrix			Redo	x Feature	S					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-11	10YR	3/2	100						SIL			
11-17	10YR	3/2	70	10YR	4/6	5	С	Μ	SIL	SiL w/ 5/4 sandy materia	al intermixed	
	10YR	5/4	25						SIL			
17-24	2.5Y	5/3	97	2.5Y	5/6	3	C	М	SICL			
							·		2			
Type: C=Co	oncentratio	n, D=Dep	letion, RM:	=Reduced	Matrix, MS	S=Maske	d Sand Gra	ains.	L	ocation: PL=Pore Lining, M	=Matrix.	
					• • •				indicator		50115 .	
Histosol	(A1)				_ Sandy C	sleyed Ma	atrix (S4)		Coast Prairie Redox (A16)			
HISTIC Ep	olpedon (A2	<u>(</u>)			- Sandy F	Redox (S5	5)		— Dark Surface (S7)			
Hvdroge	n Sulfide (A	4)			Loamv I	d Matrix (S Muckv Mi	56) neral (F1)		— Iron-Manganese Masses (F12)			
Stratified	Lavers (A	5)			Loamy (Gleved M	atrix (F2)		Very Shallow Dark Surface (TF12)			
2 cm Mu	ick (A10)	- /			Deplete	d Matrix (F3)		Other (Explain in Remarks)			
Depleted	d Below Da	rk Surface	e (A11)		Redox [Dark Surfa	ace (F6)					
Thick Da	ark Surface	(A12)			Deplete	d Dark Su	urface (F7)		³ Indicators of hydrophytic vegetation and			
Sandy M	lucky Mine	ral (S1)			Redox [Depressio	ns (F8)		wetland hydrology must be present,			
5 cm Mu	icky Peat o	r Peat (S3	3)						unless disturbed or problematic.			
Restrictive L	_ayer (if ob	oserved):										
Туре:												
Depth (inc	ches):								Hydric So	il Present? Yes	No 🧹	
Remarks:												
No hydric soil	indicators	observed										

Wetland Hydrology Indicators:					
Primary Indicators (minimum of one is required	Secondary Indicators (minimum of two required)				
Surface Water (A1)	Surface Soil Cracks (B6)				
High Water Table (A2)	Aquatic Fauna (B13)	Drainage Patterns (B10)			
Saturation (A3)	True Aquatic Plants (B14)	Dry-Season Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)			
Sediment Deposits (B2)	Oxidized Rhizospheres on Living R	oots (C3) Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6) Geomorphic Position (D2)			
Iron Deposits (B5)	Thin Muck Surface (C7)	FAC-Neutral Test (D5)			
Inundation Visible on Aerial Imagery (B7)	Gauge or Well Data (D9)				
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)				
Field Observations:					
Surface Water Present? Yes No	o _ ✓_ Depth (inches):				
Water Table Present? Yes _ ✓ No	Depth (inches): 24				
Saturation Present? Yes <u>√</u> No (includes capillary fringe)	Depth (inches): 22	Wetland Hydrology Present? Yes No			
Describe Recorded Data (stream gauge, moni	toring well, aerial photos, previous inspection	ons), if available:			
Sample point recorded beyond the average ext	tent of wetland hydrology signatures observ	ed during the OSA.			
Remarks:					

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	State	e: Wisconsin Sampling Point: P12					
Investigator(s): Scott Fuchs	Section, Township, Range: sec	05 T015N R003W					
Landform (hillslope, terrace, etc.): Toe Of Slope	Local relief (concave,	Local relief (concave, convex, none): None					
Slope (%): <u>0-2</u> Lat: <u>43.811264</u>	Long: <u>-90.764239</u>	Datum: WGS84					
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent s	slopes	NWI classification: None (WWI)					
Are climatic / hydrologic conditions on the site typical for this time of	of year? Yes No∕_ (If	no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significa	antly disturbed? Are "Normal C	ircumstances" present? Yes 🧹 No					
Are Vegetation, Soil, or Hydrology naturall	y problematic? (If needed, exp	plain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No	Is the Sampled Area within a Wetland?	Yes∕ No					

Wetland	Hydrology	Present?

Remarks:

Sample point recorded within ruderal wet meadow vegetation present at the toe of slope of the ag field. Evaluated as normal circumstances. Stunted/stressed corn present along ag field edge to the east. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

VEGETATION - Use scientific names of plants.

Yes _

 \checkmark

No

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1			. <u> </u>	That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant
3				Species Across All Strata: 1 (B)
4.				
5				Percent of Dominant Species
···	0	- Total Cov	or	That Ale OBL, FACW, OF FAC. (A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)		- 10101000	CI	Prevalence Index worksheet:
1.				Total % Cover of: Multiply by:
2	<u> </u>			OBL species 8 x 1 = 8
3	<u> </u>			FACW species $103 \times 2 = 206$
3	·			EAC species $0 \times 3 = 0$
4	·			$\frac{1}{1} = \frac{1}{1} = \frac{1}$
5				$\frac{1}{10} = \frac{1}{10} $
Herb Stratum (Plot size: 5' radius)	0	= Total Cov	er	$\begin{array}{c} \text{OPL species} \underline{0} x \ 5 = \underline{0} \\ \text{OPL species} \underline{144} (x) \underline{244.00} (b) \end{array}$
1 Phalaris arundinacea	100	Y	FACW	Column lotals: (A) (B)
	8	 N	OBI	Prevalence Index = $B/A = 1.93$
2. Solidago gigontoo	<u> </u>			Hydronhytic Vegetation Indicators:
3. Solidayo gigantea			TAGW	/ 1 - Rapid Test for Hydrophytic Vegetation
4	·			$\frac{\sqrt{2}}{\sqrt{2}}$ Deminance Test is $\geq 50\%$
5	·			$\sqrt{2}$ 2 - Dominance results >50%
6	·			$\sqrt{3}$ - Prevalence index is $\leq 3.0^{\circ}$
7				4 - Morphological Adaptations ¹ (Provide supporting
8	. <u> </u>			data in Remarks of on a separate sheet)
9				— Problematic Hydrophytic Vegetation' (Explain)
10				
	111.0	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)	. <u></u>			be present, unless disturbed or problematic.
1	<u> </u>			Undreshutie
2				Vegetation
				Present? Yes √ No
Describe (la desta state see la d	0	= Total Cov	er	
Remarks: (Include photo numbers here or on a separate s	sneet.)			
Ruderal wet meadow dominated by RCG.				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth	Matrix				Redo	x Feature	s					
(inches)	Color (moist)	st) % Color (moist) %			%	Type ¹	Loc ²	Texture	Remarks		
0-16	10YR	4/2	92	10YR	5/6	8	С	М	SICL			
16-24	10YR	5/2	90	10YR	5/6	10	С	M/PL	SICL			
	. <u> </u>											
¹ Type: C=Co	oncentration	n, D=Depl	etion, RM=	Reduced I	Matrix, MS	S=Masked	Sand Gra	ains.	² Loca	tion: PL=Pore Lining, M=Matrix.		
Hydric Soil I	Indicators:								Indicators for Problematic Hydric Soils ³ :			
Histosol	(A1)				Sandy C	Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)			
Histic Ep	pipedon (A2	2)			— Sandy Redox (S5)				— Dark Surface (S7)			
Black Hi	stic (A3)				Stripped Matrix (S6)							
Hydroge	en Sulfide (A	\ 4)			Loamy Mucky Mineral (F1)				- Iron-manganese masses (F12)			
Stratified	d Layers (A	5)			Loamy Gleyed Matrix (F2)				Very Shallow Dark Surface (TF12)			
2 cm Mu	ıck (A10)			\checkmark	Depleted Matrix (F3)				Other (Explain in Remarks)			
Depleted	d Below Da	rk Surface	e (A11)		Redox Dark Surface (F6)							
Thick Da	ark Surface	(A12)			Depleted Dark Surface (F7)				³ Indicators of hydrophytic vegetation and			
Sandy M	lucky Mine	ral (S1)			Redox Depressions (F8)				wetland hydrology must be present,			
5 cm Mu	icky Peat o	r Peat (S3	5)						unless disturbed or problematic.			
Restrictive I	Layer (if ob	served):										
Туре:												
Depth (inches):									Hydric Soil P	Present? Yes <u>√</u> No		
Remarks:												
Depleted matrix present throughout profile.												

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) True Aquatic Plants (B14) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Drift Deposits (B3) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Sc Iron Deposits (B5) Thin Muck Surface (C7) Invertein Visible on Aerial Imagery (B7) Gauge or Well Data (D9)	
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)	
Field Observations:	
Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches):	Wetland Hydrology Present? Yes √ No
(includes capillary fringe)	······································
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec This portion of the field was either unfarmed or featured wetland hydrology signatures in 100% of the normal precipitat	tions), if available: ion years reviewed during the OSA. C9 and D1 indicators observed during OSA.
Remarks:	

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	State: Wisconsin Sampling Point: P13						
Investigator(s): Scott Fuchs	_ Section, Township, Range: se	ec 05 T015N R003W					
Landform (hillslope, terrace, etc.): Sideslope	Local relief (concave, convex, none): None						
Slope (%): <u>3-7</u> Lat: <u>43.811892</u>	_ Long: <u>-90.762813</u>	Datum: WGS84					
Soil Map Unit Name: Orion silt loam, 0 to 3 percent slopes, occasiona	ally flooded	NWI classification: None (WWI)					
Are climatic / hydrologic conditions on the site typical for this time of y	vear? Yes No _√_	(If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significant	y disturbed? Are "Normal	Circumstances" present? Yes No					
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (If needed, e	explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vagatation Present? Vac / No							

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No Yes No	Is the Sampled Area within a Wetland?	Yes	No
Remarks:		·		

Sample point recorded on a gentle sideslope within a recently harvested agricultural field that was planted with corn this season. Not normal circumstances. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test	workshee	et:		
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Domina	ant Specie	es		
1				That Are OBL, FA	CW, or FA	AC:	1	(A)
2				Total Number of D	aminant			
3.				Species Across Al	Strata		2	(B)
4	·				otrata.			(2)
5	·			Percent of Domina	ant Specie	s	F0 00	(. (
J		T () O		That Are OBL, FA	CW, or FA	AC:	50.00	(A/B)
Sapling/Shrub Stratum (Plot size: 15' radius)	0	= Total Cov	/er	Prevalence Index	workshe	et:		
(Flot 0.20)				Total % Cover	r of	Mi	ultiply by:	
1	·				0		0	_
Z	·					_ XI=_	10	-
3	- <u> </u>		<u> </u>	FACW species	5	_ x 2 = _	10	_
4	·			FAC species	0	_ x 3 = _	0	_
5	·			FACU species	3	_ x 4 = _	12	_
	0	= Total Cov	ver	UPL species	0	_ x 5 =	0	_
Herb Stratum (Plot size: 5' radius)				Column Totals:	8	(A)	22.00	(B)
1. Panicum dichotomiflorum	5	Y	FACW					
2. Taraxacum officinale	2	Y	FACU	Prevalence I	$ndex = B_i$	/A = 2.75	5	
3. <u>Setaria faberi</u>	1	N	FACU	Hydrophytic Veg	jetation Ir	ndicators	5:	
4.				1 - Rapid Test	for Hydrc	phytic Ve	egetation	
5.				2 - Dominance	e Test is >	50%		
6	·			✓ 3 - Prevalence	Index is :	≤3.0 ¹		
7	·			4 - Morpholog	ical Adan [,]	tations ¹ (F	Provide sup	porting
8	·			data in Rei	marks or c	on a sepa	rate sheet)	portung
0				Problematic H	Hydrophyt	ic Vegeta	tion ¹ (Expla	in)
3 10	·							
10		Tatal Oa		¹ Indicators of hvdi	ric soil and	d wetland	hvdroloav	must
Woody Vine Stratum (Plot size: 30' radius)	0.0	= Total Cov	/er	be present, unless	s disturbe	d or probl	ematic.	
1				the described a				
2.				Vegetation				
				Present?	Yes	<u>√ </u> No	o 0	
	0	= Total Cov	ver					
Remarks: (Include photo numbers here or on a separate s	sheet.)							
No crop stress/drown out occurred this year based on remain	aining corn	stubble.						

Profile Desc	ription: (I	Describe t	o the dep	th needed	to docun	nent the	indicator	or confirn	n the absence of	f indicators.)		
Depth	Matrix				Redo	x Feature	s					
(inches)	Color (moist)	%	Color (r	noist)	%	Type ¹	Loc ²	Texture	Remarks		
0-14	7.5YR	2.5/1	100						SIL			
14-17	10YR	3/1	97	10YR	5/6	3	С	Μ	SICL			
17-24	10YR	4/1	97	10YR	3/6	3	C	Μ	SC			
¹ Type: C=Co	oncentratio	n, D=Depl	etion, RM	=Reduced I	Matrix, MS	S=Maske	d Sand Gra	ains.	² Locat	tion: PL=Pore Lining, M	=Matrix.	
Hydric Soil	Indicators								Indicators fo	or Problematic Hydric S	ioils ³ :	
Histosol	(A1)				Sandy Gleyed Matrix (S4)				Coast Pr	airie Redox (A16)		
Histic Ep	pipedon (A2	2)		— Sandy Redox (S5)					— Dark Sur	— Dark Surface (S7)		
Black Hi	stic (A3) In Sulfide (۵4)		Stripped Matrix (S6)					Iron-Manganese Masses (F12)			
Stratified	d Layers (A	5)		Loamy Gleved Matrix (F2)					Very Sha	Very Shallow Dark Surface (TF12)		
2 cm Mu	ick (A10)	,		_	Depleted Matrix (F3)				Other (Explain in Remarks)			
Depleted	d Below Da	rk Surface	e (A11)		Redox Dark Surface (F6)							
✓ Thick Da	ark Surface	(A12)		_	Depleted Dark Surface (F7)				³ Indicators of hydrophytic vegetation and			
Sandy N	lucky Mine	ral (S1)		Redox Depressions (F8)					wetland hydrology must be present,			
Restrictive I	aver (if ol	served):)							sturbed of problematic.		
Type:												
Depth (inches):								Hydric Soil P	resent? Yes _√	No		
Remarks:									1			

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) True Aquatic Plants (B14) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Drift Deposits (B3) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron Reduction in Tilled So Iron Deposits (B5) Thin Muck Surface (C7)	
Inundation Visible on Aerial Imagery (B7) Gauge or Well Data (D9)	
Sparsely vegetated Concave Surface (B8) Other (Explain in Remarks)	l
Field Observations:Surface Water Present?Yes No Depth (inches):Water Table Present?Yes \checkmark No Depth (inches):Saturation Present?Yes \checkmark No Depth (inches):(includes capillary fringe)18	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	tions), if available:
Sample point recorded beyond the average extent of wetland hydrology signatures obse	rved during the OSA.
Remarks:	

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	Stat	e: Wisconsin Sampling Point: P14					
Investigator(s): Scott Fuchs	_ Section, Township, Range: sec	05 T015N R003W					
Landform (hillslope, terrace, etc.): Toe Of Slope	Local relief (concave	, convex, none): <u>None</u>					
Slope (%): 0-2 Lat: 43.812377	Long: <u>-90.762458</u>	Datum: WGS84					
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent slo	ppes	NWI classification: None (WWI)					
Are climatic / hydrologic conditions on the site typical for this time of	year? Yes No (If	no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significant	tly disturbed? Are "Normal C	Circumstances" present? Yes 🧹 No					
Are Vegetation, Soil, or Hydrology naturally p	problematic? (If needed, exp	plain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes Ves No	 Is the Sampled Area 						

Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No	within a Wetland?	Yes No	
Remarks:				

Sample point recorded within an RCG dominated wet meadow that is present along the northern edge of the agricultural field. Evaluated as normal circumstances. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1				That Are OBL, FACW, or FAC: 1	(A)
2.					
3				I otal Number of Dominant Species Across All Strata:	(B)
4	·				(D)
-	·			Percent of Dominant Species	
5	·			That Are OBL, FACW, or FAC: 100.00	(A/B)
	0	= Total Cov	er	Drevelance in dev worksheet:	
Sapling/Shrub Stratum (Plot size: 15 radius)				Prevalence index worksneet:	
1				Total % Cover of: Multiply by:	
2				OBL species <u>10</u> x 1 = <u>10</u>	_
3.				FACW species 100 x 2 = 200	
4				FAC species $0 \times 3 = 0$	
5				FACILI species 0 x 4 = 0	-
J		Tatal Oa			-
Herb Stratum (Plot size: 5' radius)	0	= Total Cov	er	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	-
A Deplorie orundingene	100	V		Column Totals: <u>110</u> (A) <u>210.00</u>	_ (B)
	100			Drovelance Index D/A 191	
2. Carex trichocarpa	10	N	OBL		
3				Hydrophytic Vegetation Indicators:	
4				\checkmark 1 - Rapid Test for Hydrophytic Vegetation	
5				✓ 2 - Dominance Test is >50%	
6.				\checkmark 3 - Prevalence Index is ≤3.0 ¹	
7				4 - Morphological Adaptations ¹ (Provide sup	porting
·	·			data in Remarks or on a separate sheet)	porting
0	·			Problematic Hydrophytic Vegetation ¹ (Expla	ain)
9	·				
10					
	110.0	= Total Cov	er	Indicators of hydric soil and wetland hydrology	must
Woody Vine Stratum (Plot size: 30' radius)					
1				Hydrophytic	
2				Vegetation	
				Present? Yes <u>√</u> No	
	0	= Total Cov	er		
Remarks: (Include photo numbers here or on a separate s	sheet.)				
Ruderal wet meadow present along ag field edge.					

Profile Desc	cription: (Describe	to the dept	th needed to docur	nent the i	indicator	or confirn	n the absence of in	dicators.)	
Depth	Matrix	Redo	x Feature	S					
(inches)	Color (moist)	%	<u>Color (moist)</u> % <u>Type¹</u> Loc ²			Loc ²	Texture	Remarks	
0-24	N 2.5/0	100					MUCK		
		_							
. <u></u>					·		<u> </u>		
					·				
<u></u>					·				
¹ Type: C=C	oncentration, D=Dep	oletion, RM=	Reduced Matrix, MS	S=Masked	d Sand Gra	ains.	² Location	: PL=Pore Lining, M=Matrix	Χ.
Hydric Soil	Indicators:						Indicators for F	Problematic Hydric Soils':	
✓ Histosol	(A1)		Sandy (Gleyed Ma	atrix (S4)		Coast Prairi	e Redox (A16)	
Histic Ep	pipedon (A2)		— Sandy F	Redox (S5	5)		— Dark Surface (S7)		
Black Hi	ISTIC (A3)		Stripped	d Matrix (S	56)		Iron-Manga	nese Masses (F12)	
Hydroge	en Suitide (A4)		Loamy I		neral (F1)		Very Shallo	w Dark Surface (TE12)	
Stratified	u Layers (AS)		Loany (d Matrix (auix (FZ) F3)		Other (Explain in Remarks)		
2 cm Mc	d Relow Dark Surfac	ο (Δ11)	Depiete Redox [Dark Surfa	n 5) ace (F6)				
Thick Da	ark Surface (A12)		Deplete	d Dark Su	urface (F7)		³ Indicators of hydrophytic vegetation and		
Sandy N	Aucky Mineral (S1)		Redox Depressions (F8)				wetland hydrology must be present.		
5 cm Mu	ucky Peat or Peat (S	3)					unless disturbed or problematic.		
Restrictive	Layer (if observed)	:							
Type:									
Depth (in	ches):						Hydric Soil Pres	sent? Yes <u>√</u> No _	
Remarks:							1		
Organic soils	present throughout	profile.							

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required; check	Secondary Indicators (minimum of two required)	
	Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roo Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (Thin Muck Surface (C7) Gauge or Well Data (D9)	
Sparsely Vegetated Concave Surface (B8)	Other (Explain in Remarks)	
Field Observations:		
Surface Water Present? Yes No	Depth (inches):	
Water Table Present? Yes _ ✓ No	Depth (inches):10	
Saturation Present? Yes <u>√</u> No (includes capillary fringe)	Depth (inches): 8	etland Hydrology Present? Yes _ ✓ No
Describe Recorded Data (stream gauge, monitoring w	vell, aerial photos, previous inspections	s), if available:
Remarks:		

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05					
Applicant/Owner: KCI Technologies	State: V	Visconsin Sampling Point: P15					
Investigator(s): Scott Fuchs	Section, Township, Range: sec 05	T015N R003W					
Landform (hillslope, terrace, etc.): Plain	Local relief (concave, co	nvex, none): <u>Undulating</u>					
Slope (%): <u>0-2</u> Lat: <u>43.812797</u>	Long: <u>-90.763153</u>	Datum: WGS84					
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent	t slopes	NWI classification: <u>T3K (WWI)</u>					
Are climatic / hydrologic conditions on the site typical for this time	e of year? Yes No (If no,	explain in Remarks.)					
Are Vegetation, Soil, or Hydrology signific	cantly disturbed? Are "Normal Circu	mstances" present? Yes No					
Are Vegetation, Soil, or Hydrology natura	ally problematic? (If needed, explain	n any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes 🗸 No							

Hydrophytic Vegetation Present?	Yes 📈 No	Is the Sampled Area	
Hydric Soil Present?	Yes 🧹 No	within a Watland?	
Wetland Hydrology Present?	Yes 🖌 No	within a wetland?	
Remarks:			

Sample point recorded within a forested wetland present in the northwestern portion of the Study Area. Generally level, but gently undulating, evidence of groundwater seepage present. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. Populus tremuloides	10	Y	FAC	That Are OBL, FACW, or FAC:6 (A)
2. Acer negundo	10	Y	FAC	Total Number of Dominant
3				Species Across All Strata:6 (B)
4				
5.				That Are OBL_EACW or EAC: 100.00 (A/B)
	20.0	= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 15' radius)				Prevalence Index worksheet:
1. <u>Salix bebbiana</u>	10	Y	FACW	Total % Cover of: Multiply by:
2. Rhamnus cathartica	10	Y	FAC	OBL species <u>115</u> x 1 = <u>115</u>
3.				FACW species33 x 2 =66
4.				FAC species $30 \times 3 = 90$
5	·		·	FACU species $0 x 4 = 0$
···	20.0	- Total Cov	or	UPL species $0 \times 5 = 0$
<u>Herb Stratum</u> (Plot size: <u>5'</u> radius)		- 10101 001	CI	Column Totals: 178 (A) 271.00 (B)
1. Glyceria grandis	50	Y	OBL	
2. Angelica atropurpurea	30	Y	OBL	Prevalence Index = $B/A = 1.52$
3. Eutrochium maculatum	15	Ν	OBL	Hydrophytic Vegetation Indicators:
4. Phalaris arundinacea	10	N	FACW	1 - Rapid Test for Hydrophytic Vegetation
5. Carex retrorsa	10	Ν	OBL	\checkmark 2 - Dominance Test is >50%
6. Rudbeckia laciniata	5	Ν	FACW	\checkmark 3 - Prevalence Index is $\leq 3.0^{1}$
7. Persicaria arifolia	5	Ν	OBL	4 - Morphological Adaptations ¹ (Provide supporting
8. Calamagrostis canadensis	5	N	OBL	data in Remarks or on a separate sheet)
9. Pilea pumila	5	N	FACW	— Problematic Hydrophytic Vegetation ¹ (Explain)
10. Bidens frondosa	3	N	FACW	
	138.0	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30' radius)				be present, unless disturbed or problematic.
1				Hudronbusie
2				Vegetation
				Present? Yes √ No
Demorika, (include photo numbero haro er er e consiste d		= Total Cov	er	
Remarks: (include photo numbers here or on a separate s	sneet.)			
Sparsely wooded wet/sedge meadow/swamp.				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth	Matrix Redox Features									
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-12	N	2.5/0	100					MUCK		
12-24	Ν	2.5/0	50					MUCK	Peaty muck	
	7.5YR	2.5/3	50					MUCK		
¹ Type: C=Co	oncentratio	n. D=Depl	etion. RM=	Reduced Matrix. M	S=Masked	Sand Gra	ains.	2LC	ocation: PL=Pore Lining, M=Matrix.	
Hydric Soil I	ndicators	:	,	,				Indicators	s for Problematic Hydric Soils ³ :	
✓ Histosol	✓ Histosol (A1) Sandy Gleyed Matrix (S4)					Coast Prairie Redox (A16)				
Histic Ep	_ Histic Epipedon (A2) Sandy Redox (S5)			Dark Surface (S7)						
Black Hi	Black Histic (A3) Stripped Matrix (S6)			Iron Mongonogo Mongon (E12)						
Hydroge	_ Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1)			Iron-Manganese Masses (F12)						
Stratified	l Layers (A	5)		Loamy	Gleyed Ma	atrix (F2)		Very Shallow Dark Surface (TF12)		
2 cm Mu	ick (A10)			Deplete	d Matrix (I	F3)		Other (Explain in Remarks)		
 Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5 cm Mucky Peat or Peat (S3) 					³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.					
Restrictive L	_ayer (if ol	oserved):								
Туре:										
Depth (inc	ches):							Hydric Soi	il Present? Yes 🧹 No	
Remarks:										
Organic soils	present th	roughout s	soil profile.							

Secondary Indicators (minimum of two required)		
cks (B6) ns (B10) er Table (C2) s (C8) e on Aerial Imagery (C9) sed Plants (D1) sition (D2) st (D5)		
Yes 🧹 No		
s (C8) e on Aerial Imagery (C9) sed Plants (D1) sition (D2) st (D5) Yes No		

Project/Site: LLR Mitigation Site Addition	City/County: Monroe County	Sampling Date: 2024-10-05				
Applicant/Owner: KCI Technologies	Sta	State: Wisconsin Sampling Point: P16				
Investigator(s): Scott Fuchs	Section, Township, Range: sec	Section, Township, Range: sec 05 T015N R003W				
Landform (hillslope, terrace, etc.): Plain	Local relief (concave	Local relief (concave, convex, none): Undulating				
Slope (%): <u>0-2</u> Lat: <u>43.812300</u>	Long: <u>-90.765178</u>	Datum: WGS84				
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 percent	cent slopes	NWI classification: <u>T3K (WWI)</u>				
Are climatic / hydrologic conditions on the site typical for this t	time of year? Yes No \checkmark (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrology sig	nificantly disturbed? Are "Normal	Circumstances" present? Yes No				
Are Vegetation, Soil, or Hydrology na	turally problematic? (If needed, ea	lematic? (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map s	howing sampling point locatio	ns, transects, important features, etc.				
Ludraphytic Vegetation Drecent?						

Hydrophytic Vegetation Present?	Yes 🧹 No	Is the Sampled Area	
Hydric Soil Present?	Yes 🧹 No	within a Watland?	
Wetland Hydrology Present?	Yes 🖌 No		<u> </u>
Remarks:			

Sample point recorded within a forested wetland present in the northwestern portion of the Study Area. Generally level, but gently undulating, evidence of groundwater seepage present. An analysis of antecedent precipitation was performed with the USACE APT tool, which indicates that conditions are drier than normal for the time of year.

	Absolute	Dominant	Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>30' radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1. Ulmus americana	10	Y	FACW	That Are OBL, FACW, or FAC: 8 (A	()
2. Acer negundo	10	Y	FAC	Total Number of Dominant	
3				Species Across All Strata: 8 (B	3)
4.				· · · · · · · · · · · · · · · · · · ·	,
5				Percent of Dominant Species	
	20.0	- Total Cov			<i>и</i> р)
Sapling/Shrub Stratum (Plot size: 15' radius)		- 10101 001	CI	Prevalence Index worksheet:	
1. Salix bebbiana	10	Y	FACW	Total % Cover of: Multiply by:	
2. Salix amygdaloides	10	Y	FACW	OBL species 85 x 1 = 85	
3. Sambucus nigra	5	Y	FAC	FACW species 80 x 2 = 160	
4			·	FAC species $15 \times 3 = 45$	
5				FACU species $0 \times 4 = 0$	
···	25.0	– Total Cov	or	$UPL \text{ species } 0 \qquad x 5 = 0$	
Herb Stratum (Plot size: 5' radius)		- 10101 001	CI	$\begin{array}{c c} \hline c & c \\ c & c \\ \hline c & c \\ c & c \\ \hline c & c \\ c & c \\ \hline c & c \\ c$	(B)
1. Carex trichocarpa	50	Y	OBL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2. Impatiens capensis	20	Y	FACW	Prevalence Index = $B/A = 1.61$	
3. Phalaris arundinacea	20	Y	FACW	Hydrophytic Vegetation Indicators:	
4. Persicaria arifolia	10	N	OBL	1 - Rapid Test for Hydrophytic Vegetation	
5. Angelica atropurpurea	10	N	OBL	✓ 2 - Dominance Test is >50%	
6. Eutrochium maculatum	10	N	OBL	\checkmark 3 - Prevalence Index is ≤3.0 ¹	
7. Solidago gigantea	5	N	FACW	4 - Morphological Adaptations ¹ (Provide support	ting
8. Pilea pumila	5	N	FACW	data in Remarks or on a separate sheet)	•
9. Lycopus americanus	5	N	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)	
10.					
	135.0	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology mus	st
Woody Vine Stratum (Plot size: 30' radius)				be present, unless disturbed or problematic.	
1				Underschutig	
2.				Vegetation	
				Present? Yes √ No	
	0	= Total Cov	er		
Remarks: (Include photo numbers here or on a separate s	sneet.)				
Sparsely wooded sedge meadow. Lots of dead box elder.					l

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth		Matrix		Redo	x Feature	s				
(inches)	Color	(moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-12	Ν	2.5/0	100					MUCK		
12-24	Ν	2.5/0	50					MUCK	Peaty muck	
	7.5YR	2.5/3	50					MUCK		
			. <u> </u>							
¹ Type: C=Co	oncentratio	on, D=Depl	etion, RM	=Reduced Matrix, M	S=Masked	I Sand Gra	ains.	² Lc	ocation: PL=Pore Lining, M=Matrix.	
Hydric Soil I	Indicators	:						Indicators	s for Problematic Hydric Soils ³ :	
⊢ ✓ Histosol (A1) Sandy Gleyed Matrix				atrix (S4)		Coast Prairie Redox (A16)				
Histic Ep	Histic Epipedon (A2) Sandy Redox (S5)				— Dark Surface (S7)					
Black Hi	Black Histic (A3) Stripped Matrix (S6)					Iron-Manganese Masses (F12)				
Hydroge	en Sulfide (A4)		Loamy	Mucky Mir	neral (F1)		Voru Shallow Dark Surface (TE12)		
Stratified	d Layers (A	\5)		Loamy	Gleyed Ma	atrix (F2)		Very Shallow Dark Surface (TF12)		
2 cm Mu	ick (A10)			Deplete	d Matrix (F3)		Other (Explain in Remarks)		
Depleted	d Below Da	ark Surface	e (A11)	Redox	Dark Surfa	ice (F6)		3		
Thick Da	ark Surface	e (A12)		Deplete	d Dark Su	rface (F7)		³ Indicators of hydrophytic vegetation and		
Sandy M	lucky Mine	eral (S1)		Redox	Depressio	ns (F8)		wetland hydrology must be present,		
5 cm Mu	icky Peat c	or Peat (S3	5)					unles	s disturbed or problematic.	
Restrictive L	Layer (if o	bserved):								
Туре:										
Depth (inc	ches):							Hydric Soi	il Present? Yes∕ No	
Remarks:										
Organic soils	present th	roughout p	orofile.							

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that appl	/) Secondary Indicators (minimum of two required)
	d Leaves (B9)
Sparsely Vegetated Concave Surface (B8) Other (Expla	n in Remarks)
Field Observations:	
Surface Water Present? Yes No Depth (inch	es):
Water Table Present? Yes _ ✓ No Depth (inch	es): <u>8</u>
Saturation Present? Yes <u>√</u> No <u>Depth</u> (inch (includes capillary fringe)	es):6 Wetland Hydrology Present? Yes _√_ No
Describe Recorded Data (stream gauge, monitoring well, aerial ph	ptos, previous inspections), if available:
Remarks:	

Project/Site: LLR Mitigation Site Addition	Monroe C	County Sampling Date: 2024-10-05							
Applicant/Owner: KCI Technologies		State: Wisconsin Sampling Point: P17							
Investigator(s): Scott Fuchs	:	Section, Tov	wnship, Ra	nge: sec 05 T015N R003W					
Landform (hillslope, terrace, etc.): Plain		L	ocal relief	(concave, convex, none): Undulating					
Slope (%): 0-2 Lat: 43.811430	65162	Datum: WGS84							
Soil Map Unit Name: Palms and Houghton mucks, 0 to 1 perc		NWI classification: T3K (WWI)							
Are climatic / hydrologic conditions on the site typical for this t	No	✓ (If no, explain in Remarks.)							
Are Vegetation . Soil . or Hydrology sig	nificantly	disturbed?	Are "	Mormal Circumstances" present? Yes ✓ No					
Are Vegetation Soil or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)									
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Yes No	e Sampled in a Wetlar	Area nd? Yes_√_ No							
Shrub carr portions of sparsely wooded wetland area beyond analysis of antecedent precipitation was performed with the l	l ag field. JSACE Al	Sample poir PT tool, whi	nt recorded ch indicates	within a groundwater seep that feeds a small spring. An s that conditions are drier than normal for the time of year.					
VEGETATION – Use scientific names of plants.									
Tree Stratum (Plot size: 30' radius)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:					
1. Acer negundo	10	Y	FAC	That Are OBL, FACW, or FAC: ⁶ (A)					
2. Prunus serotina	10	Y	FACU	Total Number of Dominant					
3				Species Across All Strata: 7 (B)					
4				Percent of Dominant Species					
5				That Are OBL, FACW, or FAC: <u>85.71</u> (A/B)					
Sapling/Shrub Stratum (Plot size: 15' radius)	20.0	= Total Cov	er	Prevalence Index worksheet:					
1. Alnus incana	30	Y	FACW	Total % Cover of: Multiply by:					
2. Sambucus nigra	10	Y	FAC	OBL species x 1 =55					
3				FACW species <u>113</u> x 2 = <u>226</u>					
4				FAC species X 3 = 105					
5				FACU species20 x 4 =80					
	40.0	= Total Cov	er	UPL species X 5 = 0					
Herb Stratum (Plot size: <u>5 radius</u>)	50	V		Column Totals: <u>223</u> (A) <u>466.00</u> (B)					
2 Pilea numila	30	 Y	FACW	Prevalence Index = $B/A = 2.09$					
3 Impatiens capensis	30	Y	FACW	Hydrophytic Vegetation Indicators:					
A Rudbeckia laciniata	10	<u> </u>	FACW	1 - Rapid Test for Hydrophytic Vegetation					
5 Glechoma hederacea	10	N	FACU	$\sqrt{2}$ - Dominance Test is >50%					
6. Myosoton aquaticum	10	N	FACW	$\sqrt{3}$ - Prevalence Index is $\leq 3.0^1$					
7. Angelica atropurpurea	5	N	OBL	4 - Morphological Adaptations ¹ (Provide supporting					
8. Cryptotaenia canadensis	5	N	FAC	data in Remarks or on a separate sheet)					
9. Amphicarpaea bracteata	5	N	FAC	— Problematic Hydrophytic Vegetation ¹ (Explain)					
10. Solanum dulcamara	5	Ν	FAC						
Woody Vine Stratum (Plot size: 30' radius)	163.0	= Total Cov	er	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.					
1				Hydrophytic					
2				Vegetation Present? Yes √ No					
	0	= Total Cov	er						

Remarks: (Include photo numbers here or on a separate sheet.)

Shrub carr vegetation present.

Profile Desc	ription: (I	Describe t	o the dept	h needed to docur	ment the i	ndicator	or confirm	the absence	e of indicators.)	
Depth (inch ac)	Calar	Matrix		Redo	x Feature	S Trun a ¹	1 2	Tautura	Demedia	
(inches)			<u> % </u>	Color (moist)	%	Type	LOC	Texture	Remarks	
0-16	N	2.5/0	100					MUCK	·	
16-24	N	2.5/0	70					MUCK	Peaty muck	
	7.5YR	2.5/3	30					MUCK		
					<u> </u>					
¹ Type: $C=C_0$		n. D=Depl	etion. RM=I	Reduced Matrix, M	S=Maskec	Sand Gra	ains.	21 C	cation: PI =Pore ining, M=Matrix,	
Hydric Soil	Indicators	:						Indicator	s for Problematic Hydric Soils ³ :	
✓ Histosol	✓ Histosol (A1)			Sandy (Gleyed Ma	atrix (S4)		Coast Prairie Redox (A16)		
Histic Ep	Histic Epipedon (A2)		— Sandy F	— Sandy Redox (S5)				— Dark Surface (S7)		
Black Histic (A3)		Stripped Matrix (S6)				Iron-Manganese Masses (F12)				
Hydroge	Hydrogen Sulfide (A4)		Loamy Mucky Mineral (F1)				Very Shallow Dark Surface (TF12)			
2 cm Mu	ick (A10)	5)		Depleted Matrix (F2)				Other (Explain in Remarks)		
Depleted	d Below Da	rk Surface	e (A11)	Redox Dark Surface (F6)						
Thick Da	ark Surface	(A12)	· · ·	Depleted Dark Surface (F7)				³ Indicators of hydrophytic vegetation and		
Sandy M	lucky Mine	ral (S1)		Redox Depressions (F8)				wetland hydrology must be present,		
5 cm Mu	icky Peat o	r Peat (S3	5)					unles	s disturbed or problematic.	
Restrictive I	_ayer (if of	oserved):								
Type:										
Depth (Ind	cnes):							Hydric Sol	II Present? Yes No	
Remarks:	present th	roughout s	oil profile							
Organic sons	present th	ougnout a	on prome.							

Wetland Hydrology Indicators:			
Primary Indicators (minimum of one is required; check all that apply)		dicators (minimum of two required)	
		ioil Cracks (B6) Patterns (B10) on Water Table (C2) 3urrows (C8) n Visible on Aerial Imagery (C9) or Stressed Plants (D1) hic Position (D2) tral Test (D5)	
Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)			
Field Observations:			
Surface Water Present? Yes No Depth (inches):			
Water Table Present? Yes No Depth (inches):	0		
Saturation Present? Yes _ ✓ No Depth (inches): (includes capillary fringe)	0 Wetland Hydrology Pres	_ Wetland Hydrology Present? Yes No	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:			
Remarks:			
Groundwater seepage conspicuous.			

ASSURED WETLAND DELINEATION REPORT

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix D | Site Photographs

Solutions for people, projects, and ecological resources.

Photo #1 Sample point P01

Photo #2 Sample point P01

Photo #3 Sample point P01

Photo #5 Sample point P02

Photo Missing

Photo #4 Sample point P01

Photo #6 Sample point P02

Photo #7 Sample point P02

Photo #8 Sample point P02

Photo #9 Sample point P03

Photo #10 Sample point P03

Photo #11 Sample point P03

Photo #12 Sample point P03

Assured Wetland Delineation Monroe County, Wisconsin Heartland Project #: 20241365

Photo #13 Sample point P04

Photo #14 Sample point P04

Photo #15 Sample point P04

Photo #17 Sample point P05

Photo #16 Sample point P04

Photo #18 Sample point P05

Photo #19 Sample point P05

Photo #20 Sample point P05

Photo #21 Sample point P06

Photo #23 Sample point P06

Photo #22 Sample point P06

Photo #24 Sample point P06

Photo #25 Sample point P07

Photo #26 Sample point P07

Photo #27 Sample point P07

Photo #29 Sample point P08

Photo #28 Sample point P07

Photo #30 Sample point P08

Assured Wetland Delineation Monroe County, Wisconsin Heartland Project #: 20241365

Photo #31 Sample point P08

Photo #32 Sample point P08

Photo #33 Sample point P09

Photo #35 Sample point P09

Photo #34 Sample point P09

Photo #36 Sample point P09

Assured Wetland Delineation Monroe County, Wisconsin Heartland Project #: 20241365

Photo #37 Sample point P10

Photo #38 Sample point P10

Photo #39 Sample point P10

Photo #41 Sample point P11

Photo #40 Sample point P10

Photo #42 Sample point P11

Photo #43 Sample point P11

Photo #45 Sample point P12

Photo #47 Sample point P12

Photo #44 Sample point P11

Photo #46 Sample point P12

Photo #48 Sample point P12

Photo #49 Sample point P13

Photo #50 Sample point P13

Photo #51 Sample point P13

Photo #53 Sample point P14

Photo #52 Sample point P13

Photo #54 Sample point P14

Photo #55 Sample point P14

Photo #56 Sample point P14

Photo #57 Sample point P15

Photo #59 Sample point P15

Photo #58 Sample point P15

Photo #60 Sample point P15

Photo #61 Sample point P16

Photo #62 Sample point P16

Photo #63 Sample point P16

Photo #65 Sample point P17

Photo #64 Sample point P16

Photo #66 Sample point P17

Photo #67 Sample point P17

Photo #69 Waterway WW-1

Photo #71 Waterway WW-1

Photo #68 Sample point P17

Photo #70 Waterway WW-1

Photo #72 WW-1 Drift deposits within ditch

Photo #73 WW-1 Drift deposits within ditch

Photo #75 Farmed wetland area near bend in CTH F

Photo #77 Waterway WW-2

Photo #74 Farmed wetland area near bend in CTH F

Photo #76 Farmed wetland area near bend in CTH F

Photo #78 Waterway WW-2

Photo #79 Waterway WW-2

Photo #81 Waterway WW-3 at N study area boundary

Photo #83 Waterway WW-3

Photo #80 Waterway WW-2 at N study area boundary

Photo #82 Waterway WW-3 at N study area boundary

Photo #84 Waterway WW-3

Photo #85 Waterway WW-3

Photo #86 Waterway WW-4

Photo #87 Waterway WW-4

Photo #89 Waterway WW-4

Photo #88 Waterway WW-4

Photo #90 Waterway WW-4

Photo #91 Waterway WW-4

Photo #92 Waterway WW-5

Photo #93 Waterway WW-5

Photo #94 Waterway WW-5

ASSURED WETLAND DELINEATION REPORT

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix E | Delineator Qualifications

Solutions for people, projects, and ecological resources.

Scott Fuchs Environmental Scientist

506 Springdale Street, Mount Horeb, WI 53572 <u>scott@heartlandecological.com</u> (608) 490-2450, ext. 4

Scott is a WDNR-assured wetland delineator and environmental scientist with expertise in wetland assessment and delineation, native plant communities of Wisconsin, botany, geographic information systems (GIS), and state/federal wetland regulations and permitting. Scott has been involved in the field of ecological conservation and restoration for over eight years working as a wetland delineator, environmental consultant, field restoration ecologist and crew leader, ecology research assistant, and GIS administrator. Since joining Heartland, Scott has completed tens of wetland delineations throughout Wisconsin, prepared wetland and waterway permit applications and obtained approval from the DNR and USACE, and performed vegetation and hydrology monitoring for wetland mitigation projects. Scott also provides technical support by assisting with natural area restoration planning, monitoring and management, developing GIS-based project mapping, collecting and interpreting historic aerial imagery, and performing analysis of GIS data sets. Scott implemented Heartland's current GIS workflow, which utilizes ArcGIS Pro, ArcGIS Online, sub-foot EOS Arrow GNSS receivers, and tablet devices to accurately record and view environmental data in the field. Scott achieved his professionally assured wetland delineator certification from the DNR in February 2022.

His experience includes: wetland determination and delineation, long-term vegetation and wildlife monitoring and reporting, collecting and processing monitoring well hydrology data, wetland mitigation bank viability analysis and planning, preparing state artificial and non-federal wetland exemption requests, preparing wetland and waterway permit applications, writing wetland delineation reports, rare species surveys, invasive species control, conducting prescribed burns, and invasive herbaceous, shrub, and tree removal.

Education

BS, Biology (emphasis in Ecology), University of Wisconsin - Whitewater, Whitewater, WI, 2015

Certifications and Licensing

Professionally Assured Wetland Delineator, Wisconsin Department of Natural Resources, 2022 - present

Wildlife Fire Fighter Type 2, National Wildlife Coordinating Group, Incident Management Specialists, LLC, Madison, WI, 2017

Level One Chainsaw Safety Training, Forest Industry Safety & Training Alliance, Eau Claire, WI, 2016

Certified Pesticide Applicator (Category 6), Wisconsin Department of Trade and Consumer Protection, Madison, WI, 2016

Professional Development

Critical Methods in Wetland Delineation, Continuing Education and Extension, University of Wisconsin – La Crosse, WI, 2019 - 2023

Sedges: Identification and Ecology, University of Wisconsin – Milwaukee, Field Station Workshop, Cedarburg, WI, 2022

Advanced Wetland Delineation Training, Continuing Education and Extension, University of Wisconsin – La Crosse, La Crosse, WI, 2019 Basic Wetland Delineation Training, Continuing Education and Extension, University of Wisconsin – La Crosse, La Crosse, WI, 2019

Project Experience

Energy Sector

Madison Gas and Electric, Morey Solar Field Wetland Delineation and Restoration, Dane County, WI, 2021

Assisted in the delineation of wetlands present on a 104-acre airport property, which was a proposed site for a solar field on the west side of Madison, WI. Following construction of the solar field, assisted in creating a native species planting and management plan.

SCS Engineers, Mallard Ridge and Glacier Ridge Landfill Pipelines, Walworth and Dodge Counties, WI, 2018

Performed wetland delineation along separate 1.5mile and 3.6-mile corridors passing through savanna, upland prairie, wet prairie, hardwood swamps, agricultural fields, stream crossings, and highway right-of-way. Wetland delineation was necessary for construction of methane pipelines linking to nearby regional pipelines.

 (\mathbf{H}) Solutions for people, projects, and ecological resources.

Private Sector

KSW Construction Corporation, Pink Elephant Renovation, Dane County, WI, 2023

Performed a wetland delineation, prepared an application for and obtained a general wetland disturbance permit from the WDNR for wetland impacts associated with the modernization and expansion of an existing gas station. Assisted in obtaining local project approval through annexation into the neighboring Village.

Capital Growth Buchalter, Inc., Readstown Dollar General, Vernon County, WI, 2023

Performed a wetland delineation and obtained a general wetland disturbance permit from the WDNR for construction of a Dollar General located near Readstown, WI

Harmony Valley Real Estate, Harmony Valley Farm, Vernon County, WI, 2022

Performed a wetland delineation within a 161-acre property containing organic vegetable farms fields, the Bad Axe River floodplain, old fields, woodlands, and coulees within Wisconsin's picturesque driftless area.

Nuemann Developments, Port Washington Road Subdivision, Ozaukee County, WI

Performed a wetland determination and delineation within a 50-acre agricultural field. Compiled historic information to support an approved WI Act 183 artificial wetland exemption for wetlands located on site.

1520 LLC, Port Washington Road Commercial Development, Ozaukee County, WI, 2018

Performed a wetland determination and delineation within a highly disturbed 3-acre parcel containing clayey soils that was subsequently confirmed by WI DNR wetland regulatory staff. Compiled historic information to support an approved WI Act 183 artificial wetland exemption for wetlands located on site.

TPC Wisconsin (Formerly Cherokee Country Club), TPC Wisconsin Golf Course Improvements, Dane County, WI, 2020

Performed a wetland delineation throughout the 153-acre golf course. Assisted senior Heartland staff in preparing and obtaining an individual permit application for wetland and waterway disturbance associated with course improvements. Assisted the Heartland team in planning ecological restoration of the course's 36 acres of wetland. Prepared GIS tools to guide ecological restoration crews in the field.

KL Engineering/Dane County Parks, Phase 2 Lower Yahara River Trail, Dane County, WI

Assisted senior Heartland staff in performing a wetland delineation along an unimproved recreational trail on the northern shore of Lake Kegonsa. Supported KL Engineering in their design of a boardwalk built on the footprint of the unimproved trail by recommending efforts to reduce impacts to wetlands. Drafted an individual wetland disturbance permit application for temporary and minor permanent impacts involved with the project. Facilitated the purchase of mitigation credits required by the permit approval to offset wetland impacts.

D'Onofrio, Kottke & Associates, Creek Crossing Development, Dane County, WI, 2021

Assisted residential developer and engineering firm by writing an application for, and obtaining, an individual permit needed for road crossings, culvert placement, and pedestrian bridge associated with a 32-acre residential development.

Epic, Epic Campus Expansion, Dane County, WI

Assisted in writing application materials for, and obtaining and individual permit for impacts to wetlands associated with an expansion of the Epic campus. Developed practicable alternatives analysis to minimize wetland impacts to the greatest extent practicable.

Bear Development, Barnes Prairie Mitigation Bank Site, Kenosha County, WI, 2018

Performed collection and processing of data from 46 hydrology monitoring wells located throughout a 230-acre agricultural field. Analyzed data to determine if wetland hydrology was present in the location of the sampling wells. Produced graphical representations of precipitation and ground water level data.

Spartan Land Investments, Kreyer Creek Compensatory Wetland Mitigation Bank Site, Monroe County, WI, 2019

Conducted quantitative vegetation monitoring of this 200+ acre compensatory wetland mitigation site. Vegetation monitoring was completed to assess progression of the site towards meeting regulatory performance standards.

Vegetation monitoring including sample plot surveys and timed meander surveys. The results were summarized to assess the various performance metrics including florist quality assessments and diversity, invasive and noninvasive species relative cover, and prevalence indices of hydrophytic vegetation.

The vegetation data and results were incorporate into the annual monitoring report required by the U.S. Army Corps of Engineers and Interagency Review Team.

Nantucket Conservation Foundation, Head of the Plains, Nantucket County, MA

Conducted vegetation monitoring, small mammal live-trapping, and insect pitfall trapping to collect data that is being used in a longitudinal study exploring the viability of different ecological management and restoration techniques in sandplain grassland habitat, a globally rare ecological community.

Installed acoustic bat monitoring devices and regularly downloaded the recorded data to determine the presence of different bat species. Assisted in mist-netting and radio telemetry tracking of federally threatened northern long-eared bats. Performed emergence counts of bat roosting locations discovered via radio telemetry tracking.

Nantucket Conservation Foundation, Coatue, Nantucket County, MA

Conducted vegetation monitoring for a graduate level study investigating the effects of cormorant nesting on plant communities in remote sand dune/shoal habitats.

Nantucket Conservation Foundation, Head of the Plains, Sanford Farm / Ram Pasture, Madequecham Valley, Nantucket County, MA

Performed cut-and-treat management of invasive Phragmites in salt marsh habitats.

Black Bear Enterprises, Big Hollow Compensatory Wetland Mitigation Bank, Sauk County, WI, 2019

Assisted with the development of a Compensation Site Plan (CSP) for a nearly 200-acre compensatory wetland mitigation bank site as part of the Mitigation Banking Instrument (MBI). Completed various technical components of the CSP including assessment of the overall site characteristics and history, vegetation restoration plan, development of regulatory performance standards, and monitoring and management plan.

Completed all site mapping and plans utilizing GIS.

Government Sector

Wisconsin Department of Natural Resources, Soik ILF Mitigation Site, Portage County, WI, 2019-present

Performed collection and processing of data from 14 monitoring wells present on a 60-acre ILF mitigation site. Performed analysis of hydrology data to determine if the site's wetland hydrology standard was met. Summarized results and created graphical representations of hydrology monitoring for end-of-year reporting to the WDNR and USACE.

Established quantitative vegetation monitoring plots and performed vegetation monitoring of a 60-acre wetland mitigation bank in Wisconsin's central sands region. Vegetation monitoring was completed to assess progression of the site towards meeting regulatory performance standards. Vegetation monitoring including sample plot surveys and timed meander surveys. The results were summarized to assess the various performance metrics across a variety of wetland vegetative community and compensation types.

Wisconsin Department of Natural Resources, Evansville ILF Mitigation Site, Rock County, WI, 2020-present

Performed baseline hydrology monitoring of a proposed wetland mitigation site to guide restoration activities. Performed analysis of historic aerial imagery to determine the location and extent of drain tile within the proposed mitigation site. Following ditch filling and tile breaking associated with the restoration project, performed monitoring and analysis of hydrology data collected from 12 on-site hydrology monitoring wells. Summarized results and created graphical representations of hydrology monitoring for end-of-year reporting to the WDNR and USACE.

Performed collection and processing of data from 9 hydrology monitoring wells within agricultural fields, disturbed wet meadow, and shrub-carr communities across a 40-acre site. Analyzed data to determine if wetland hydrology was present in the location of the sampling wells and to compile baseline information prior to wetland restoration work. Produced graphical representations of precipitation and ground water level data.

Transportation Sector

Lynch & Associates, South 76th Street Improvement, Milwaukee County, WI, 2023

Performed a wetland delineation along a 1.5-mile length of the South 76th Street right-of-way. Documented wetland communities in the field, created wetland delineation and community map figures, quantified wetland community impacts suitable for WisDOT mitigation purposes.

City of Verona/Epic/AECOM, U.S. Highway 18/151 Improvement, Dane County, WI, 2023

Performed rare species surveys for both state and federally listed threatened/endangered plant species along the right-of-way of USH 18/151, Dairy Ridge Road, and Country View Road adjacent to Epic's Verona campus. Performed wetland community and vegetative quality field assessments within wetlands adjacent to the Sugar River to support permitting efforts associated with the construction of a new access road to the Epic campus off of USH 18/151. Produced map figures and other GIS products to quantify proposed wetland impacts to different wetland communities. Provided wetland permitting support to the project engineer, AECOM.

Dane County Highway Department, County Highway A Improvement, Dane County, WI, 2022

Performed a wetland delineation along a 6.6-mile length of the County Highway A right-of-way between Oregon and Stoughton, WI.

Dane County Highway Department, County Highway J Improvement, Dane County, WI, 2022

Performed a wetland delineation along a 1.2-mile length of the County Highway J right-of-way near Pine Bluff, WI.

ASSURED WETLAND DELINEATION REPORT

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix F | Off-Site Analysis

Solutions for people, projects, and ecological resources.

Heartland

TABLE A1

Wetland Hydrology from Aerial Imagery - Recording Form*

Project Name: LLR Mitigation Site Addition Investigator: Scott Fuchs

Date: 10/3/2024 Legal Description (T, R, S): T15N, R3W, S05-06 County: Monroe

Summary Table

			Image Interpretation(s)						
Date Image	Image Source	Climate Condition	See O	ffsite Analysis Refer	<mark>ence</mark> Image figure fo	or outlines of Areas	L and 2		
Taken		(wet, dry, normal)	Area: 1	Area: 2					
July 1993	FSA Slide	Wet	WS/SS/AP	AP/NC					
July 1994	FSA Slide	Normal	WS/AP	Mowed?/AP/NC					
Aug. 1995	FSA Slide	Dry	WS/AP/NC	WS/NC					
July 1996	FSA Slide	Dry	WS-	AP/NC					
July 1998	FSA Slide	Wet	DO	AP/NC					
July 1999	FSA Slide	Normal	DO-	Mowed?/AP/NC					
July 2000	FSA Slide	Normal	CS/SS	NV					
July 2001	FSA Slide	Wet	NC	WS/NC					
June 2002	FSA Slide	Normal	CS/DO/SS	WS/NC					
2004-07-08	NAIP	Wet	CS/DO/SS	NV					
2005-06-18	NAIP	Dry	NV/NSS	AP/NC					
2006-07-15	NAIP	Normal	cs	ws					
2008-07-09	NAIP	Wet	SS/WS-/NC	SS					
2010-08-27	NAIP	Normal	CS/DO/SS	CS/SS					
2013-08-13	NAIP	Normal	DO/AP	WS-					
2015-10-07	NAIP	Normal	CS/DO	cs/ws					
2017-07-04	NAIP	Normal	SS	WS/SS					
2018-09-09	NAIP	Normal	cs	cs/ws					
2020-09-05	NAIP	Normal	WS/CS/DO	cs/ws					
2022-08-31	NAIP	Normal	WS/NC	AP/NC					
	Normal Climate Condition		Area: 1	Area: 2					
	Number		12	12					
	Numbe	er with wet signatures	12	11					
	Percent with wet signatures		100%	92%					

Кеу								
WS - Wetland Signature		SS - Soil Wetness Signature	CS - Crop Stress					
NC - Not Cropped		AP - Altered Pattern	NV - Normal Vegetative Cover					
DO - Drowned Out		SW - Standing Water	NSS - No Soil Wetness Signature					
Other labels or comments:	1996 and 1997 images	were missing their month in the FSA catalog. July w photos being taken in	as chosen as default month for 1996 and 1997 due to the the majority of FSA July for the PLSS section.					

* Images that were taken after the 20th of their respective month were evaluated under the following month's table to account for otherwise missing precitation data from the start of the month to the date the image was recorded.

• Use above key to label image interpretations. It is imperative that the reviewer read and understand the guidance associated with the use of these labels. If alternate labels are used, indicate in box above.

• If less than five (5) images taken during normal climate conditions are available, use an equal number of images taken during wet and dry climate conditions and use as many images as you have available. Describe the results using this methodology in your report.

* Source: http://www.bwsr.state.mn.us/wetlands/delineation/Guidance for Offsite Hydrology and Wetland Determinations.pdf

Heartland

Field data sheet reference (if applicable):

Wetland Determination from Aerial Imagery - Recording Form*

Project Name: LLR Mitigation Site Addition

Investigator: Scott Fuchs

Date: 10/3/2024 Legal Description (T, R, S): T15N, R3W, S05-06

County: Monroe

Use the decision matrix below to create Table A2

Hydric Soils Present? ¹	Identified on NWI or WWI? ²	Percent with Wet Signatures from TABLE A1	Field Verification Required? ³	Wetland?
Yes	Yes	>50%	No	Yes
Yes	Yes	30-50%	No	Yes
Yes	Yes	<30%	Yes	Yes, if other hydrology indicators are present
Yes	No	>50%	No	Yes
Yes	No	30-50%	Yes	Yes, if other hydrology indicators are present
Yes	No	<30%	No	No
No	Yes	>50%	No	Yes
No	Yes	30-50%	No	Yes
No	Yes	<30%	No	No
No	No	>50%	Yes	Yes, if other hydrology indicators are present
No	No	30-50%	Yes	Yes, if other hydrology indicators are present
No	No	<30%	No	No

¹ The presence of hydric soils can be determined from the "Hydric Rating by Map Unit Feature" under "Land Classifications" from the Web Soil Survey. "Not Hydric" is the only category considered to not have hydric soils. Field sampling for the presence/absence of hydric soil indicators can be used in lieu of the hydric rating if appropriately documented by providing completed field data sheets.

² At minimum, the most updated NWI data available for the area must be reviewed for this step. Any and all other local or regional wetland maps that are publically available should be reviewed.

³ Area should be reviewed in the field for the presence/absence of wetland hydrology indicators per the applicable 87 Manual Regional Supplement, including the D2 indicator (geomorphic position).

TABLE A2

Area	Hydric Soils Present? ¹	Identified on NWI or WWI?	Percent with Wet Signatures from TABLE A1	Other Hydrology Indicators Present? ¹	Wetland?
1	Yes (Mapped) Yes (Field Verified)	No	100%	Yes	Yes
2	Yes (Mapped) Yes (Field Verified)	Yes (Partially)	92%	Yes	Yes

¹ Answer "N/A" if field verification is not required and was not conducted.

June Analysis

	Monthly Rainfall in Inches ¹							
Date	March	Weighted Precip	April	Weighted Precip	Мау	Weighted Precip	Weighted Sum	Relative Wetness
June 2002	2.39	3	4.65	6	1.34	3	12	Normal
2005-06-20	1.66	2	2.15	2	1.97	3	7	Dry
30% chance less than**	1.23		2.44		3.24			
30 Year Average**	1.75		3.52		4.63			
30% chance more than**	2.09		4.19		5.50			

Sparta Weather Station

30-Year Precipitation Data (1993-2022) from NOAA Website

http://agacis.rcc-acis.org/

July Analysis

Date	April	Weighted Precip	Мау	Weighted Precip	June	Weighted Precip	Weighted Sum	Relative Wetness
July 1993	3.11	2	6.76	6	9.59	9	17	Wet
July 1994	6.99	3	1.96	2	4.35	6	11	Normal
July 1996	2.22	1	1.58	2	6.29	6	9	Dry
July 1998	2.93	2	4.92	4	10.42	9	15	Wet
July 1999	4.84	3	6.44	6	2.21	3	12	Normal
July 2000	2.13	1	4.78	4	10.11	9	14	Normal
July 2001	4.08	2	5.67	6	7.42	9	17	Wet
2004-07-08	1.84	1	10.08	6	9.84	9	16	Wet
2006-07-15	5.62	3	6.62	6	1.10	3	12	Normal
2008-07-09	6.38	3	3.55	4	7.65	9	16	Wet
2017-07-04	3.88	2	5.29	4	6.36	6	12	Normal
30% chance less than**	2.44		3.24		3.91			
30 Year Average**	3.52		4.63		5.62			
30% chance more than**	4.19		5.50		6.68			

Sparta Weather Station

30-Year Precipitation Data (1993-2022) from NOAA Website

http://agacis.rcc-acis.org/

August Analysis

		Monthly Rainfall in Inches ¹						
Date	Мау	Weighted Precip	June	Weighted Precip	July	Weighted Precip	Weighted Sum	Relative Wetness
Aug. 1995	3.23	1	1.85	2	2.54	3	6	Dry
2013-08-13	9.25	3	6.06	4	1.30	3	10	Normal
30% chance less than**	3.24		3.91		2.67			
30 Year Average**	4.63		5.62		4.06			
30% chance more than**	5.50		6.68		4.87			

Sparta Weather Station

30-Year Precipitation Data (1993-2022) from NOAA Website http://agacis.rcc-acis.org/

September Analysis

Date	June	Weighted Precip	July	Weighted Precip	August	Weighted Precip	Weighted Sum	Relative Wetness
2010-08-27	5.79	2	8.29	6	4.31	6	14	Normal
2018-09-09	3.66	1	2.46	2	9.94	9	12	Normal
2020-09-05	6.69	3	3.00	4	3.39	6	13	Normal
2022-08-31	8.44	3	3.37	4	4.52	6	13	Normal
30% chance less than**	3.91		2.67		3.07			
30 Year Average**	5.62		4.06		4.52			
30% chance more than**	6.68		4.87		5.40			

Sparta Weather Station

30-Year Precipitation Data (1993-2022) from NOAA Website http://agacis.rcc-acis.org/

October Analysis

Data	luby	Weighted	August	Weighted	Sontombor	Weighted	Weighted	Relative
Date	July	Precip	August	Precip	September	Precip	Sum	Wetness
2015-10-07	3.47	2	3.03	2	2.99	6	10	Normal
30% chance less than**	2.67		3.07		1.95			
30 Year Average**	4.06		4.52		3.41			
30% chance more than**	4.87		5.40		4.15			

Sparta Weather Station

30-Year Precipitation Data (1993-2022) from NOAA Website

http://agacis.rcc-acis.org/

July 1994: Normal

August 1995: Dry

July 1998: Wet

July 1999: Normal

July 2000: Normal

July 2001: Wet

June 2002: Normal

ASSURED WETLAND DELINEATION REPORT

KCI Technologies, Inc. Little La Crosse River Mitigation Site Addition Project #:20241365 December 2, 2024

Appendix G | Previous Wetland Mapping

Solutions for people, projects, and ecological resources.

	Study Area (64.75 ac)
2	Monroe Co 2' Contours
_	Culverts

Waterways

C

- Drainage Features / Tile Outlets
- Sield Delineated Wetlands (23.63 ac)
 - > Wetland Fill ca 2020/2021 (0.43 ac)

Sample Points

- O Upland
- O Wetland

Monitoring Well Locations (Sp 2023 Data)

0

- Met Wetland Hydrology
- Borderline Wetland Hydrology
- Did Not Meet Wetland Hydrology

2022 NAIP Monroe Co, HEG LRR: MW

Figure Created: 7/10/2023

ISO 9001:2015 CERTIFIED

ENGINEERS • PLANNERS • SCIENTISTS • CONSTRUCTION MANAGERS 300 2nd St North, Suite 350 • La Crosse, WI 54601 • Phone 608-790-9634

December 23, 2022

Received on 23 December 2022 Stevens Point Field Office

U.S. Army Corps of Engineers – Regulatory Branch 180 5th St. East St. Paul, MN 55101 USACE_Requests_WI@usace.army.mil

Subject: Little La Crosse River Headwaters Site - Stream and Wetland Mitigation Bank Prospectus, Monroe County, Wisconsin

Dear USACE Project Manager:

KCI Technologies, Inc. is submitting the attached prospectus for your review in support of preliminary approval for the development of a mitigation bank at the Little La Crosse River Headwaters Restoration Site. The proposed mitigation bank will produce both stream and wetland mitigation credits for sale within the Upper Mississippi – Black Root Service Area (HUC-070400). The site is located in Monroe County within the La Crosse-Pine Rivers (HUC-07040006) watershed.

If you have any questions or concerns, please contact me at 608-790-9634 or Joe.Pfeiffer@kci.com.

Sincerely

Joseph Pfeiffer, SPWS Vice President

Little La Crosse River Headwaters Restoration Site Prospectus

1. <u>Owner and Agent.</u> Identify the bank sponsor and any consultants or experts to be involved in design of the compensation site.

KCI Technologies Inc. (KCI) will be the sponsor of the compensation site. The site will be owned by KCI Environmental Technologies and Construction Inc. (ETC), a wholly owned subsidiary of KCI. A conservation easement will be placed on the property in perpetuity to be held by the Wisconsin Department of Natural Resources. KCI will be the project designer/engineer and will provide assessment, design, monitoring, and management services. ETC will provide construction services for the restoration of the site.

2. **Objectives.** Describe the specific objectives(s) of the proposed mitigation bank or in lieu fee program.

The Little La Crosse River Headwaters Restoration Site (LRHRS) is composed of actively row cropped fields. Based on historical aerial photographs, this wetland system was substantially modified for agricultural production prior to the 1939 aerial obtained for the site. The 43.9-acre site consists of 32.89 acres of agricultural field, 9.13 acres of conserved land in a riparian buffer along the Little La Crosse River, and 1.88 acres of degraded shrub swamp wetlands. The site has been hydrologically modified through the re-direction of water, ditching, and installation of tile drains. The site contains two supporting tributaries to the Little La Crosse River, which bisects the site, that were ditched and straightened prior to 1939. The entire site is within the 100-year floodplain of the Little La Crosse River.

The primary impacts to the site stem from anthropogenic modifications (ditched, tile-drained, and plowed) to enable agricultural production, denuding wetland function.

Restoration objectives include:

- Re-establish a functioning stream/wetland complex that complements the adjacent DNR owned fisheries conservation easement on the Little La Crosse River.
- Increase functions of the existing wetlands on the site.
- Provide water quality improvements for the contributing drainages.

The site is situated within the 704000 (Upper Mississippi-Black Root) Watershed Cataloging Unit (6-digit HUC), more specifically 70400006 (La Crosse - Pine) (8-digit HUC) and the Western Coulees and Ridges Ecological Landscape.

The Wisconsin Wetland Conservation Trust Comprehensive Planning Framework (CPF) identifies two goals/objectives for this HUC-8 (70400006); Restore and enhance Wooded Swamps (Hardwood or Coniferous), Floodplain Forests, Sedge Meadows and Fresh Wet Meadows and preserve Southern Sedge Meadow, Floodplain Forest, White Pine-Red Maple, Wet Prairie, Wet-Mesic Prairie, Southern Tamarack Swamp, Bog Relict, Northern Sedge Meadow, Ephemeral Pond, and Calcareous Fen.

This project will address the goals of the CPF by;

- Restoring a large expanse of Wooded Swamp, Shrub Carr wetland, and Sedge Meadow.
- Restoring two tributaries to the Little La Crosse River to re-establish its hydrologic connectivity to the restored wetlands.
- Replacing wetland types that have sustained the greatest estimated losses; Sedge Meadow (67%), Shallow Open Water (44%), Shrub Swamp (43%), and Hardwood Swamp (34%), in or adjacent to mapped potentially restorable wetland locations within the HUC-6 service area.

The objectives and goals described above will be achieved through the disabling of all drain tile, removing ditching, restoring the planform, profile, and cross-section of two tributaries to the Little La Crosse River, re-establishing historic drainage patterns, re-establishing microtopography, and re-vegetating with native species to support the targeted ecological community types.

The successful achievement of the objectives will result in the re-establishment of 5.17 acres of shrub swamp; the re-habilitation of 4.92 acres of wooded swamp, 10.79 acres of shrub swamp, and 5.71 acres of sedge meadow; and the re-establishment of 7.12 acres of buffer, generating 23.33 wetland credits per the summary table below.

		Wetland	1		Wetland	l				Non-	Si	ite
Habitat	Re-	establish	ment	Re	habilitati	ion		Buffer		Wetland	Total	Total
	Acres	@ 1:1	Credits	Acres	@ .75:1	Credits	Acres	@ .25:1	Credits	Acres	Acres	Credits
Wetland	5.17	=	5.17	21.42	=	16.38	0	=	0.00	0	26.59	21.55
Wooded Swamp	0	=	0	4.92	=	3.69	0	=	0.00	0		
Shrub Carr	5.17	=	5.17	10.79	=	8.30	0	=	0.00	0		
Sedge Meadow	0	=	0	5.71	=	4.39	0	=	0.00	0		
Buffer	0	=	0	0	=	0.00	7.12	=	1.78	10.19	17.31	1.78
Mesic Forest	0	=	0	0	=	0.00	7.12	=	1.78	0		
LLR CE	0	=	0	0	=	0.00	0	=	0.00	9.13		
R/W	0	=	0	0	=	0.00	0	=	0.00	1.06		
Total	5.17	=	5.17	21.42	=	16.38	7.12	=	1.78	10.19	43.9	23.33

In addition, the project will result in the priority 1 restoration of 2,640 LF of two un-named tributaries to the Little La Crosse River yielding 1,095 functional feet of lift. (SQT project assessment worksheets attached).

	Stream	Stream	Stream	
Channel	Existing on site LF	Proposed on site LF	Functional Feet	
Identification				
Un-named Tributary - 1	835	1,587	734	
Un-named Tributary - 2	810	1,053	361	
Total	1,645	2,640	1,095	

3. <u>Operation.</u> How the mitigation bank or in-lieu fee program will be established and operated. Include a general description of anticipated design concept for wetland restoration, enhancement, or creation at the proposed compensation site.

The LRHRS will be restored by returning the site to a sustainable condition, re-establishing the ecological function and value lost as a result of anthropomorphic activities over the past 100 years. The site shares its northern boundary with the La Crosse River Comprehensive Fishery Area (WIDNR owned) which will be used as a reference for establishing community types, species selection, and community transitions for the project. The site was cleared, ditched, drained, and filled to support its utilization for agriculture prior to 1939. Continued improvements to affect this conversion occurred through 1976. Restoration of the site will focus on returning it to its sustainable ecological condition, through the removal of tile drains, filling drainage ditches, removal of placed fill, priority 1 restoration of two un-named tributaries to the Little La Crosse River, removal of invasive species, and re-establishment of native, wetland vegetation.

Wetlands

Ninety eight percent of the site is underlain by hydric soils (Palms and Houghton mucks) with the remaining 2%, non-hydric soil (Orion Silt Loam) occurring along the periphery of the site. The entire site is mapped as having "Wetland Indicators" on the WIDNR GIS layers. The entire site is occupied by wetlands and within the active floodplain of the Little La Crosse River. The NRCS soil survey identifies that 98% of the site is comprised of soils that exhibit a seasonal water table of 12" or less the remaining 2% is along the periphery of the site in the buffer areas. The project intends to restore 26.59 acres of wetland and establish 7.12 acres of buffer (9.13 acres of additional buffer is in an existing CE along the Little La Crosse River held by WIDNR) through Re-Establishment and Re-Habilitation as described below.

Wetland Re-Establishment – 5.17 Acres

Approximately 5.17 acres of the site has been effectively drained by the lateral effect resulting from the incision of UNTLLR-1 and 2. Hydrology was further removed from these areas via installation of tile drainage, ditching,

filling, and the channelization of UNTLLR-1 and 2 allowing for land cultivation. These areas will be restored through re-establishment of historic drainage patterns, disabling of drain tile/ditching, re-establishment of micro-topography, and re-vegetation to targeted wetland communities. The targeted wetland type within these areas is shrub carr.

Wetland Re-habilitation – 21.42 Acres

Approximately 21.42 acres on site are on the periphery of the influences of hydrologic impacts created by the ditching, draining, and stream channelization. These areas exhibit some level of hydrologic functionality but have been vegetatively altered in the past (cleared, farmed, grazed) resulting in increased presence of invasive species, primarily reed canary grass (*Phalaris arundinacea*). This condition has severely impacted flood storage capacity, nutrient processing, and wetland wildlife habitat. These areas will be re-habilitated through re-establishment of historic drainage patterns and re-vegetation to targeted wetland communities. Targeted wetland types within these areas are wooded swamp, shrub carr, and sedge meadow.

Buffer – 7.12 Acres

A buffer between the restored site and adjacent land uses will be established. These areas are primarily on the periphery of the site and will buffer the restored system from adjacent land uses. Either wetland or upland communities will be established and maintained where they do not exist. Microtopography development and replanting will be the primary means of upland restoration. This buffer is currently expected to be 50 ft in width and will be finalized during the full design process. The site shares a common boundary with the WIDNR's La Crosse River Comprehensive Fisheries Area along the northern boundary. No buffer is proposed between state-owned and maintained fisheries area and the site. WIDNR also holds a 66' wide Stream Easement along both banks of the Little La Crosse River as it transects the site. In addition, DATCP retains a CREP easement forming a 30' wide buffer around the WIDNR easement. The total of these two easements is 9.13 acres and is exclusive of the 7.12-acre periphery buffer. No work or crediting is proposed within the WIDNR/DATCP easement areas.

Streams – 1,645 Linear Feet

The Little La Crosse River (LLR) transects the site from SE to NW for 2,429 LF. This section of the LLR is under management by WIDNR and is not part of this restoration. Two un-named tributaries (UNTLLR 1 and UNTLLR 2) enter the LLR from the east and south flowing 835 LF and 810 LF respectively to their confluences with the LLR. These tributaries were ditched/straightened at some point prior to 1939 and are well incised into the landscape. Their incision impacts the hydrology of the surrounding wetland areas reducing the value of the channel as fisheries habitat. Priority 1 restoration of these tributaries (1,645 LF) will result in 2,640 LF of restored channel with an estimated functional feet score of 734 and 361 respectively.

The significant physical alterations that have occurred are the primary stressors to the stream system. The watershed has been relatively unchanged since 1939.

Stream restoration will focus on re-establishing a stable planform, profile, and cross-section of UNTLLR 1 and 2 to include instream fisheries habitat features. The channels will be restored to a C-type channel with frequent floodplain connections. The increase in floodplain connectivity will contribute to wetland hydrology within the stream's floodplain. Aquatic habitat within the channel will be improved through the installation of bed features and heterogeneous flow. The use of large woody debris within the banks and bed will be determined in the design. A wooded riparian area along the restored channel will be planted as an extension of the floodplain wetland complex. Large woody debris may be included in key locations within the floodplain as well to encourage dynamic interaction of the floodwaters and flood-borne sediment and debris with the developing floodplain. WIDNR will be consulted and coordinated with to ensure that the proposed stream restoration is consistent with the management objectives of the LLR.

Ecological Communities Vegetation Planting

Native forest and wetland plant species will be incorporated as developed in the restoration plan. Woody vegetation will be planted at a minimum density of six hundred eighty (680) stems per acre to achieve a mature forest density of two hundred ten (210) stems per acre after 10 years. Herbaceous vegetation will be seeded at

the recommended seeding rate for the species. Woody vegetation planting will be conducted during dormancy and herbaceous plantings will be conducted during the growing season. Selected species for woody and herbaceous communities will be identified from available literature on the target community types in Wisconsin, plant survey data from the reference wetland community, and nursery availability.

Potential species to be planted include:

Upland Forest – Southern Mesic Forest						
TREES						
White Oak	Quercus alba	Red Oak	Quercus rubra			
Bur Oak	Quercus macrocarpa	Shagbark Hickory	Carya ovata			
Sugar Maple	Acer saccharum	Bitternut Hickory	Carya cordiformis			
Basswood	Tila americana					
SHRUBS						
American Hazelnut	Corylus americana	Blackhaw	Viburnum prunifolium			
Witch-hazel	Hamamelis virginiana					
HERBACEOUS						
Wild Geranium	Geranium maculatum	False Solomon's-seal	Maianthemum racemosum			
Bottlebrush Grass	Elymus hystrix	Rough-Leaved Sunflower	Helianthus strumosus			
Blue Cohosh	Caulophyllum thalictroides					

Wooded Swamp – Southern Hardwood Swamp						
TREES						
Yellow Birch	Betula alleghaniensis	Red Maple	Acer rubrum			
Silver Maple	Acer saccharinum	Hackberry	Celtis occidentalis			
Swamp White Oak	Quercus bicolor	Pin Oak	Quercus palustris			
SHRUBS	•					
Elderberry	Sambucus canadensis	Common Winterberry	llex verticillata			
Silky Dogwood	Cornus amomum	Nannyberry	Viburnum lentago			
HERBACEOUS						
Canada Bluejoint Grass	Calamagrostis canadensis	Ostrich Fern	Matteucia struthiopteris			
Fowl Manna Grass	Glyceria striata	Common Wood-reed	Cinna arundinacea			
Sedge sp.	Carex sp.					

Shrub Swamp – Shrub-carr					
SHRUBS					
Red-osier Dogwood	Cornus sericea	Silky Dogwood	Cornus amomum		
Meadowsweet	Spirea alba	Willow sp.	<i>Salix</i> spp.		
Nannyberry	Viburnum lentago	Swamp Rose	Rosa palustris		
Ninebark	Physocarpus opulifolius	Elderberry	Sambucus canadensis		
Gooseberries spp.	Ribes spp.				
HERBACEOUS					
Wool Grass	Scirpus cyperinus	American Water-horehound	Lycopus americanus		
Orange Jewelweed	Impatiens capensis	Spotted Joe-Pye Weed	Eupatorium maculatum		
Boneset	Eupatorium perfoliatum	Canada Bluejoint Grass	Calamagrostis canadensis		
Bur-reed sp.	Sparganium spp.	Giant Goldenrod	Solidago gigantea		

Inland Fresh Meadow – Sedge Meadow subset					
SHRUBS					
Pussy Willow	Salix exigua	Ninebark	Physocarpus opulifolius		
Meadowsweet	Spirea alba				
HERBACEOUS	-	-	-		
Sedge spp.	Carex spp.	Skullcap	Scutellaria galericulata		
Marsh Bellflower	Campanula aparinoides	Panicled Aster	Symphyotrichum lanceolata		
Southern Blue Flag	Iris virginica	Marsh Muhly	Muhlenbergia glomerata		
Fringed Brome	Bromus ciliatus	Canada Bluejoint Grass	Calamagrostis canadensis		

4. <u>Service Area.</u> Identify the proposed service area.

This wetland mitigation site will be used to provide wetland mitigation credits for the Upper Mississippi-Black Root service area (HUC-704000). Specifically, this site is in the La Crosse-Pine River (HUC-70400006).

5. <u>Need.</u> Describe the general need for the proposed mitigation bank or in-lieu fee program.

Currently, there are no private wetland or stream banks in this service area to service future demand. The WIDNR Wisconsin Wetland Conservation Trust (In-Lieu-Fee wetland mitigation program) has 50 advanced credits in the Upper Mississippi-Black Root service area. Of those advance credits, 36.37 have been sold (12.38 have been fulfilled) leaving only a 13.63 credit capacity in the service area. In addition, this bank proposes the establishment of stream credits to accommodate anticipated regulatory requirements.

6. <u>Technical Feasibility</u>. Describe the likelihood of successfully completing the project based on the expertise of the designers, proven methods, or other information available to the Sponsor.

The design concept for the site will be to disable the drain tile network, restore historic drainage patterns, reestablish microtopography, and re-establish historic vegetative communities. These actions will result in the reestablishment of 5.17 acres of wetland and re-habilitation of 21.42 acres of farmed wetland, with 7.12 acres of peripheral buffer.

The feasibility of restoring the wetland communities on site is very high based on the following attributes:

- The site is in a landscape position that was historically occupied by wetland communities.
- The soils mapping on the site describes over 98% of the site as having groundwater between 0 and 12".

- There is a high degree of hydrologic manipulation (tile drain, diversion, channelization) that can be removed or disabled.
- The site is within the 100-year floodplain of the Little La Crosse River. Restoration of historic drainage patterns will not result in offsite impacts.
- The adjacent land uses are compatible with the restoration.
- The site shares a common boundary with the WIDNR owned La Crosse River Comprehensive Fishery Management Area.
- 7. <u>**Ownership and Long-term Management.**</u> Proposed ownership arrangements and long-term management strategy for the mitigation bank or In-Lieu fee project site.

The site is under contract for purchase by KCI Environmental Technologies and Construction Inc., a wholly owned subsidiary of the project sponsor. WIDNR owns the adjacent La Crosse River Comprehensive Fisheries Management Area and holds a Fisheries Easement on the reach of the Little La Crosse River that transects the site. The project sponsor will place a perpetual conservation easement on the property to be held by WIDNR or other land conservatorship as appropriate. WIDNR will be consulted with regarding long term management in association with the adjacent La Crosse River Comprehensive Fisheries Management Area.

8. **Qualifications.** The qualifications of the Sponsor to successfully complete the types of mitigation project proposed, including information describing any past such activities by the sponsor.

The project sponsor (KCI) offers a highly qualified staff of environmental, engineering, and construction professionals with extensive training and proven skills in all aspects of mitigation site location, plan development, design, construction, management, monitoring, and remedial action. KCI has been involved in the location, design, development, and management of over 1,600 acres of wetland and 40 miles of stream restoration and has extensive experience with both public and private clients. A detailed Statement of Qualifications is attached showing the key staff and projects.

9. <u>Ecological Suitability</u>. Describe the suitability of the site to achieve the objectives of the proposed mitigation bank, including the physical, chemical and biological characteristics of the bank site and how that site will support the planned types of aquatic resources and functions.

Objective #1 - Re-establish a functioning wetland complex that complements the adjacent State Fisheries Management Area and improves habitat complexity and connectivity within the landscape.

The site was historically a stream/wetland complex that constituted a headwaters drainage to the Little La Crosse River. The site has been anthropomorphically altered to support agriculture, denuding its functionality, but the remnant conditions offer the ability to effectively return the site to a sustainable condition, thereby restoring its lost functions and values. Removal of the altered features including tile drain, fill, ditches, and re-establishing the tributaries to the Little La Crosse River, will restore the interconnected complex of habitats on the site and restore hydrology to the system. The proposed approach, which emphasizes a return to a sustainable condition, is widely used in systems that have primarily been impacted from onsite anthropomorphic actions to great success.

Objective #2 – Restore UNTLLR tributaries.

The LLR and its un-named tributaries (UNTLLR 1 and 2) historically provided interconnectivity to the matrix of wetland communities that existed on site. The UNTLLR areas were physically altered to promote drainage in support of agricultural activities. The contributing watershed has seen minimal changes since 1939 and maintains a mixture of agriculture, forest, fields, wetland, and rural residential land uses, establishing a consistent hydrologic response from precipitation. As a result, the primary stressors on this system are the physical alterations that were made to improve drainage. The resulting channels roughly classify as artificially established "G4". The restoration would re-establish an "C4" stream, hydrologically reconnecting much of the floodplain and wetlands on the site. This will result in both increased flood attenuation, nutrient processing, and in-stream habitat.

Objective 3# - Provide water quality improvements for drainages contributing to the site prior to entering the Little La Crosse River.

The drainage from the site discharges into the Little La Crosse River, La Crosse River, and ultimately into the Mississippi River approximately 33 miles downstream. In its present state, runoff from the contributing watershed passes through the site via a series of ditches and channelized streams. In addition, runoff is drained from the site via ditches and tile drain with little or no ability to process nutrients. The proposed restoration will restore the un-named tributaries allowing regular overbank flooding. The removal of ditches and drain tile will create significant residence time in the restored wetland complex. The combination of these actions will provide increased nutrient processing throughout the site.

The LRHRS provides an excellent opportunity to re-establish a historic stream/wetland complex to the landscape. Its geomorphic position, condition, and potential for restoration success provide a high probability of achieving the goals stated for the restoration. The restoration would be complementary to the ongoing work of WIDNR in the LLR and on the adjacent Comprehensive Fisheries Management Area.

10. <u>Hydrology.</u> Provide assurance of sufficient water supply and drainage rights to sustain the proposed water regimes on the site in both the short- and long-term. Include documentation of any existing or anticipated right of the landowner or others to remove water, soil, minerals or biomass from within or adjacent to the site boundary. Also include documentation of any existing or anticipated right to drain water through, from or onto the bank site or impound water on the bank site (e.g., flowage easements, drainage easements, maintenance easements).

Wetland

Hydrology of the restored system will be supported by both groundwater and surface water inputs. The site is located in the 100-year floodplain of the Little La Crosse River, and it receives drainage from an approximately 12,000 acre watershed. The sub-watersheds to the east (466 acres) and west (300 acres) are routed either through or around the site. Re-establishing the natural flow paths onto the site will provide sufficient water to restore the system and achieve the objectives. There are no restrictions or rights to the water that would prevent the proposed restoration actions to restore effective wetland hydrology to the site. The site is geomorphically positioned such that removal of drainage improvements on site will not impact adjacent properties.

Streams

The Little La Crosse River traverses the site from SW to NE for 2,429 LF and has been relatively unaltered since 1939. Two first order un-named tributaries, entering the site from the east and south, extend 835 and 810 LF respectively across the site and drain into the LLR. The tributaries do not show any change in landscape position since 1939 but do show signs of straightening and ditching.

- LLR is a perennial 3rd order channel and a navigable water under WI statute. It is considered class 1 trout waters by WIDNR.
- UNTLLR-1 is an intermittent 1st order tributary of LLR that was straightened and ditched prior to 1939. The current on-site ditched length is 835 LF and has a contributing watershed of 278 acres.
- UNTLLR-2 is a perennial 1st order channel that originates in wet seeps on the south side of Highway F and was ditched prior to 1939. It has a contributing watershed of 123 acres, 40 acres of which are hydric soils. The channel enters the site through a pipe under Highway F. On the downstream side of the culvert, the water flows through an excavated ditch until its confluence with the LLR. The current on-site ditched length is 810 LF.

Wisconsin DNR holds a fisheries access easement along the LLR reach through the site boundary. DAPTC holds a CREP easement that buffers the DNR access easement. There are no known water easements, soil, mineral, or biomass rights over the site. The sponsor has had preliminary conversations with the WIDNR fisheries manager

regarding the proposed work. The WIDNR Manager was supportive of the wetland and stream restoration and indicated that he would need to review and approve proposed designs to verify it was consistent with the ongoing management work in their Fisheries Easement on the LLR.

11. Adjacent Landowners Contact Information.

East Side

Steven J. Schmitz, Brian Schmitz 23794 Lamplighter Road Norwalk, WI 54648

Michael J. Lydon, Brenda J. Kolbo 11531 County Highway F Cashton WI 54619

South Side

James S. & Dorcas N. Horning 11012 Mascot Ave. Cashton WI 54619

West Side

Susan K. Cooley 25181 State Highway 27 Cashton, WI 54619

State of Wisconsin Department of Transportation 3550 Mormon Coulee Rd. La Crosse, WI 54601

North Side

State of Wisconsin Department of Natural Resources 101 S Webster St. Madison, WI 53707-7921

12. Maps.

Figure 1: Site Location Map Figure 2: HUC 8 Watershed Map Figure 3: Site Watershed Map Figure 4: Land Cover Map Figure 5: Property Owner Map Figure 6: Current Conditions Map Figure 7: Surface Water Map Figure 8: USGS Topographic Map Figure 9: National Wetland Inventory Map Figure 9a: Wisconsin Potentially Restorable Wetlands Map Figure 10: Off-Site Wetland Indicators Map Figure 11: NRCS Soils Map Figure 12: Credit Types Map Figure 13: Site Elevation Map Figure 14: Community Type Map Figure 15a: Historical Imagery - 1939 Map Figure 15b: Historical Imagery - 1946 Map Figure 15c: Current Imagery - 2022 Map

13. Additional Information

- a. Site Selection Checklist
- b. FSA Offsite Wetland Determination Analysis
- c. SQT Preliminary Calculations and Catchment Assessment Worksheets
- d. Soil Pit Data
- e. Site Photographs
- f. KCI Statement of Qualifications

Figure 3: Site Watershed Little La Crosse River Headwaters Restoration Site Site Watershed ESRI Basemap Monroe County, WI Map Created: 12/15/2022

Feet 800

200

0

TECHNOLOGIES

400

DATCP Easement Property Boundary

Figure 9a: Wisconsin Potentially Restorable Wetlands Little La Crosse River Headwaters Restoration Site

WI DNR Potentially Restorable Wetlands ESRI Image Basemap Monroe County, WI Map Created: 12/15/2022

400

0

200

0

TECHNOLOGIES

200

400

800

Conservation Easement (No Credit Area)

Tributaries

Property Boundary

TECHNOLOGIES

Figure 15C: Site Watershed Little La Crosse River Headwaters Restoration Site Aerial Imagery 12-14-22

> ESRI Basemap Monroe County, WI Map Created: 12/15/2022

Additional Information

- a. Site Selection Checklist
- b. FSA Offsite Wetland Determination Analysis
- c. SQT Preliminary Calculations and Catchment Assessment Worksheets
- d. Soil Pit Data
- e. Site Photographs
- f. KCI Statement of Qualifications

Site Selection Checklist

Site Selection Criteria for Compensatory Mitigation Proposals USACE St. Paul District June 2021

Project Specific Information

Compensation Site: Little La Crosse River Headwaters Restoration Site - KCI Technologies

Corps File Number:

Date: 12/22/2022

The U.S. Army Corps of Engineers St. Paul District (Corps) developed this checklist to assist sponsors in Minnesota and Wisconsin with selecting sites that have potential to provide successful compensatory mitigation projects. 33 CFR 332.3 identifies factors the U.S. Army Corps of Engineers considers related to site selection. A compensatory mitigation site must meet the needs of the watershed and be ecologically suitable for providing the desired aquatic resource functions. In determining whether a site has potential as a compensatory mitigation project, the Corps will consider several site selection factors. Not every site is eligible or suitable for approval as a compensatory mitigation site.

The Corps intends for sponsors to use this checklist early in their site selection process, and for this checklist to transparently and consistently communicate important site selection factors. This checklist will help guide sponsors to select sites that meet the intent of 33 CFR 332, meet minimum District requirements, avoid common "fatal flaws" that can prevent approval, and have potential for agency approval. Conversely, a sponsor's use of this checklist may conclude that a site has fatal flaws or other characteristics that would prevent approval and can save the sponsor expenditure of funds for development of a prospectus on a site unlikely to receive Corps approval.

Sponsors should submit this accurately completed checklist with their Prospectus, along with any supplemental information and documentation needed to support each item. The Corps will use the provided information to evaluate ecological suitability of the selected site and determine whether the site has potential as a compensatory mitigation site. If the sponsor's project proceeds to DMBI, the sponsor should update and submit this checklist with their Mitigation Plan.

This checklist is divided into three primary categories. Category 1, Avoiding Fatal Flaws, are considered standard requirements and a project must generally meet all relevant criteria for the Corps to determine the site has potential. Categories 2 and 3, Location within the Watershed and Site Characteristics, include criteria that represent beneficial aspects (not exclusive) of a project that would likely contribute to overall ecological suitability. Generally, the more criteria selected and documented, the better the site and more likely the Corps will approve the compensatory mitigation project. However, project proponents should be aware that completion of this checklist does not guarantee approval. Ultimately the Corps will based its decisions regarding site potential and site approval on a variety of site-specific factors, IRT comments, program goals and the considerations outlined in 33 CFR 332.

1. Site Selection Criteria – Avoiding Fatal Flaws (Meeting every item in this list is generally considered a requirement for site approval)

- X If activities related to stream credit are proposed, the Catchment Assessment Form in the MN SQT demonstrates that the catchment and contributing area for the project reach is in fair or good condition and the restoration potential for the project is full or partial
 - Attached

X

X

X

X

X

X

X

X

X

X

If activities related to stream credit are proposed, site activities will result predominantly in stream restoration activities and involve no stream creation

- Two un-named tributaries will be restored.
- Activities do not consist of wetland creation except as a minor component of the project
 - Wetland creation is not a component of this restoration project.
- Site is not located within 10,000 linear feet of an airport
 - The closest airport is Sparta-Fort McCoy 10.4 miles to the NE.

Site is not located within an abandoned or active non-metallic or metallic mine, tailings basin, or sand or gravel pit

• No record of mining on site

The site has no known encumbrances (ex. easements, liens, rights of way, reserved timber, severed surface or subsurface mineral or natural gas rights, etc.) that limit or negatively affect the compensation site goals.

- DNR holds a fisheries easement on the Little La Crosse River and DATCP holds a CREP easement buffering DNR's easement. No credits are proposed in those areas.
- The landowner and sponsor are willing and able to grant a conservation easement for the entire compensatory mitigation area to include all wetland and stream resources and sufficient upland buffer area to the state of Minnesota or Wisconsin or another natural resources agency or non-profit
 - Yes
- Adjacent land uses will not compromise or limit compensatory mitigation activities, extent of compensatory mitigation site boundaries, or site success. Information about ongoing or anticipated development, infrastructure, mines and quarries, encumbrances, or other activities on adjacent properties must be considered.
 - Adjacent land current and planned use is agricultural and rural residential land use district.
 - The sponsor will design the site to be self-sustaining in the long-term, requiring no active hydrologic or structural management activities post-monitoring period (ex. significant structure maintenance, water level adjustment, riprap, etc.). An exception may include sites where active vegetative management activities are required to maintain functional lift, In such cases, the Corps may require a long-term funding mechanism
 - Site will be designed to be self-sustaining.
 - For wetlands, potential to yield at least 5 credits (MN) or 20 acres (WI)
 - The site is 43.9 acres and the anticipated credit yield is 24.
 - Sponsor is a single entity holding property rights (via in-fee ownership or easement for LLCs) over the site
 - KCI holds an option to purchase the parcel in-fee simple.

X	 Adjacent properties are free of major invasive vegetation species infestation, or existing infestations are being and would continue to be managed, such that the adjacent properties are not anticipated to pose a significant risk to site sustainability Yes
Χ	 Site is not located within the cone of depression of a high capacity well <i>None identified.</i>
Χ	 Site activities will not hydrologically affect adjacent properties (unless the adjacent property is part of the mitigation site proposal and the sponsor would place the adjacent property under conservation easement or obtain a flowage easement is obtained) <i>No impact on adjacent parcels</i>
Χ	No federal funding or easements onsite in areas where credits would be generated (NACA, WRP, etc.)
	• No current easements or federal funding in credit development areas.
X	Site's stream resource(s) is contiguous with or connected to other aquatic resources
V	• Site is connected to Little La Crosse River, La Crosse River and Mississippi River.
X	For streams, sufficient riparian area on both sides of the channel will be protected as part of the project
	• Stream corridor is primarily located in the interior of project site the entire ERA within the restored area of the site. Restored wetland/upland communities will extend from the ERA to the edge of the site increasing the protected area surrounding restored stream channels.
Χ	 Stream design does not include hard armoring and work is not limited to bank stabilization <i>Priority I restoration of both un-named tributaries</i>
Χ	 For stream reaches, site has not been logged in the past 10 years No evidence of recent logging on site
2. Site	e Selection Criteria – Location within the Watershed
X	Project will contribute to habitat connectivity, reducing fragmentation by establishing new or expanding existing wildlife corridors
	• The project will restore an agricultural exception in the otherwise wetland dominated Little La Crosse River floodplain.
	• This project will restore two un-named tributaries with the Little La Crosse River which connects to the DNR Comprehensive Fisheires Management Area to the North.
Χ	 Proposed wetlands are contiguous with or connected to other aquatic resources Project is adjacent to the Wisconsin DNR Comprehensive Fisheries Management Area and connects with other wetlands on the Little La Crosse River floodplain.
Χ	Site is identified in local, state, or federal watershed plans, environmental action plans, or landscape level wetland restoration prioritization mapping tools as important/appropriate mitigation for the watershed
	• The project is situated in the alluvial valley of the Little La Crosse River. DNR actively manages the Little La Crosse River a trout fishery, acquiring easements along the majority of channel in the valley.
X	Project is adjacent to other conserved properties
	• The property is upstream and adjacent to the Wisconsin DNR Comprehensive Fisheries Management Area to the North.

3. Site Selection Criteria – Site Characteristics

Χ	Site activities projected to result in wetland credits (not including upland buffer credits allocated as wetland) generated predominantly through wetland restoration (rehabilitation and re- establishment) activities
	• Yes – reestablishment (5.17 acres) and rehabilitation (21.42 acres) constitute 92% of the entire project acreage.
Χ	 Presence of drainage infrastructure (typically ditches or tile) that can be disabled as part of the project (considering public versus private management rights) <i>Field drains, ditching and tiles on the site.</i>
Χ	 Cultural resources are known to or may be present onsite that would be protected by this project No known cultural resources on site.
X	Site supports or would support critical habitat for state listed threatened or endangered species
	• None identified, however, an Endangered Resources Review by WDNR will be initiated.
Χ	Site supports or would support critical habitat for federally listed threatened or endangered species
	• An Endangered Resources Review by WDNR and USFWS will be initiated.
Χ	Project will provide critical habitat for species of greatest concern, as identified by wildlife management plans or other similar documents
	• An Endangered Resources Review by WDNR will be initiated.
Χ	 If site is located within 5 miles of an airport, it is not located in direct line with approach and takeoff paths and would not result in shallow marsh or deeper wetland communities The site is located 10.4 miles from the closest open airport.
X	Activities do not entail the conversion of other aquatic resources to wetlands (Exception: Removal of man-made or man-altered features for the purpose of returning historic aquatic resources) • Site is currently fully in use as agricultural fields
X	 If preservation is proposed, activities qualify for preservation per all requirements outlined in 33CFR 332, and St. Paul District Guidance on Evaluating Preservation Sites for Eligibility No preservation is proposed for this project.
X	Low risk of encroachment by adjacent landowners, considering both adjacent land use type and number of individual property owners
	• There is low risk of encroachment by adjacent landowners with adjacent land as the surrounding lands are WIDNR owned, private agriculture, and existing wetland. A buffer will be maintained along the site boundary were adjacent to private landowners.
X	Contains sufficient buffer between the wetlands or stream proposed for credit and adjacent
	 properties A 50 buffer is proposed between credit areas and neighboring private landowners and sufficient buffer will be maintained between wetland credit areas and restored stream banks.
Χ	Contains historic predominantly hydric soils that have been effectively or partially drained by existing, maintained drainage infrastructure
	• Approximately 92% of the site is underlain by hydric soils. The entire site has been impacted by drainage modifications drainage tiles, surface ditches, and straightened and ditched stream channel.

FSA Offsite Wetland Determination Analysis

Little LaCrosse River Headwaters Restoration Site FSA Offsite Wetland Determination Analysis Summary

An Offsite Hydrology/Wetland Determination analysis was performed for the Little LaCrosse River Headwaters Restoration Site in support of the development of this site for mitigation credit in coordination with the Wisconsin Department of Natural Resources.

Available aerial photographs of the site were compiled from Google Earth between 1999 and 2020. Each photograph was examined for indications of wetland hydrology and four study areas were chosen for additional analyses based on visible wetland hydrology signatures. Wetland hydrology signatures included soil wetness, altered crop patterns, crop stress, or had wetland signatures. A determination of current climatic condition was made for each aerial photograph. The AgACIS tool for Monroe County from the NOAA Regional Climate Centers (http://agacis.rcc-acis.org/?fips=55131) was accessed through the NRCS Field Office Technical Guide website (https://efotg.sc.egov.usda.gov/) to make the determination. The AgACIS WETS tool provided the 30% chance of greater or lesser precipitation the site would have during a given month. The determination of climate condition at the time each aerial photograph was made utilizing this data and calculated through the Minnesota Climatology Office's Precipitation Worksheet Using Gridded Database. Exhibit 1 outlines the image dates reviewed, the climatic condition at the time the image was taken, and any aerial wetland hydrology signatures identified by the study area. It should be noted that the dates that were provided for the images in Exhibit 1 were based on best professional judgment because some dates provided by Google Earth were ambiguous. The percent of photographs showing wetland hydrology signatures during years of normal climatic conditions was then calculated for each study area. Exhibit 2 outlines the aerial photography-based wetland determination of each study area. Utilizing the provided Decision Matrix, each study area was determined to be a wetland or not. Descriptions of each of the four study areas and the study results are below. Exhibits 1 and 2 as well as the reviewed aerial photographs are attached to this summary.

Area 1 is an agricultural field on the northwestern side of the site. This study area is approximately 16.4 acres. Area 1 exhibited the wetland hydrology indicator of soil wetness, crop stress, standing water, and wetland signatures. This area showed wetland hydrology indicators in 83.3% of the aerial photographs taken during normal climate conditions. Hydric soils are also present in this area, and it is not identified as a wetland in the National Wetlands Inventory (NWI). Through this analysis, Area 1 was deemed a possible wetland if other field indicators of wetland hydrology are found during an onsite field verification.

Area 2 is an agricultural field in the middle of the site situated between Little LaCrosse River and a tributary of the Little LaCrosse River. This study area is approximately 2.41 acres. Area 2 exhibited the wetland hydrology indicator of crop stress and soil wetness. This area showed wetland hydrology indicators in 50.0% of the aerial photographs taken during normal climate conditions. Hydric soils are present in this area, and it is not identified as a wetland in the National Wetlands Inventory (NWI). Through this analysis, Area 2 was deemed a possible wetland if other field indicators of wetland hydrology are found during an onsite field verification.

Area 3 is an agricultural field on the central eastern side of the site. This study area is approximately 11.8 acres. Area 3 exhibited the wetland hydrology indicator of soil wetness and crop stress. This area showed wetland hydrology indicators in 83.3% of the aerial photographs taken during normal climate conditions. Hydric soils are present in this area, and it is not identified as a wetland in the National Wetlands Inventory

(NWI). Through this analysis, Area 3 was deemed a possible wetland if other field indicators of wetland hydrology are found during an onsite verification.

Area 4 is an agricultural field on the southern end of the site. This study area is approximately 2.50 acres. Area 4 exhibited the wetland hydrology indicator of soil wetness, crop stress, and altered patterns. This area showed wetland hydrology indicators in 66.6% of the aerial photographs taken during normal climate conditions. Hydric soils are present in this area, and it is not identified as a wetland in the National Wetlands Inventory (NWI). Through this analysis, Area 4 was deemed a possible wetland if other field indicators of wetland hydrology are found during an onsite field verification.

Exhibit 1

Field data sheet reference (if applicable): _____

Wetland Hydrology from Aerial Imagery – Recording Form

Project Name: Little LaCrosse River Headwaters Restoration Site Date: December 15, 2022 County: Monroe

Investigator: S. Marler

Legal Description (T, R, S): 16 03 32

Summary Table

Date Image	Imaga Saurca	Climate Condition		Image	Interpretation(s)	
Taken (M-D-Y)	image Source	(wet, dry, normal) ⁱ	Area: 1	Area: 2	Area: 3	Area: 4	Area:
23-4-1999	Google Earth	Wet	SS	NV	SS	SS	
31-5-2005	Google Earth	Dry	CS	NV	CS	CS	
25-9-2006	Google Earth	Normal	NV	NV	NV	NV	
22-6-2008	Google Earth	Wet	CS	CS	CS, SS	NV	
27-6-2010	Google Earth	Normal	CS, SS	NV	CS, SS	NC	
12-10-2013	Google Earth	Normal	CS	CS	CS	NC	
12-6-2020	Google Earth	Normal	WS, SS, SW	SS	CS, SS	AP, NC	
N	ormal Climata	ondition	A root 1	Aroora	A roo.2	A root 4	A roo:
Normal Clinate Condition		Alta.]	Alta.2	Alta.s	Alta.4	Alta.	
Numb	er on with wat size	aturas	5	0	5	0	
Domos	Number with wet signatures 5 3 5 4						
Percei	it with wet signa	itures	83.3	50.0	83.3	66.6	

	KEY	
WS - wetland signature	SS - soil wetness signature	CS - crop stress
NC - not cropped	AP - altered pattern	NV - normal vegetative cover
DO - drowned out	SW - standing water	NSS – no soil wetness signature
Other labels or comments:		

Use above key to label image interpretations. It is imperative that the reviewer read and understand the guidance associated with the use of these labels. If alternate ٠ labels are used, indicate in box above.

• If less than five (5) images taken during normal climate conditions are available, use an equal number of images taken during wet and dry climate conditions and use as many images as you have available. Describe the results using this methodology in your report.

 $^{^{\}rm i}$ Use $\underline{\rm MN}$ State Climatology website to determine climate condition when image was taken.

4/23/1999

5/31/2005

9/25/2006

6/22/2008

6/27/2010

10/12/2013

6/12/2020

SQT Preliminary Calculations and Catchment Assessment Worksheets

Programmatic Goals

Mitigation - Credits

Reach Description

UNTLR1

Reach ID:

Describe this reach and reach break criteria: This stream segment is currently a single, channelized ditch of similar greomorphic and vegetative character through the project to the confluence with the Little La Crosse River. The natural channel was moved and shaped to allow for efficient drainage of the neighboring agricultural fields while maximizing planting area. This reach has recently undergone additional tree clearing along the entire length to be further assessed.

Lat:	43.809557		
Long:	-90.76893		
Reference Stream Type:		С	

Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MMSQT.

Describe the rationale used to select the reference stream type: A C channel was chosen for the reference stream type based on the likely historic channel and constructibility. The restored channel may evolve into a C/E system, and may eventually be occupied by the beaver population currently on the Little La Crosse River main stem. The wide alluvial valley, slope, preliminary sinuosity, and natural bed-form fall within the C/E stream type. The specific reference stream type will be verified during the early design process.

Restoration Approach

Expand on the programmatic goals of this project:

This project seeks to restore approximatley 1,587 UF of stream to produce 744 function feet stream credits for sale as a private mitigation bank. The project provides further ecological lifty through the rehabilitation of approximatley 26 acres of wetland adjacent to the stream channies. The tributaries being restored include the confluence with a Class 1 trout stream and will provide additional nursery habitat cureently degraded beyond use. Mitigation credits produced at this site will offsite impacts to the Upper Mississippi - Black Root Watershed Cataloguing Unit.

Explain the restoration potential of this project based on the programmatic goals (based on catchment assessment form):

This project will be a partial restoration of UNTLR1 on property owned by KCI Technologies, Inc.. No assessment of physiochemical components will be performed or targeted for uplift in this project. The straightened, ditched stream on KCI property will be restored to a natural C4 channel based upon reference reach survey data collected from the Jackson Marsh State Natural Area stream. The initial Catchment Assessment indicated the catchment was in Fair condition with the majority of the contributing watershed in rural development, agruculture, and forest. The recieving stream, Little La Crosse Rive,r is rated a Class 1 trout stream in Fair to Poor condition as reported by WI DNR in thier 2022 assessment.

Explain the goals and objectives for this project:

Goals:

 Improve floodplain connectivity through planfrom, profile, and crosssectional area adjustments.
 Improve instream-habitat through the incorporation of large woody debris and riffle/pool sequences to diversify flow regimes.
 Improve riparian habitat through the installation of native vegetation.

Objectives:

 Reach runoff will improve slightly in the lateral drainage area by vegetating soil in agriculture.

2. Bedform diversity will improve with the installation of pool/riffle sequences. 3. Riparian buffer diversity and width will be increased through riparian species planting and protection.

Insert Aerial Photo of Project Reach

NOTICE: If you find errors or problems, please email <u>StPaulSQT@usace.army.mil</u>

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District Contributing Agencies: U.S. Environmental Pro

U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

 Catchment Name and Number:
 UNT to Little La Crosse North

 Watershed Name (HUC 8) and Number:
 La Crosse-Pine 70400006

e North Rater(s): Brad Shoger 006 Date: 12/22/2022

 Overall Watershed Condition
 F
 Purpose: This form is used to determine the project's restoration potential. The catchment assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream which restricts movement/recovery of fishes.

-		CATCH		WIN DINK WHAP WEDSILE.	mps.//arcgis.dn/istate.minds/cwi/wnaiz/		
	Categories Description of Catchment Condition Rating				Rating		WHAF score equivalents:
	eurogenee	Poor	Fair	Good	(P/F/G)	WHAF Index/Metric	0-40 = Poor; 41-70=Fair; 71-100=Good
1	Flow Alteration - Water Use (Hydrology)	Substantial reduction or augmentation of natural flow regime.	Moderate reduction or augmentation of natural flow regime.	Minimal reduction or augmentation of natural flow regime.	F	Flow Alteration INDEX: Water withdrawal	There has been a moderate amount of flow augmentation including road drainages and course alteration into roadside ditches and surface ditching through the ag field.
2	Impervious Cover (Hydrology)	Impervious Cover (IC) Index Score of 40% or less.	IC Index Score Between 41% and 70%.	IC Index score of 71% or greater.	G	INDEX: Impervious Cover (time series)	The catchment is very small and there is limited impervious cover within.
3	Land Use Change (Hydrology)	Perennial Cover (PC) Index Score of 40% or less = % PC remaining -> Highly Altered Landscape.	PC Index Score of 41 to 70% or less -> Altered Landscape.	PC Index Score of 71% or greater -> Minimally Altered Landscape.	G	INDEX: Perennial Cover (time series)	Approximatley 87% of the catchement is in perrenial cover.
4	Roads (Hydrology)	Major roads located in or adjacent to project reach and/or high road density in catchment.	Few major or minor roads in or adjacent to project reach. Moderate road density in catchment.	No major or minor roads in or adjacent to project reach. Low road density in catchment.	F	INDEX: Aquatic Connectivity	The headwaters of the catchment flow under STH 27 adjacent to the site before flowing into the restoration reach.
5	Percent Forested (Hydrology)	≤20%	>20% and <70%	≥70%	F	NLCD Land Use Charts, Ecoregions	The catchment is approximately 50% forested.
6	Percent Agricultural Land (Hydrology/Physicochemical)	≥ 70%	>20% and <70%	≤20%	G	NLCD Land Use Charts, 'Cultivated' land	The catchment is approximatley 8% cultivated land.
7	Flashiness Index (Hydrology)	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 40% or less.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of between 41% to 70%.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 71% or more.	F	Major Flow Variability Matrics Worksheet: Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP)	The catchment is likely somewhat flashy given the degree of headwater streams contributing to the system. This was the basis of the Fair scoring as Wisconsin does not provide a current index to utilize.
8	Riparian Connectivity - Vegetation (Geomorphology)	Riparian Connectivity (RC) Index Score of 40% or less.	RC Index Score Between 41% and 70%.	RC Index score of 71% or greater.	Р	INDEX: Riparian Connectivity	The riparian corridor for he project reach is narrow and most cleared of perrenial vegetation.
9	Sediment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 40% or less.	Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Stopes Near Sterams to estimate sediment supply - scores between 41 to 70%.	Low sediment supply. Upstream bank erosion and surface runoff is minimal. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 71% or greater.	G	INDEX: Soil Erosion Susceptibility; Steep Slopes Near Streams	The percent of perfenial cover throughout the catchment indicates this system likely has low upstream sediment supply. The lower stream through the project resach slated for restoration has been ditcherd with unstable, eroded slopes, but is a small portion of the overall catchment.
10	Minnesota Integrated Report (305(b) and 303(d)) designated use support status (Note: impairments with atmospheric deposition as a source should be excluded*)	On or immediately upstream or downstream of a waterbody in Category 5 OR in Category 4c (i.e., designated use impairment not actively being mitigated).	On or immediately upstream or downstream of a waterbody in Category 4a or 4b (i.e., active mitigation of designated use impairment through approved TMDL or other control mechanisms).	No adjacent waterbodies listed as not supporting a designated use (i.e., all designated uses either unassessed or in Category 1, 2, or 3).	Р	Impairments INDEX: Aquatic Life Assessments DATA: Impaired Waters	The project reach flows into the Little la Crosse River at the downstream end of the project. The river is listed as a catergory 5 stream for phosphorus.
11	Localized Potential Pollution Sources, Animal Units (Physicochemical)	Extensive Livestock (animal units) in area and potential access to stream - scores of 40% or less.	Moderate Livestock (animal units) in area and potential access to stream - scores between 41% and 70%.	Low levels of Livestock (animal units) in area and low likely access to stream - scores of 71% or greater.	G	INDEX: Animal Unit metric DATA: Feedlots	Livestock pasture occupies approximately 2.5% of the catchement and have low access to contributing drainages.
12	Longitudinal Connectivity of the stream network (Biology)	Aquatic Connectivity (AC) Index Score of 40 or less.	AC Index Score Between 41% and 70%.	AC Index score of 71% or greater.	G	Inline Impoundments INDEX: Aquatic Connectivity DATA: Dams , bridges, culverts	The catchment is small and passes through only 1 bridge along its length.
13	Organism Recruitment (Biology)	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 40% or less.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores between 41 to 70%.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 71% or greater.	Р	Organism Recruitment INDEX: Stream Species, Aquatic Life Assessments DATA: Fish, Invert IBI, Mussel site, fully supporting reaches	No biotic community data on these ditched stream channels are available, however, based on flow regime and altered status, it is likely the scores for these channels would be in the Poor range.
14	Ditched or straightened streams (Hydrology)	Altered Watercourse Index Score of 40% or less.	Altered watercourse score between 41 and 70%.	Altered watercourse score - 71% or greater.	Р	INDEX: Altered Watercourse DATA: Altered Watercourse; Public watercourses/Ditch (DNR data access)	The main channel within the catchment, including the projec reach, has been straightened and ditched. Most contributing ephemeral tributaries upstream are along their natural planfrom.
15	Other						

Catchment Assessment Form 1 of 1

Site Information and				
Reference Selection				
Project Name:	La Crosse River Mitigation Bank			
Reach ID:	UNTLR1			
Restoration Potential:	0			
Existing Stream Type:	G			
Reference Stream Type:	С			
Woody Vegetation Natural Component:	Yes			
Use Class:	2B			
River Nutrient Regions:				
Drainage Area (sq.mi.):	0.44			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	835			
Proposed Stream Length (ft):	1587			
Macroinvertebrate IBI Class:				
Fish IBI Class:	Southern Coldwater			
Valley Type:	Unconfined Alluvial			
Flow Permanence:	Perennial			
Strahler Stream Order:	Second			

Notes

1. Users input values that are highlighted based on restoration potential

2. Users select values from a pull-down menu

3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.47			
Proposed Condition Score (PCS)	0.71			
Change in Functional Condition (PCS - E	0.24			
Existing Stream Length (ft)	835			
Proposed Stream Length (ft)	1587			
Change in Stream Length (ft)	752			
Existing Functional Feet (FF)	392			
Proposed Functional Feet (FF)	1127			
Proposed FF - Existing FF	734			
Percent Change in FF (%)	187%			
FF Yield (FF/ft)	0.46			

MITIGATION SUMMARY				
734	(FF)	Lift		

FUNCTION BASED PARAMETERS SUMMARY							
Functional Category Function-Based Parameters Existing Parameter Proposed Pa							
Hydrology	Reach Runoff	0.74	0.92				
Hydraulics	Floodplain Connectivity	0.36	1.00				
	Large Woody Debris	0.94	1.00				
	Lateral Migration	0.77	1.00				
Geomorphology	Bed Material Characterization						
	Bed Form Diversity	0.00	0.93				
	Riparian Vegetation	0.44	0.72				
	Temperature						
Physicochemical	Dissolved Oxygen						
	Total Suspended Solids						
Pielegy	Macroinvertebrates						
ылову	Fish	0.72	0.72				

FUNCTIONAL CATEGORY REPORT CARD						
Functional Category	ECS	PCS	Functional Change			
Hydrology	0.74	0.92	0.18			
Hydraulics	0.36	1.00	0.64			
Geomorphology	0.54	0.91	0.37			
Physicochemical						
Biology	0.72	0.72	0.00			

EXISTING CONDITION ASSESSMENT					Roll Up Scoring		
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	61	0.78			
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.74	0.74	Functioning
		Concentrated Flow Points / 1,000 feet	1	0.69			
Lindraulies	Floodalain Connectivity	Bank Height Ratio	1.7	0.02	0.26 0.26	0.26	Functioning At
nyuraulics	Floouplain Connectivity	Entrenchment Ratio	2.2	0.70	0.50	0.30	Risk
	Large Weedy Debris	LWD Index			0.04		
	Large woody Debris	No. of LWD Pieces / 100 meters	25	0.94	0.94		
	Lateral Migration	Dominant BEHI/NBS	L/L	1.00			
		Percent Streambank Erosion (%)	25	0.54	0.77		
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coomernhalogy	Red Form Diversity	Pool Spacing Ratio	0	0.00	0.00	0.54	Functioning At
Geomorphology		Pool Depth Ratio	1	0.00			Risk
	bed Form Diversity	Percent Riffle (%)	0	0.00			
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	53	0.33			
		Canopy Cover (%)	15	0.00	0.44		
		Herbaceous Strata Vegetation Cover (%)	95	1.00	0.44		
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Riology	Macroinvertebrates	Macroinvertebrate IBI				0.72	Eunctioning
BIOIOGY	Fish	Fish IBI	64	0.72	0.72 0.72		runctioning

PROPOSED CONDITION ASSESSMENT					R	oll Up Sco	ll Up Scoring	
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category	
		Land Use Coefficient	55	0.84				
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.92	0.92	Functioning	
		Concentrated Flow Points / 1,000 feet	0	1.00				
Lindraulies	Floodplain Connectivity	Bank Height Ratio	1	1.00	1.00	1.00	Functioning	
nyuraulics	Floouplain Connectivity	Entrenchment Ratio	5	1.00	1.00	1.00	Functioning	
	Large Weedy Debris	LWD Index			1.00			
	Large woody Debris	No. of LWD Pieces / 100 meters	35	1.00	1.00			
		Dominant BEHI/NBS	L/L	1.00				
	Lateral Migration	Percent Streambank Erosion (%)	5	1.00	1.00			
		Percent Armoring (%)						
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)				0.91		
Goomorphology	Ded Form Divortity	Pool Spacing Ratio	3	0.80	0.03		Eurotioning	
Geomorphology		Pool Depth Ratio	3	1.00			Functioning	
	Bed Form Diversity	Percent Riffle (%)	45	1.00	0.95			
		Aggradation Ratio						
		Effective Vegetated Riparian Area (%)	100	1.00				
		Canopy Cover (%)	55	0.16	0.72			
	Riparian vegetation	Herbaceous Strata Vegetation Cover (%)	90	1.00	0.72			
		Woody Stem Basal Area (sqm/hectare)						
	Temperature	Summer Average (°C)						
Physicochemical	Dissolved Oxygen	DO (mg/L)						
	Total Suspended Solids	TSS (mg/L)						
Pielem	Macroinvertebrates	Macroinvertebrate IBI				0.72	Eunctioning	
DIOIORY	Fish	Fish IBI	64	0.72	0.72	0.72	Functioning	

Programmatic Goals

Mitigation - Credits

Reach Description

 Reach ID:
 UNTLR2

 Describe this reach and reach break criteria:
 This stream segment is currently a single, channelized ditch of similar greomorphic and vegetative character through the project to the confluence with the Little La Crosse River. The natural channel was moved and shaped to allow for efficient drainage of the neighboring agricultural fields while maximizing planting area.

Lat:	43.806306		
Long:	-90.767614		
Reference	Stream Type:	С	

Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MMSQT.

Describe the rationale used to select the reference stream type: A C channel was chosen for the reference stream type based on the likely historic channel and constructibility. The restored channel may evolve into a C/E system, and may eventually be occupied by the beaver population currently on the Little La Crosse River main stem. The wide alluvial valley, slope, preliminary sinuosity, and natural bed-form fall within the C/E stream type. The specific reference stream type will be verified during the early design process.

Restoration Approach

Expand on the programmatic goals of this project:

This project seeks to restore approximatley 1,053 LF of stream to produce 744 function feet stream credits for sale as a private mitigation bank. The project provides further ecological lifty through the rehabilitation of approximatley 26 acres of wetland adjacent to the stream channles. The tributaries being restored include the confluence with a Class 1 trout stream and will provide additional nursery habitat currently degraded beyond use. Mitigation credits produced at this site will offsite impacts to the Upper Mississippi - Black Root Watershed

Explain the restoration potential of this project based on the programmatic goals (based on catchment assessment form):

This project will be a partial restoration of UNTLR2 on property owned by KCI Technologies, Inc.. No assessment of physiochemical components will be performed or targeted for uplift in this project. The straightened, ditched stream on KCI property will be restored to a natural C4 channel based upon reference reach survey data collected from the Jackson Marsh State Natural Area stream. The initial Cathment Assessment indicated the cathment was in Fair condition with the majority of the contributing watershed in rural development, agruculture, and forest. The recieving stream, Little La Crosse Rive,r is rated a Class 1 trout stream in Fair to Poor condition as reported by WI DNR in thier 2022 assessment.

Explain the goals and objectives for this project:

Goals:

1. Improve floodplain connectivity through planfrom, profile, and cross-sectional area adjustments.

2. Improve instream-habitat through the incorporation of large woody debris and riffle/pool sequences to diversify flow regimes.

3. Improve riparian habitat through the installation of native vegetation.

Objectives:

1. Reach runoff will improve slightly in the lateral drainage area by vegetating soil in agriculture.

Bedform diversity will improve with the installation of pool/riffle sequences.
 Riparian buffer diversity and width will be increased through riparian species planting and protection.

NOTICE: If you find errors or problems, please email <u>StPaulSQT@usace.army.mil</u>

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District Contributing Agencies: U.S. Environmental Pro

U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

Insert Aerial Photo of Project Reach

Catchment Name and Number:	UNT to Little La Crosse North
Watershed Name (HUC 8) and Number:	La Crosse-Pine 70400006

Rater(s): Date:

Brad Shoger 12/22/2022

Overall Watershed Condition	F	Purpose: This form is used to determine the project's restoration potential. The catchment
Restoration Potential	Partial	assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream
		which restricts movement/recovery of fishes.

CATCHMENT ASSESSMENT					MN DNR WHAF Website:	https://arcgis.dnr.state.mn.us/ewr/whaf2/
		Description of Catchment Condition		Deting		
Categories	Poor	Fair	Good	(P/F/G)	WHAF Index/Metric	WHAF score equivalents: 0-40 = Poor; 41-70=Fair; 71-100=Good
Alteration - Water Use (Hydrology)	Substantial reduction or augmentation of natural flow regime.	Moderate reduction or augmentation of natural flow regime.	Minimal reduction or augmentation of natural flow regime.	F	Flow Alteration INDEX: Water withdrawal	There has been a moderate amount of flow augmentation including road drainages and course alteration into roadside ditches and surface ditching through the ag field.
ervious Cover (Hydrology)	Impervious Cover (IC) Index Score of 40% or less.	IC Index Score Between 41% and 70%.	IC Index score of 71% or greater.	G	INDEX: Impervious Cover (time series)	The catchment is very small and there is limited impervious cover within.
I Use Change (Hydrology)	Perennial Cover (PC) Index Score of 40% or less = % PC remaining -> Highly Altered Landscape.	PC Index Score of 41 to 70% or less -> Altered Landscape.	PC Index Score of 71% or greater -> Minimally Altered Landscape.	G	INDEX: Perennial Cover (time series)	Approximatley 87% of the catchement is in perrenial cover.
ds (Hydrology)	Major roads located in or adjacent to project reach and/or high road density in catchment.	Few major or minor roads in or adjacent to project reach. Moderate road density in catchment.	No major or minor roads in or adjacent to project reach. Low road density in catchment.	F	INDEX: Aquatic Connectivity	The headwaters of the catchment flow under STH F adjacer to the site before flowing into the restoration reach.
ent Forested (Hydrology)	≤20%	>20% and <70%	≥70%	P	NLCD Land Use Charts, Ecoregions	The catchment is approximately 20% forested.
ent Agricultural Land Irology/Physicochemical)	≥70%	>20% and <70%	≤20%	G	NLCD Land Use Charts, 'Cultivated' land	The catchment is approximatley 10% cultivated land.
hiness Index (Hydrology)	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 40% or less.	IHA Analysis: Use the Rate and Frequency of Change metric (H, M_FY_RFC) and the Frequency and Duration of High/Low Pulses metric (H, M_FV_FDP) - scores of between 41% to 70%.	IHA Analysis: Use the Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP) - scores of 71% or more.	G	Major Flow Variability Matrics Worksheet: Rate and Frequency of Change metric (H_M_FV_RFC) and the Frequency and Duration of High/Low Pulses metric (H_M_FV_FDP)	The catchment begins in a wetland likely fed by springs mainting a fairly consistent flow regime. This upstream wetland and the lack of impervious surfaces within the catchment to contribute stormwater runoff is the basis for th rating. Wisconsin does not provide a current index to utilize.
rian Connectivity - Vegetation omorphology)	Riparian Connectivity (RC) Index Score of 40% or less.	RC Index Score Between 41% and 70%.	RC Index score of 71% or greater.	Р	INDEX: Riparian Connectivity	The riparian corridor for the project reach is narrow and mostly cleared of perrenial vegetation.
ment Supply (Geomorphology)	High sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 40% or less.	Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion Susceptibility and for Steep Stopes Near Streams to estimate sediment supply - scores between 41 to 70%.	Low sediment supply. Upstream bank erosion and surface runoff is minimal. Use scores for Soil Erosion Susceptibility and for Steep Slopes Near Streams to estimate sediment supply - scores of 71% or greater.	G	INDEX: Soil Erosion Susceptibility; Steep Slopes Near Streams	The percent of perrenal cover throughout the catchment indicates this system likely has low upstream sediment supply. The lower stream through the project reach slated for restoration has been ditched with unstable, eroded slopes, but is a small portion of the overall catchment.
esota Integrated Report (305(b) and d)) designated use support status e: impairments with atmospheric ssition as a source should be excluded*	On or immediately upstream or downstream of a waterbody in Category 5 OR in Category 4c (i.e., designated use impairment not actively being mitigated).	On or immediately upstream or downstream of a waterbody in Category 4a or 4b (i.e., active mitigation of designated use impairment through approved TMDL or other control mechanisms).	No adjacent waterbodies listed as not supporting a designated use (i.e., all designated uses either unassessed or in Category 1, 2, or 3).	Ρ	Impairments INDEX: Aquatic Life Assessments DATA: Impaired Waters	The project reach flows into the Little la Crosse River at the downstream end of the project. The river is listed as a catergory 5 stream for phosphorus.
lized Potential Pollution Sources, Anima s (Physicochemical)	I Extensive Livestock (animal units) in area and potential access to stream - scores of 40% or less.	Moderate Livestock (animal units) in area and potential access to stream - scores between 41% and 70%.	Low levels of Livestock (animal units) in area and low likely access to stream - scores of 71% or greater.	F	INDEX: Animal Unit metric DATA: Feedlots	Livestock pasture occupies approximatley 35% of the catchment and have access to the upstream wetylands supplying the project reach.
pitudinal Connectivity of the stream ork (Biology)	Aquatic Connectivity (AC) Index Score of 40 or less.	AC Index Score Between 41% and 70%.	AC Index score of 71% or greater.	G	Inline Impoundments INDEX: Aquatic Connectivity DATA: Dams , bridges, culverts	The catchment is small and passes through only 1 bridge along its length.
anism Recruitment (Biology)	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 40% or less.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores between 41 to 70%.	Stream Species Quality Fish /Stream Species Quality Invertebrates - scores of 71% or greater.	Ρ	Organism Recruitment INDEX: Stream Species, Aquatic Life Assessments DATA: Fish, Invert IBI, Mussel site, fully supporting reaches	No biotic community data on these ditched stream channels are available, however, based on flow regime and altered status, it is likely the scores for these channels would be in the Poor range.
ned or straightened streams (Hydrology)	Altered Watercourse Index Score of 40% or less.	Altered watercourse score between 41 and 70%.	Altered watercourse score - 71% or greater.	Р	INDEX: Altered Watercourse DATA: Altered Watercourse; Public watercourses/Ditch (DNR data access)	The main channel within the catchment, including the projec reach, has been straightened and ditched. Most contributing ephemeral tributaries upstream are along their natural planfrom.
ər						
ır						

Site Information and				
Reference	Selection			
Project Name:	La Crosse River Mitigation Bank			
Reach ID:	UNTLR2			
Restoration Potential:	0			
Existing Stream Type:	G			
Reference Stream Type:	C			
Woody Vegetation Natural Component:	Yes			
Use Class:	2B			
River Nutrient Regions:				
Drainage Area (sq.mi.):	0.19			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	810			
Proposed Stream Length (ft):	1053			
Macroinvertebrate IBI Class:				
Fish IBI Class:	Southern Coldwater			
Valley Type:	Unconfined Alluvial			
Flow Permanence:	Perennial			
Strahler Stream Order:	Second			

Notes

1. Users input values that are highlighted based on restoration potential

2. Users select values from a pull-down menu

3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.49				
Proposed Condition Score (PCS)	0.72				
Change in Functional Condition (PCS - E	0.23				
Existing Stream Length (ft)	810				
Proposed Stream Length (ft)	1053				
Change in Stream Length (ft)	243				
Existing Functional Feet (FF)	397				
Proposed Functional Feet (FF)	758				
Proposed FF - Existing FF	361				
Percent Change in FF (%)	91%				
FF Yield (FF/ft)	0.34				

MITIC	GATION SUP	MMARY
361	(FF)	Lift

FUNCTION BASED PARAMETERS SUMMARY						
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter			
Hydrology	Reach Runoff	0.74	0.92			
Hydraulics	Floodplain Connectivity	0.37	1.00			
	Large Woody Debris	0.94	1.00			
	Lateral Migration	0.77	1.00			
Geomorphology	Bed Material Characterization					
	Bed Form Diversity	0.00	0.93			
	Riparian Vegetation	0.80	0.83			
	Temperature					
Physicochemical	Dissolved Oxygen					
	Total Suspended Solids					
Pielegy	Macroinvertebrates					
ыоюду	Fish	0.72	0.72			

FUNCTIONAL CATEGORY REPORT CARD								
Functional Category	ECS	PCS	Functional Change					
Hydrology	0.74	0.92	0.18					
Hydraulics	0.37	1.00	0.63					
Geomorphology	0.63	0.94	0.31					
Physicochemical								
Biology	0.72	0.72	0.00					

EXISTING CONDITION ASSESSMENT					R	oll Up Scoring	
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	61	0.78			
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.74	0.74	Functioning
		Concentrated Flow Points / 1,000 feet	1	0.69			
Hudraulice	Floodplain Connectivity	Bank Height Ratio	2	0.00	0.27	0.27	Functioning At
nyuraulics	Floouplain Connectivity	Entrenchment Ratio	2.5	0.73	0.57	0.37	Risk
	Large Weedy Debris	LWD Index			0.04		
	Large woody Debris	No. of LWD Pieces / 100 meters	25	0.94	0.94	94	
		Dominant BEHI/NBS	L/L	1.00		7 	
	Lateral Migration	Percent Streambank Erosion (%)	25	0.54	0.77		
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coomernhelegy	Red Form Diversity	Pool Spacing Ratio	0	0.00		0.62	Functioning At
Geomorphology		Pool Depth Ratio	1	0.00	0.00	0.03	Risk
	Bed Form Diversity	Percent Riffle (%)	0	0.00	0.00		Functioning At Risk
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	100	1.00			
	Pinarian Vogotation	Canopy Cover (%)	62	0.40	0.80		
		Herbaceous Strata Vegetation Cover (%)	95	1.00	1.00		
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Riology	Macroinvertebrates	Macroinvertebrate IBI				0.72	Eunctioning
BIOIOGY	Fish	Fish IBI	64	0.72	0.72	0.72	runctioning

PROPOSED CONDITION ASSESSMENT					R	oll Up Sco	II Up Scoring	
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category	
		Land Use Coefficient	55	0.84				
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.92	0.92	Functioning	
		Concentrated Flow Points / 1,000 feet	0	1.00				
	Floodplain Connectivity	Bank Height Ratio	1	1.00	1.00	1.00	Functioning	
nyuraulics	Floouplain Connectivity	Entrenchment Ratio	5	1.00	1.00	1.00	Functioning	
	Large Weedy Debris	LWD Index			1.00			
	Large woody Debris	No. of LWD Pieces / 100 meters	35	1.00	1.00			
		Dominant BEHI/NBS	L/L	1.00				
	Lateral Migration	Percent Streambank Erosion (%)	5	1.00	1.00			
		Percent Armoring (%)						
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)						
Goomorphology	Dod Form Diversity	Pool Spacing Ratio	3	0.80	0.03	0.04	Eurotioning	
Geomorphology		Pool Depth Ratio	3	1.00		0.94	Functioning	
	Bed Form Diversity	Percent Riffle (%)	45	1.00	0.95			
		Aggradation Ratio						
		Effective Vegetated Riparian Area (%)	100	1.00				
		Canopy Cover (%)	65	0.50	0.92			
	Riparian vegetation	Herbaceous Strata Vegetation Cover (%)	90	1.00	0.85			
		Woody Stem Basal Area (sqm/hectare)						
	Temperature	Summer Average (°C)						
Physicochemical	Dissolved Oxygen	DO (mg/L)						
	Total Suspended Solids	TSS (mg/L)						
Piology	Macroinvertebrates	Macroinvertebrate IBI				0.72	Eunctioning	
BIOIORY	Fish	Fish IBI	64	0.72	0.72	0.72	Functioning	

Soil Pit Data

La Crosse River Headwaters Site Data Collected November 28th, 2:30 to 3:30 pm

Joe Pfeiffer SPWS

Soil Pit	Туре	Depth	Matrix	Mottle	Comments
#1	Silty Loam	0-18"+	2.5YR 2.5/0		Plow layer, oxidized root channels
#2	Silty Loam	0-18"	2.5YR 2.5/0		Plow layer
	Silty Clay	18"+	5YR 3/1	5YR 4/6	Mottled, oxidized root channels
#3	Silty Loam	0-8"	5YR 3/1		Plow Layer
	Silty Loam	8-12"	5YR 2.5/1	5YR 4/4	Mottleing
	Organic	12-18"	2.5YR 2.5/0		Blocky, water in hole, burried horizon
#4	Organic	0-18"	2.5YR 2.5/0		Plow Layer
	Silty Clay	18-20"			Band in between organic layers
	Organic	20"+	2.5YR 2.5/0		Blocky,water in hole

Pit #1

Pit #3

Pit #4

Site Photographs

KCI TECHNOLOGIES

Drainage Pictures Little La Crosse River Headwaters Restoration Site

> ESRI Image Basemap Monroe County, WI Map Created: 12/15/2022

Photo Point 1 Facing East

Photo Point 1 Facing South

Photo Point 2 Facing East

Photo Point 3 Facing East

Photo Point 3 Facing South

Photo Point 4 Facing East

Photo Point 4 Facing West

Photo Point 6 Facing North

Photo Point 6 Facing South

Photo Point 6 Facing West

Photo Point 8 Facing East

Photo Point 10 Facing East

Photo Point 11 Facing North

Photo Point 11 Facing West

Photo Point 12

Photo Point 13 Facing West

Photo Point 14 Facing South

Photo Point 15 Facing North

Photo Point 15 Facing East

Photo Point 15 Facing West

Photo Point 15 Facing South

Photo Point 16 Facing North

Photo Point 17 Facing South

Photo Point 17 Facing West

Photo Point 18 Facing East

Photo Point 18 Facing West

Photo Point 19 Facing North

Photo Point 20 Facing West

Photo Point 21 Facing East

Photo Point 22 Facing North

Photo Point 23 Facing North East

Photo Point 24 Facing East

Photo Point 25

Photo Point 26

Photo Point 30

KCI Statement of Qualifications

2021 QUALIFICATIONS - WI DEPARTMENT OF NATURAL RESOURCES

STREAM AND WETLAND RESTORATION/ CONSTRUCTION / MANAGEMENT

KCI TECHNOLOGIES, INC.

CONTENTS

- **1** Firm Profile
- 2 Staff Qualifications
- **3** Project Experience
- 4 Geographic Presence

FIRM OVERVIEW

KCI is an employee-owned company headquartered in Sparks, Maryland, with division offices located throughout the Midwest, Mid-Atlantic and Southeastern United States. The Natural Resource Management and Ecosystem Dynamics groups, located in La Crosse, Wisconsin, will be responsible for work derived from this contract.

Our roughly 1,700 employee-owners operate out of more than 55 offices in 19 states. Our employees includes professional engineers, planners, architects, scientists, and construction support personnel. KCI is considered to have one of the largest staffs trained in wetland and stream restoration design and construction, watershed management, geomorphology, and hydrologic/hydraulic engineering in the United States. KCI has made a concerted effort to foster the best technical expertise available in the design, implementation and construction of stream and wetland restoration.

NICAL AFF	140	130	451	592				
TECH	ENVIRONMENTAL	CIVIL	TECHNICAL SUPPORT (CAD/	OTHER				
ST/	ENGINEERS/SUPPORT	ENGINEERS	GIS/SURVEY)	ENGINEERS /SUPPORT				

KCI's La Crosse office is the primary location serving Wisconsin Department of Natural Resources, with support from the Indianapolis, IN; Nashville, TN; and Raleigh, NC; locations.

KCI's team has been established to provide successful implementation of wetland mitigation projects by providing all necessary planning, design, construction management remedial action and financial components in one entity. KCI has been involved in the location, design, development and management of over 1,600 acres of wetland and 40 miles of stream mitigation throughout our theatre of operations.

KCI offers a highly qualified staff of environmental, engineering and construction professionals with extensive training and proven skills in all aspects of mitigation site location, plan development, design, construction, monitoring and remedial action. Our approach to successfully meeting our client's needs includes solid experience in the environmental, engineering, and construction professions, as well as quality personnel.

KCI stands ready to meet your wetland mitigation needs at this site. Upon review of our submittal, we trust you will find our qualifications and proposed site commensurate with your requirements. We look forward to addressing any questions or comments you may have and to the opportunity of working with you in the near future.

PROJECT PERSONNEL

KCI's key staff offer the WI DNR a qualified and experienced group of professionals dedicated to providing the highest quality services and technical expertise in the field of stream and wetland mitigation. Our staff is prepared to complete all tasks on the proposed project in an innovative, cost-effective, and timely manner.

Our past record of successful work performance with state and federal clients is highlighted by our ability to work interactively on multi-disciplined projects in concert with clients, agencies and stakeholders, and demonstrates our commitment and capabilities to undertake projects involving a variety of environmental, engineering and ecological challenges.

In addition to the key staff, KCI maintains a highly-trained professional support staff to aid in the execution of project tasks. This includes over 1,400 technical staff company-wide, with almost 180 in the La Crosse, WI, Indianapolis, IN; Nashville, TN; and Raleigh, NC; offices alone. These groups of engineers and scientists have, on average, 10 years of experience in their respective disciplines, and the majority of them have been awarded advanced degrees in their field of expertise. In addition, our staff has been working as a team as KCI employees for an average of 20 years.

KEY STAFF

Our staff is well qualified, capable and committed to meeting the goals and objectives of the WI DNR. Our team of environmental and engineering professionals offers a qualified and experienced group of professionals dedicated to providing the highest quality services and technical expertise in stream and wetland mitigation. Successful stream and wetland restoration requires the skills of a variety of disciplines. The disciplines represented by the key staff presented herein include: fisheries/wildlife biology, environmental science, hydrology/hydraulics, survey, CADD and construction. The project manager coordinates these disciplines to effectively facilitate the project. Detailed information regarding KCI's key staff can be found on the following pages.

Senior Professional Wetland Scientist / #927 Rosgen Natural Channel Design and River Restoration Level IV Monitoring Level III Applications Level II Rosgen Applied Fluvial Geomorphology Level I

EDUCATION

MA / Environmental Planning / Towson University / 1993 BS / Natural Science / Towson University / 1988 AA / Wildlife Management / Garrett Community College / 1986

YEARS OF EXPERIENCE 36

JOE PFEIFFER. SPWS **PRINCIPAL-IN-CHARGE / PROJECT MANAGER**

Mr. Pfeiffer is the Ecosystem Dynamics Practice leader for KCI. Since joining KCI as an environmental scientist in 1988, he has actively developed KCI's ecological restoration practice throughout the eastern seaboard and midwest. His multidiscipline background in engineering, planning, ecology, and construction has enabled him to integrate ecological restoration into evolving ecological systems with human-induced stressors with focus on natural sustainability as a pillar of the restoration design approach through adaptive management. Mr. Pfeiffer applied Rosgen River Assessment and his adaptive management approach to restoration with his development of KCI's design-build arm called KCI Environmental Technologies and Construction Inc. Rosgen River Morphology and Since its inception in 1998 to undertake ecological restoration projects, this venture has provided him 23 years of experience in the implementation and management of ecological systems and has refined his abilities to developed practical, constructable restoration plans that cost effectively achieve the functional objectives of the project.

PROJECT EXPERIENCE

NORTH CAROLINA ECOSYSTEM ENHANCEMENT PROGRAM (NCEEP). FULL DELIVERY STREAM/WETLAND RESTORATION - Statewide, NC.

PRINCIPAL-IN-CHARGE - Development of 101,000 If of streams and 270 acres of wetlands for seven full delivery contracts with a gross value of \$39 million. The projects required the location and acquisition of real estate, design and permitting of restoration, construction and 10 years of monitoring and habitat management to develop mitigation credits for the agency.

WISCONSIN DEPARTMENT OF NATURAL RESOURCES. MEACHEM ROAD FULL DELIVERY RESTORATION - Racine, WI.

PRINCIPAL-IN-CHARGE - KCI was contracted to undertake the restoration of 60acre wetland system. KCI was responsible for site acquisition, assessment, design, construction, monitoring and management throughout its 10-year restorative process. It will result in more than 45 mitigation credits.

NCEEP. FARRAR DAIRY STREAM RESTORATION AND WETLAND SURVEY -Lillington, NC.

PRINCIPAL-IN-CHARGE - KCI restored the streams, riparian buffers and forested wetlands along the North Prong of Anderson Creek, the main stream through the site. The streams and wetlands at the site had become degraded through poor grazing management, ditching, and vegetation removal. The project provided mitigation credit for stream and wetland impacts by restoring, enhancing, and preserving 13,044 If of stream and 112 acres of wetland, while converting a large portion of the property into a hunting preserve. Mr. Pfeiffer was responsible for the delivery of mitigation credits. He also directed location, acquisition, design development, and permitting of more than 110 acres of wetland and 12,500 If of stream restoration, enhancement, and preservation.

Professional Engineer (WI #40933-6) Hey-River Mechanics and Restoration Rosgen Levels I, II, III, IV Certified Professional in Erosion & Sediment Control (#4314) LEED Accredited Professional

EDUCATION

MS / Water Resources / University of Birmingham / 2001 ME / Civil Engineering / Vanderbilt / 2010 BS / Natural Science / Towson University / 1996 BSET / Civil Engineering Technology / Old Dominion University / 2006

YEARS OF EXPERIENCE 25

GARY MRYNCZA, PE, CPESC, LEED AP

HYDROLOGY / HYDRAULICS

Mr. Mryncza is the company-wide discipline head for resource management and specializes in hydrology and streams. His experience includes watershed and site-specific hydrologic analysis, stream assessment, feasibility study and restoration design, water quality assessment/stream monitoring, and water resources management. Mr. Mryncza is versed in the use of hydrologic/hydraulic models and has experience applying natural channel design principles. He has been responsible for the development of design plans for more than 75 mitigation projects throughout the Midwest and Southeast United States.

PROJECT EXPERIENCE

TENNESSEE STREAM MITIGATION PROGRAM, BLEDSOE CREEK STREAM RESTORATION - Sumner County, TN.

PROJECT ENGINEER - KCI will provide professional assessment, design and construction observation services to facilitate the restoration of approximately 6,837 linear feet of Bledsoe Creek and two unnamed tributaries near Bethpage, in Sumner County, TN. The site is on a single parcel with a single landowner. Mr. Mryncza has provided quality assurance and have overseen the assembly of the Umbrella Mitigation Banking Instrument (UMBI). He ensured that all resources were in place to assess the large number of streams at the Facility and that the mitigation prospectus and the UMBI were merged into one cohesive document to submit to TDOT and regulatory agencies.

CUMBERLAND RIVER COMPACT, RICHLAND CREEK DAM REMOVAL - Randolph Nashville, TN.

PRINCIPAL-IN-CHARGE - KCI provided engineering services for the removal of a low head dam that was four feet tall and 50 feet wide and located on Richland Creek. This project included site assessment, engineering design for the dam removal, and potential installation of a cross vane structure to maintain sufficient water level from the golf course, preparation of permits and supporting documents, and construction oversight. Mr. Mryncza was Principal-In-Charge for the project and oversaw project coordination with the client.

NORTH CAROLINA DIVISION OF MITIGATION RESOURCES, CANE CREEK TRIBUTARY RESTORATION - **Person County, NC**

PROJECT MANAGER - KCI developed a restoration plan of approximately 17,000 LF of headwater tributaries that involved a combination of stream restoration and enhancement of B and Bc channel types. The project reaches were designed as restoration or enhancement based on the level of departure from a stable stream system. Mr. Mryncza oversaw the staff and managed the contract for this project.

HARALD (JORDY) JORDAHL

PROJECT MANAGER

EDUCATION

BS / Political Science, History and International Relations / University of Wisconsin at Madison / 1991 International Summer Session / Public Policy and Administration / University of Oslo, Norway / 1991 Nansenskolen, Norwegian Humanities Institute / 1990

YEARS OF EXPERIENCE 29

Mr. Jordahl is a conservation professional with 29 years of experience based in Wisconsin and the Midwest including program conception, development, and leadership. Jordy worked on resource policy issues with state, local, federal and tribal governments while serving in legislative, executive, administrative and advocacy positions including policy advisor to the Governor, legislative policy aide, director of intergovernmental relations for the Wisconsin Department of Administration, and director of government relations for The Nature Conservancy in Wisconsin. His interests have focused on advancing projects affecting working landscapes and the connections between conservation and communities, agriculture, forestry and transportation.

Immediately prior to joining KCI, Jordahl led large multi-stakeholder collaborations focused on water resources and natural infrastructure in the 31-state Mississippi River Watershed and to support forest land conservation across a 17-state region to meet industrial and conservation objectives.

Mr. Jordahl also directs a family business managing rural properties in Wisconsin, leading teams of contractors and volunteers to complete significant upland forest and cropland projects, restore and establish prairie habitat and reconstruct a large dam to support watershed water quality and habitat objectives.

PROJECT EXPERIENCE

AMERICA'S WATERSHED MISSISSIPPI RIVER WATERSHED REPORT CARD - MS. DIRECTOR - Mr. Jordahl directed a team of academics, agency scientists and watershed professionals to develop the first Mississippi River Watershed Report Card. Over a 24-month period, Mr. Jordahl brought together over 600 diverse experts and stakeholders in workshops, meetings, and webinars throughout the 31-state watersheds to identify information about six broad goals and create a report card. The Report Card supports collective action towards sustaining the economic and natural vitality of the world's fourth largest watershed. The Report Card measured status and reported on progress towards flood control and risk reduction, recreation, ecosystems, transportation, economies and water supply.

US HIGHWAY 12 BARABOO HILLS NATIONAL NATURAL LANDMARK PRE-MITIGATION SETTLEMENT - Dane County, WI.

PROJECT MANAGER - Mr. Jordahl led efforts for The Nature Conservancy in Wisconsin to work with elected and appointed officials to resolve a long legal and political conflict surrounding impacts associated with the expansion of a highway in Dane County. The final negotiated settlement resolved lawsuits and provided over \$15 million to mitigate impacts associated with the highway construction on the Baraboo Hills and the highway corridor in Wisconsin's fastest county protecting thousands of acres of critical habitat.

Certified Professional in **Erosion and Sediment Control** HAZWOPER 8-Hour Refresher Course Rosgen Natural Channel Design and River Restoration Level IV Rosgen River Assessment and Monitoring Level III Rosgen River Morphology and Applications Level II Rosgen Applied Fluvial Geomorphology Level I

EDUCATION

MEM / Ecosystem Science and Management / Duke University / 2005 BS / Biology, Environmental Science / College of William and Mary / 2002

YEARS OF EXPERIENCE 17

ADAM SPILLER, CPESC

ENVIRONMENTAL SCIENTIST

Mr. Spiller is an environmental scientist and project manager with experience specializing in stream and wetland design and monitoring. This work includes stream assessment and existing conditions surveys, design constraint evaluations, concept plans, design criteria development, mitigation report preparation, permitting, construction plans and specifications, construction oversight, and baseline data collection and report preparation. He also manages all resource monitoring performed by KCI's Raleigh office. Mr. Spiller is experienced in performing stream and wetland assessments and restoration design. His educational background in biology and environmental management aid him in understanding functional implications of stream restoration. He has applied these skills in numerous contexts, including assessment, design, and monitoring.

PROJECT EXPERIENCE

NC DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES. DANIELS FARM **RESTORATION SITE - Louisburg, NC.**

PROJECT MANAGER - Project involved the restoration of 30 acres of wetlands in a former row crop agricultural setting in Louisburg, North Carolina. Project improved water quality and aquatic and terrestrial habitat. Services included assessment and design, construction administration, and baseline monitoring.

TENNESSEE STREAM MITIGATION PROGRAM, EMERGENCY REPAIR, ASSESSMENT AND REMEDIATION - Nashville, TN.

PROJECT MANAGER - KCl worked with the principal designer to evaluate the damage to TSMP stream restoration sites from the May 2010 floods. Developed assessments of the damage and remedial plans to guide the repairs to the sites. Performed construction oversight and worked closely with the construction team to ensure that the projects were repaired in a timely, economical, and structurally sound manner. Mr. Spiller provided natural channel stream design.

RICHLAND COUNTY, MELODY GARDENS STREAMBANK/DITCH STABILIZATION - Columiba, SC.

PROJECT MANAGER - This project consists of a streambank stabilization along 300 feet of Lightwood Knot Branch. KCI is providing stream assessment, survey, conceptual design, easement development, construction plans, hydrologic/hydraulic modeling, FEMA coordination, permitting, and construction management and inspection. The project begins just south of I-20 and runs along the back of a residential neighborhood. Construction began in Fall 2020.

CERTIFICATIONS & REGISTRATIONS PE / NC / 040899 PE / FL / 85132 PE / GA / 043252 PE / MN / 55971 PE / SC / 35684 PE / TN / 121505 Rosgen River Assessment and Monitoring Level III Rosgen River Morphology and Applications Level II Rosgen Applied Fluvial

EDUCATION

BS / Civil Engineering / Clemson University / 2013 MEM / Ecosystem Science and Management / Duke University / 2005 BA / Biology, Environmental Studies / Whitman College / 2001

Geomorphology Level I

YEARS OF EXPERIENCE 17

KRISTIN KNIGHT-MENG, PE

ENVIRONMENTAL ENGINEER

Ms. Knight is a stream and wetland designer serving the Natural Resources Practice in the Southeast. She specializes in the assessment, design, and monitoring of stream and wetland sites. During her time at KCI, Ms. Knight has utilized her background in stream and wetland ecosystems to complete restoration design, hydrologic and hydraulic modeling, geospatial analysis, geomorphologic assessments, vegetative monitoring, permitting, stream and groundwater gauge installation and monitoring, fish surveys, and macroinvertebrate collections.

PROJECT EXPERIENCE

TENNESSEE STREAM MITIGATION PROGRAM, BLEDSOE CREEK STREAM RESTORATION - Sumner County, TN.

ENVIRONMENTAL SCIENTIST - KCI will provide professional assessment, design and construction observation services to facilitate the restoration of approximately 6,837 linear feet of Bledsoe Creek and two unnamed tributaries near Bethpage, in Sumner County, TN. The site is on a single parcel with a single landowner.

NORTH CAROLINA DIVISION OF MITIGATION SERVICES, CANE CREEK TRIBUTARY RESTORATION SITE - **Person County, NC**

ENVIRONMENTAL SCIENTIST - KCI developed a restoration plan of approximately 17,000 LF of headwater tributaries that involved a combination of stream restoration and enhancement of B and Bc channel types. The project reaches were designed as restoration or enhancement based on the level of departure from a stable stream system. Ms. Knight-Meng led the geomorphic assessment of this project. She designed the restoration of the streams on the eastern half of the project, completed the restoration plan, and acquired necessary permits.

TENNESSEE STREAM MITIGATION PROGRAM, BROWNSVILLE BYPASS STREAM RELOCATION - Haywood County, TN.

ENVIRONMENTAL SCIENTIST - Due to the establishment of the Brownsville Bypass, it is necessary to relocate a stream as part of the project's on-site mitigation requirements. KCI conducted functional stream assessments, and prepared a mitigation plan and design for this relocation to support permitting. Draft final plans have been provided to TDOT and the roadway design consultant. Ms. Knight-Meng assisted with the preparation of final mitigation plans.

Professional Certificate in Watershed Management Rosgen River Morphology and Applications Level II Rosgen Applied Fluvial Geomorphology Level I

EDUCATION

MS / Wildlife Ecology and Conservation / University of Florida / 2009 BS / Environmental Management / Indiana University / 2003

YEARS OF EXPERIENCE 12

BRAD SHOGER

SENIOR ENVIRONMENTAL SCIENTIST / PROJECT MANAGER

Mr. Shoger is the lead project manager in Indianapolis. Mr. Shoger has twelve years of experience in the natural resources field, specializing in stream and wetland restoration and wildlife ecology. He manages a wide variety of projects and is responsible for client coordination, stream assessments, wetland delineations, forest habitat evaluations, wildlife surveys, and preparation of technical reports. He has concurrently managed annual mitigation monitoring at more than 40 sites, including managing field staff, client coordination, site remediation and permit compliance. Mr. Shoger has successfully demonstrated that he can handle complex projects, with multiple constraints, in a timely and efficient manner.

PROJECT EXPERIENCE

INDIANA DEPARTMENT OF TRANSPORTATION (INDOT), I-69 ENVIRONMENTAL MITIGATION AND MONITORING - **Southwestern, IN.**

PROJECT MANAGER - KCI is monitoring mitigation sites associated with construction of Sections 1 through 4 of I-69 on new alignment through southwestern Indiana. This \$10 million, 12-year contract involves yearly monitoring and maintenance of wetland, stream, and forested bat habitat mitigation. Monitoring consists of yearly vegetation assessment, wetland determinations/delineations, stream geomorphology, hydrologic monitoring, and photographic documentation. KCI also provides adaptive management services by making and implementing maintenance recommendations for bringing under performing sites into compliance with permit requirements. KCI is currently conducting design/build remediation on three failing stream mitigation sites Mr. Shoger provides client and agency coordination, oversees adaptive management and site remediation design, and oversees field data collection, analysis, and reporting.

INDOT, I-70 SIX POINTS ROAD STREAM RELOCATION PROJECT - Hendricks and Marion Counties, IN.

PROJECT MANAGER - KCI provided end-to-end stream relocation services for 2.5 miles of channel that included routing five stream channels into two larger stream channels using a hybrid of natural channel design and hydraulic engineering approaches due to the urban and developing watershed. This project was the single largest stream mitigation project in INDOT history. KCI performed eight years of annual monitoring including electrofshing, macroinvertebrate collection, QHEI habitat assessment, vegetation survival, pebble counts, bulk sieve analysis, and geomorphic survey. Geomorphic survey included 35 cross-sections and 7 longitudinal profiles. Mr. Shoger lead data collection, analysis, report preparation, client communication, and Agency coordination for this project.

Certified Ecological Restoration Professional Rosgen River Morphology and Applications Level II Rosgen Applied Fluvial Geomorphology Level I FAA Part 107 UAS Remote Pilot Wilderness First Aid Trained

EDUCATION

MS / Ecological Restoration / University of Florida / 2017 BS / Biology / Palm Beach Atlantic University / 2013

YEARS OF EXPERIENCE 8

SAMANTHA LOUTZENHISER, CERP

ENVIRONMENTAL SCIENTIST

Ms. Loutzenhiser is the Sr. Environmental Scientist in Indianapolis. She has seven years of professional experience in the natural resources field, specializing in stream and wetland restoration, invasive species management, geographic information systems, and is a certified drone pilot. Ms. Loutzenhiser has lead field data collection and invasive species management for more than 40 mitigation sites concurrently and regularly coordinates with the client regarding monitoring and maintenance efforts.

PROJECT EXPERIENCE

INDOT, I-70 SIX POINTS ROAD STREAM RELOCATION PROJECT - Hendricks and Marion Counties, IN.

ENVIRONMENTAL SCIENTIST - Ms. Loutzenhiser was on the monitoring team for the single largest stream mitigation project in INDOT history. Yearly site monitoring included electrofishing, macroinvertebrate collection, QHEI habitat assessment, vegetation survival, pebble counts, bulk sieve analysis, and geomorphic survey. Geomorphic survey included 35 cross-sections and 7 longitudinal profiles. Ms. Loutzenhiser collected and analyzed field data as well as helped write the yearly monitoring report.

NORTH CAROLINA DIVISION OF MITIGATION SERVICES, TWIN BAYS WETLAND RESTORATION - Wake County, NC.

ENVIRONMENTAL SCIENTIST - Full Delivery Project restored elevation of local groundwater and surface water levels with the goal of restoring a native forested hardwood wetland community. Ms. Loutzenhiser utilized the spatial relationship between points representing hydroperiod to calculate acreage of wetland meeting success criteria. With this data, she was able to create report exhibits and predict the acreage of wetlands under a variety of conditions.

ECOLOGIC, EAGLE CREEK PARK HERPETOFAUNAL SURVEYS - Indianapolis, IN. ENVIRONMENTAL SCIENTIST - Ms. Loutzenhiser assisted with wildlife data collection and served as lead GIS Analyst for the project. Ms. Loutzenhiser collected, managed, and interpreted GIS data during the herpetofaunal surveys from 2014-2018. Ms. Loutzenhiser compared LiDAR elevation data with manually surveyed crayfish burrow location densities and capture points of Kirtland's snake (*Clonophis kirtlandii*) to predict potential habitat usage of the Kirtland's snake within the survey site. This information can be used to target specific areas for future intensive survey efforts.

NCDWR Surface Water Idenitifcation Training Swamp School Wetland Delineation Training Licensed Soil Scientist in Training Rosgen River Morphology and Applications Level II Rosgen Applied Fluvial Geomorphology Level I

EDUCATION

Certificate / Soil Science / North Carolina State University / 2020 BA / Biology / University of North Carolina at Chapel Hill / 2013

YEARS OF EXPERIENCE 10

TOMMY SEELINGER

SOIL SCIENTIST

Mr. Seelinger is an environmental scientist in the natural resource management practice. He has experience in a wide range of environmental resource areas including analyzing wetland monitoring data, installing and downloading groundwater and surface water wells, assisting in wetland delineations, cultural resources, endangered and threatened species, plant surveys, invasive species treatment, monitoring wetlands and streams, and experience in preparing mitigation monitoring reports, GPS field work and permitting.

PROJECT EXPERIENCE

NORTH CAROLINA DIVISION OF MITIGATION SERVICES, CEDAR BRANCH RESTORATION - **Randolph County, NC.**

ENVIRONMENTAL SCIENTIST - KCI will oversee restoration of 7,047 linear feet of headwater and second order streams for the Cedar Branch Stream site located in Randolph County within the Yadkin River Basin. This project will restore the stream function and hydrology, maintain and enhance water quality, and improve the fish and wildlife habitat. KCI will provide a Categorical Exclusion report, conservation easement plat and document, a draft and final mitigation plan, and assist with 404-401 permitting. KCI will also provide site monitoring for seven years.

NORTH CAROLINA DIVISION OF MITIGATION SERVICES, JACOBS LADDER AND LANDING MONITORING - **Rowen County, NC.**

ENVIRONMENTAL SCIENTIST - Together the sites include over 10,000 LF of stream for the NCDMS. The monitoring for the two sites consisted of over 6,200 LF of longitudinal profile survey, 21 cross sections with Wolman pebble counts, 28 permanent vegetation monitoring plots, upkeep of 4 pressure transducer stream gauges, and visual assessment and identification of potential problem areas.

NORTH CAROLINA DIVISION OF MITIGATION SERVICES, BUFFALO FLATS MONITORING - Cabbarrus County, NC.

ENVIRONMENTAL SCIENTIST - This project for the North Carolina Division of Mitigation Services included over 20 acres of wetlands. Mr. Seelinger assisted with the creation of the baseline report using data collected by others on the team and oversaw the monitoring of this site from Monitoring Year 01 through project closeout. This included sampling 13 permanent vegetation monitoring plots, upkeep and bi-monthly downloads of 12 pressure transducer wetland gauges, annual soil profile monitoring at two locations, and visual assessment and identification of potential problem areas. Mr. Seelinger was also in charge of annual monitoring reports.

FAA Part 107 UAS (Drone) Pilot Licensed Commercial Pesticide Applicator - WI

EDUCATION

BS / Biology / Albion College / 2016

YEARS OF EXPERIENCE

HART DAVIS

ENVIRONMENTAL SCIENTIST

Mr. Davis is an environmental scientist working out of KCI's La Crosse office. He has four years of professional experience in the natural resources field, specializing in invasive species management and data collection. He currently is working on two projects in Wisconsin and is responsible for invasive species management, vegetation surveys, coordinating and planning of planting, aerial photography and preparation of technical reports. Mr. Davis has consistently shown a strong work ethic and an eye for detail.

PROJECT EXPERIENCE

WISCONSIN DEPARTMENT OF NATURAL RESOURCES, MEACHEM ROAD FULL DELIVERY RESTORATION - **Racine, WI.**

ENVIRONMENTAL SCIENTIST - The Meachem Road Restoration Site is a 61.57 acre design build project. KCI has partnered with the Wisconsin Wetland Conservation Trust on this 10-year project that will re-establish a functioning wetland complex while providing water quality improvements for onsite drainages leading to Lake Michigan. Construction of the site was completed in 2021 and is being monitored yearly for achievement of performance standards. Monitoring consists of yearly vegetation assessment, wetland determinations/delineations, hydrologic monitoring, and photographic documentation. Mr. Davis currently leads all data collection and maintenance activities at the site.

WISCONSIN DEPARTMENT OF NATURAL RESOURCES, FRONEY ROAD RESTO-RATION SITE - **Bayfield County, WI.**

ENVIRONMENTAL SCIENTIST - KCI designed, built, and is now monitoring this 40-acre site near Port Wing, WI in partnership with the Wisconsin Wetland Conservation Trust. This project will re-establish a functioning boreal forest upland/wetland complex while increasing the functions of existing wetlands on and adjacent to the site. This 10-year project involves yearly monitoring and maintenance of a variety of wetland communities. Monitoring consists of yearly vegetation assessment, wetland determinations/delineations, hydrologic monitoring, and photographic documentation. Mr. Davis currently leads all data collection and maintenance activities at the site.

3 PROJECT EXPERIENCE

FULL DELIVERY AND DESIGN/BUILD RESTORATION PROJECTS

KCI has been active in the development of mitigation bank sites through Full Delivery Programs (FDP) and design/build process since 2000. Overall, KCI has undertaken \$55 million in projects in the last 19 years, representing 45 projects and the production of 392 wetland and more than 230,000 stream credits.

Full Delivery Programs (FDP) solicit the purchase of credits from "providers" who are responsible for the location, acquisition, design, permitting, construction, and monitoring of the site over its 10-year development process. Projects are awarded through a competitive evaluation process of the technical and unit cost proposals of the projects. As a provider, KCI must conduct detailed analysis of the site for ecological value, agency acceptance, credit generation and economic viability as part of the submission process. Successful completion of these long-term projects requires a detailed understanding of all these key aspects. The FDP is the preferred method of credit delivery by the North Carolina Department of Mitigation Services.

After successful award of a contract to produce the FDP mitigation bank credits, KCI becomes responsible for all aspects of credit generation. After approval of the Mitigation Banking Instrument (MBI), KCI constructs the project through our subsidiary construction company, KCI Environmental Technologies and Construction Inc. After construction, KCI monitors and manages the sites throughout the monitoring period. Yearly monitoring reports are submitted to the IRT to determine credit production.

In addition to the North Carolina program, KCI has been implementing FDP sites in Tennessee for Tennessee Department of Transportation (TDOT) and Tennessee Stream Mitigation Program (TSMP) and in Wisconsin for the Wisconsin Wetland Conservation Trust (WWCT). KCI is the only firm to work with both the Tennessee and North Carolina in-lieu-fee mitigation programs continuously since their inceptions. KCI has produced 99.9% of stream credits and 100% of the wetland credits at agency close out for these projects to date.

PROJECT EXPERIENCE TABLE

	R	EGION	I / CHARACTER	CREDIT SUMMARY			T۱						
Project Name	Contract Year	State	Physiographic Province	Watershed Character	Wetland Acres	Stream LF	Assessment	Design	Const. Managemen	Construction	Monitoring	Natural Channel Design	Client
Rich Fork	2000	NC	Piedmont	Rural	21.5	3,400	Х	Х	Х	Х	Х	Y	NCWRP
Daniel's Farm	2002	NC	Piedmont	Rural	31.7	N/A	Х	Х	Х	Х	Х	N	NCEEP
Collins Creek	2005	NC	Piedmont	Rural	N/A	8,933	Х	Х	Х	Х	Х	Y	NCEEP
Glen Raven	2005	NC	Piedmont	Rural	N/A	3,405	Х	Х	Х	Х	Х	Y	NCEEP
Brown Farm	2005	NC	Piedmont	Rural	26.3	N/A	Х	Х	Х	Х	Х	N	NCEEP
Daniels Farm	2005	NC	Piedmont	Rural	19.2	N/A	Х	Х	Х	Х	Х	Y	NCEEP
Harrell	2005	NC	Coastal	Rural	15.0	18,238	Х	Х	Х	Х	Х	Y	NCEEP
Cane Creek Tributary	2005	NC	Piedmont	Rural	N/A	14,622	Х	Х	Х	Х	Х	Y	NCEEP
Farrar Dairy	2006	NC	Piedmont	Rural	61.9	11,881	Х	Х	Х	Х	Х	Y	NCEEP
Dog Bite Creek	2006	NC	Mountain	Rural	N/A	3,265	Х	Х	Х	Х	Х	Y	NCEEP
Normans Pasture	2008	NC	Coastal	Rural	15.6	N/A	Х	Х	Х	Х	U	N	NCEEP
Jacob's Ladder	2010	NC	Piedmont	Rural	N/A	4,935	Х	Х	Х	Х	Х	Y	NCEEP
Jacob's Landing	2010	NC	Piedmont	Rural	N/A	4,655	Х	Х	Х	Х	Х	Y	NCEEP
Twin Bays	2011	NC	Coastal	Rural	11	N/A	Х	Х	Х	Х	U	N	NCEEP
Stanley's Slough	2011	NC	Coastal	Rural	2.8	4,248	Х	Х	Х	Х	U	Y	NCEEP
Bear Basin	2011	NC	Coastal	Rural	10	N/A	Х	Х	Х	Х	U	N	NCEEP
Norman's Pasture	2011	NC	Coastal	Rural	15.6	N/A	Х	Х	Х	Х	U	N	NCEEP
Bowl Basin	2011	NC	Coastal	Rural	10.8	N/A	Х	Х	Х	Х	U	N	NCEEP
Stanley's II	2012	NC	Coastal	Rural	6.5	N/A	Х	Х	Х	Х	U	Ν	NCEEP
Norman's Pasture II	2013	NC	Coastal	Rural	9.4	332	Х	Х	Х	Х	U	Y	NCDMS
May Prairie	2014	TN	Interior Plateau	Rural	N/A	4,680	Х	Х	Х	Х	U	Y	TSMP
Sandy Bridge Farm	2015	NC	Piedmont	Rural	4.1	1,600	Х	Х	Х	Х	Х	Y	NCDMS
Cedar Branch	2015	NC	Piedmont	Rural	N/A	7,000	Х	Х	Х	Х	U	Y	NCDMS
Rough Horn Swamp	2015	NC	Coastal	Rural	31	N/A	Х	Х	Х	Х	U	Ν	NCDMS
Stony Fork	2016	NC	Piedmont	Rural	N/A	7,187	Х	Х	Р	Р	Р	Y	NCDMS
Mill Dam Creek	2016	NC	Piedmont	Rural	N/A	11,000	Х	Х	Р	Р	Р	Y	NCDMS
Hair Sheep	2017	NC	Appalachians	Rural	1	3,100	U	Р	Р	Р	Р	Y	NCDOT
Black Bull	2017	NC	Piedmont	Rural	3.1	6,101	U	Р	Р	Р	Р	Y	NCDOT
Froney Road Wetland	2018	WI	Superior Coastal Plain	Rural	29	N/A	Х	Х	Х	Х	U	Ν	WWCT
Rough Horn II	2018	NC	Coastal	Rural	20.7	4,394	Х	Х	Х	Х	U	Y	NCDMS
Hip Bone Creek	2018	NC	Piedmont	Rural	4.2	3,000	U	Р	Р	Р	Р	Y	NCDMS
Round Hill Branch	2018	NC	Appalachians	Rural	N/A	2,130	U	Р	Р	Р	Р	Y	NCDMS
Morgan Branch	2018	NC	Appalachians	Rural	N/A	11,703	U	Р	Р	Р	Р	Y	NCDMS
Brownsville Bypass	2018	ΤN	MS Valley Plains	Rural	N/A	950	Х	Х	Х	Х	U	Y	TDOT

	RI	EGION	I / CHARACTER	CRE	DIT SUM	MARY	TYPE OF PROJECT WORK + CURRENT STATUS						
Project Name	Contract Year	State	Physiographic Province	Watershed Character	Wetland Acres	Stream LF	Assessment	Design	Const. Management	Construction	Monitoring	Natural Channel Design	Client
West TN State Penitentiary	2019	ΤN	MS Valley Plains	Rural	N/A	39,000	Х	U	Ρ	Ρ	Ρ	Ν	TSMP
Lockeland Springs	2019	ΤN	Interior Plateau	Urban	N/A	5,270	Х	Х	Ρ	Р	Р	Y	TSMP
SR-136	2019	ΤN	Interior Plateau	Urban	N/A	2,000	Х	Х	Ρ	Р	Р	Y	TDOT
Bledsoe Correctional	2019	ΤN	SW Appalachians	Rural	N/A	950	Х	Х	Х	Х	U	Y	TDOT
Meachem Road Wetland	2019	WI	Southern Lake Michigan Coastal	Urban	41.0	N/A	Х	Х	U	U	Р	Ν	WWCT
SR-455	2019	ΤN	Interior Plateau	Urban	N/A	400	Х	U	Р	Р	Ρ	Y	TDOT
TOTAL CREDITS 392.4 230,429 Image: Comparison of the second s													

X = completed, U = underway, P = pending, N/A = not part of project

Clients: NCEEP-NC Ecosystem Enhancement Program, NCDMS-NC Division of Mitigation Services, NCDOT - NC Department of Transportation, TDOT-TN Department of Transportation, TSMP-TN Stream Mitigation Program, WWCT-WI Wetland Conservation Trust

FARRAR DAIRY STREAM + WETLAND RESTORATION

HARNETT COUNTY, NC

KCI assessed existing conditions, developed the appropriate stream and wetland design, and completed the construction at the Farrar Dairy site. The project provides mitigation credit for stream and wetland impacts by restoring, enhancing, and preserving 13,044 LF of stream and 112 acres of wetland. The project restored streams, riparian buffers and forested wetlands along the North Prong of Anderson Creek (NPAC), the main stream through the site, to reestablish an interconnected floodplain corridor. The project streams and wetlands had become degraded through poor grazing management and vegetation removal.

The project is an opportunity to return a highly altered system to a contiguous stream and wetland complex. KCI performed a site analysis and developed a design to raise the NPAC bed elevation and restore a natural meander pattern to reconnect the stream to its historic floodplain. The restoration plan also called for filling and plugging ditches in the drained hydric soils to restore saturated hydrologic conditions, planting a functional Coastal Plain Small Swamp Stream community to create a riparian buffer and wetland

complex, and grading former agricultural fields to redevelop wetland microtopography. Incoming NPAC tributaries were returned to natural channel forms. Existing wetlands were enhanced by removing berms, treating invasive species, and partly filling in open water impoundments. The project also connected restored areas to a stream and wetland preservation area along the downstream end of the creek.

Close out of the site occurred in 2014.

OWNER REFERENCE: Tim Baumgartner, 919.707.8543

LOCATION: Harnett County, NC

CLIENT: North Carolina Ecosystem Enhancement Program

VALUE: \$6 million

DELIVERY METHOD: Full Delivery

SERVICES:

- Site assessment and design
- Restoration implementation
- Monitoring

MEACHEM ROAD WETLAND RESTORATION

RACINE COUNTY, WI

KCI was tasked to undertake the restoration of 60-acre wetland system in Racine County, Wisconsin. The primary impacts to the site stem from anthropogenic modifications (smoothed, ditched and tiledrained and plowed) to enable agricultural production, denuding all wetland function. As a Full Delivery Project, KCI is responsible for site acquisition, assessment, design, construction, monitoring and management throughout its 10-year restorative process. Objectives of the restoration include:

- Re-establish a functioning wetland complex that complements the adjacent State Natural Area and increases the size of core habitat in the area.
- Increase functions of the existing wetlands on the site.
- Provide water quality improvements for drainages contributing to the site prior to entering Lake Michigan.

The site is situated within the Southwestern Lake Michigan Watershed Cataloging Unit and the Southern Lake Michigan Coastal Ecological landscape. Due to the degree of hydrologic modification the site has experienced over the past 100 years, a detailed water budget model was developed to evaluate the current condition and determine the appropriate community types to be restored on site. The model evaluated each wetland cell on site to determine input, output, potential evapotranspiration and storage. The above objectives will be achieved through the disabling of all drain tile, re-establishing historic drainage patterns, disabling water control structures, re-establishing micro topography and re-vegetating native species to support the targeted ecological community types. The successful achievement of the objectives will result in the restoration of a diverse wetland habitat complex composed of 7.76 acres of wooded swamp, 26.12 acres of shrub carr, 11.31 acres of inland fresh meadow and 16.38 acres of upland buffer.

AGENCY CONTACT: Josh Brown, WWCT Coordinator, 608.516.3708

LOCATION: Racine County, WI

CLIENT: Wisconsin Department of Natural Resources

VALUE: \$2,223,000

DELIVERY METHOD: Full Delivery

SERVICES:

- Site assessment and design
- Restoration implementation
- Monitoring

NEELEY'S BEND MITIGATION BANK RESTORATION

DAVIDSON COUNTY, TN

In 2018, KCI established the first private stream mitigation bank in Tennessee in over five years. The Neely's Bend Mitigation Bank is well situated in Davidson County on the outskirts of Nashville and its service area includes three rapidly developing HUC-8 watersheds (Lower Cumberland-Sycamore, Stones, and Harpeth). The project includes two streams which had been straightened, channelized, and moved from their historic position in the landscape to their current position. UT-1 and NC-1 were open to livestock degradation and while NC-2 did not have open livestock access, it was degraded from the previous channelization and the invasive dominated riparian corridor. KCI managed to shepherd this project through a regulatory process that was still based in ratio credits but transitioning to functional credits. For this project KCI staff had to use a functional justification to achieve ratio-based credits. KCI staff handled all phases of this project including site selection, landowner negotiations, real estate optioning, topographic survey, morphologic survey and site assessment, wetland delineation, prospectus development, mitigation plan and MBI development, permitting, natural channel design, construction plans, SWPPP development, land improvements, construction, and postconstruction monitoring.

Both streams were restored with a Priority 1 approach, reconnecting them to their historic floodplain. The UT-1 stream was able to be relocated to its old location in the valley, which reconnected it to a previously degraded wetland. The restoration of this reach and connection to the wetland further improved the hydrology functions in this valley and help with nutrient cycling and habitat connectivity.

In addition to the restored streams, KCI installed fencing for the landowner to protect the conservation easement and a new well for the landowner with offline watering for his cattle.

Unique to this site, KCI designed and constructed a new type of constructed riffle that included woody debris in the riffle bed. This design was the first of its kind and is intended to provide additional habitat diversity within riffles for macroinvertebrates. The installed brush will collect organic matter and create additional deposition and flow regimes within the typical riffle habitat seeking to increase instream habitat diversity.

This bank has resulted in over 4,000 linear feet of restored and enhanced streams. The new streams have a stable riffle pool morphology, woody debris habitat structures, a developing native riparian buffer, and are protected by a conservation easement. Construction was completed in early 2019 and 2020 represented the second year of post-construction monitoring. The site is currently meeting the performance standards set in the mitigation plan and MBI and is on its way to successful regulatory close out after completion of the monitoring period.

LOCATION: Davidson County, TN VALUE: \$1.4 million DELIVERY METHOD: Design-Build SERVICES:

- Site assessment
- Survey
- Priority 1 stream restoration
- Permitting (404/401 and sediment and erosion control)
- Construction (design/build)

ACUSHNET RIVER FISH PASSAGE PROJECT

ACUSHNET, MA

As a sub-consultant, KCI provided technical fish passage expertise and concept through final design services for Acushnet River Fish Passage. The Acushnet River Fish Passage Project provided anadromous fish, particularly river herring (*Alosa aestivalis, A. pseudoharengtis*), the target species, access to the Acushnet River in Acushnet, MA. Originally, there were three blockages to fish passage on the river. Fish passage has already been restored at the uppermost blockage, the dam at the 200-acre New Bedford Reservoir, with the installation of a 300' long denil fish ladder. However, the Sawmill Dam (the lowermost blockage) and the Hamlin Street Bridge/Dam remained and were the subjects of this scope of work. For both projects, KCI's goal was to provide passage, but avoid or minimize reductions of the existing pond elevations for habitat protection and water supply for cranberry bog operations.

The Sawmill Dam was an earthen dam with a 5-foot high concrete spillway approximately 100 feet in length, with a partially functioning headrace and poorly functioning fishway. The dam created a 9.5acre upstream impoundment and was not suitable for the generation of hydropower. In addition, the dam's owners no longer wished to maintain it. Hamlin Street, a town roadway, acts as a 300-foot earthen dam to the Acushnet River, with three deteriorating concrete and stone masonry weirs providing the spillway. The weirs were located approximately 15 feet upstream of the three stone bridges of Hamlin Street. This dam created a 6.5-acre impoundment and was not suitable for the generation of hydropower, although town herring gardens manage flashboards at one of the spillways to control spring water levels to improve herring passage.

Hydraulics Analysis. Because anadromous fish passage often occurs during the spring, the baseflow is likely affected by rainfall and/or snowmelt. Unless this discharge exceeds that of a two-year recurrence interval, this condition fails to be represented by conventional hydrologic models or data analysis. KCI evaluated field determined dominant discharge, regional regression analysis, and direct-area method comparison of similar watersheds to define the range of flows that occur during fish passage season. Once the range of base flows was agreed upon, the range of design flows was established. Using a combination of these methods, KCI determined the current hydrologic condition under which fish passage was desired. Following separation and analysis of spawning season baseflow, KCI developed proposed discharge, depth and velocity design criteria for fish passage.

Sawmill Dam. A proposed condition HEC-RAS model was developed based on a previously developed RAS model. Based on the naturelike fishway selected, KCI completed a proposed condition HEC-RAS model. The HEC-RAS model was adjusted such that sections within the dam backwater pool reflect water surfaces based on the previously mentioned reservoir routing. Prior to beginning any major modeling, KCI ran some preliminary fishway hydraulics to determine the viability and impact of various options, including step pools and a rock ramp. The team investigated the potential for channel degradation downstream of the dam as a result of the partial dam removal. Finally, KCI compared existing and proposed water surface elevations to ensure that downstream flooding is not worsened by the proposed work efforts in consideration of any applicable state or local requirements. The team documented the study in a hydraulic analysis

ACUSHNET RIVER FISH PASSAGE PROJECT (CONTINUED)

ACUSHNET, MA

report and refined the HEC-RAS model for the selected structure placement associated with one proposed condition. Output of the refined proposed condition was used for determination of stability techniques and sizing of materials using modified USACE method and modified Andrews method.

Hamlin Street Dam. After review of the concept report and a site visit, KCI suggested moving the proposed rock ramp fish passage structure downstream due to the presence of soft unconsolidated material upstream of the dam and the natural flow of the river (toward a bridge opening). KCI identified challenges using training structures in the soft materials to redirect the flow to the rock ramp and the potential for scour at the lower flows. Moving the rock ramp would allow all construction efforts, including stabilizing the stream channel, to be concentrated downstream. KCI developed a revised proposed condition HEC-RAS model based on a previously developed RAS model to account for slit flow scenarios. The HEC-RAS model was adjusted such that sections within the dam backwater pool reflect water surfaces based on the previously mentioned reservoir routing. The team investigated the potential for channel degradation downstream of the dam as a result of the dam removal and compared existing and proposed water surface elevations to ensure that downstream flooding is not worsened by the dam removal, in consideration of any applicable state or local requirements. KCI documented the study in a hydraulic analysis report and refined the HEC-RAS model for the selected structure placement associated with one proposed condition. Output of the refined proposed condition was used for determining stability techniques and sizing of materials using a modified USACE method and modified Andrews method.

Sediment Transport Analysis. KCI supported the prime design firm in performing a sediment transport analysis to estimate proposed

changes in rates and volume and rates of sediment transported through the altered reaches of the Acushnet River. KCI used estimates of material composition from soil borings and additional bed/bar samples to determine sediment characteristics and critical shear stress values. KCI applied standard bedload transport relations (i.e. Meyer-Peter Muller, Dubois, Einstein-Brown, or Wilcock) to estimate these quantities.

Viability Assessment. KCI performed a viability assessment of the Sawmill Dam and Hamlin Street Dam Central Weir.

Preliminary Design and Cost Estimate. KCI prepared design plans and cost estimates for each site. These plans included existing conditions, grading, work plans, proposed conditions, water control (maintenance of stream flow), construction sequence, typical sections, and cross-sections. All plans were developed in conformance with NOAA preferred standards and requirements. KCI developed an estimate of quantities conforming to industry standards and unit costs based on best available regional material information and assumed working conditions

LOCATION: Acushnet, MA

CLIENT: EA Engineering

VALUE: \$145,000

DELIVERY METHOD: Project Specific Contract

SERVICES:

- Hydraulic analysis
- Sediment transport analysis
- Preliminary design and cost estimate

I-70 / SIX POINTS ROAD INTERCHANGE STREAM RELOCATION

INDIANAPOLIS, IN

As the single largest stream restoration project in INDOT history, KCI designed the relocation of over two miles of the East Fork White Lick Creek and North Creek, along with several of their smaller tributaries, resulting in the relocation of five stream channels into two larger channels. The I-70/Six- Points Road Interchange "fasttrack" project was to be completed by June 2005. In order to meet that schedule, stream relocation design plans had to be completed in early 2003, with critical portions of the stream relocation construction completed in mid-2003 and the entire stream relocation construction completed by early 2004. KCI worked under this tight schedule, assisting INDOT with the regulatory agency negotiation for the issuance of the required permits. The project also involved completing a fluvial geomorphologic assessment, sediment transport studies, existing and proposed hydrology and hydraulics conditions, and final design plans, specification and cost estimates in less than a year.

KCI monitored the project for eight years after construction and facilitated the successful close out of the site in 2017.

Annual monitoring included assessments of stream morphology through survey of seven profiles and 39 cross-sections, water quality, stream habitat, fish communities, macroinvertebrate communities, sediment transport, stream hydrology and hydraulics, vegetative success, and performance of installed features. Maintenance activities have included invasive species control, slope drain correction, interchange side ditch repair, additional streambank stabilization under power lines, beaver control, and debris removal.

OWNER REFERENCE: Sandra Bowman, 317.233.5568 LOCATION: Indianapolis, IN CLIENT: Indiana Department of Transportation VALUE: \$2 million DELIVERY METHOD: Open-Ended Contract SERVICES:

- Site assessment
- Design
- Permitting
- Construction administration
- Monitoring

ECOSYSTEM RESTORATION SERVICES AT GRAND LAKE ST. MARYS MERCER COUNTY, OH

KCI serves as the General Engineering Consultant for the Grand Lake St. Marys Lake Restoration Commission. Work executed under this contract includes; Program Management, Project Planning/Development, Community Relations, Environmental documentation/permitting, Survey, Land acquisition support, Engineering studies/Design, Construction Inspection, Construction Administration, Construction Management, Design/Build Implementation, System Commissioning.

Grand Lake St. Marys is a 21 square mile lake supported by a 52 square mile watershed in north western Ohio and has been an influence on the local and regional economy within Auglaize and Mercer Counties, West Central Ohio since its creation. As the health of the lake and its native habitats has thrived, so has the economy. However, the health of the lake in recent years has felt the drastic cumulative effects of gradual land use changes, related to both growth and development surrounding the immediate lake area and the agricultural industry boom within the surrounding watershed.

These impacts have affected both recreational and economic activities throughout the lake communities. Although numerous plans to reduce the levels of pollution entering the lake have been developed over the years, the lake's water quality continues to suffer from nutrient inputs and other water quality degradation issues leading to dangerous levels of algae microcystin toxin. These threats endanger public health and welfare. Algae blooms were of such a magnitude and duration during the summer of 2010, that the Ohio Environmental Protection Agency was forced to close the lake to all recreational activity. Overall, the lake is on the verge of a functional breakdown and ecological collapse. Despite improved conservation practices over the years, the algal blooms

are clear indicators of the ecosystems inability to process and utilize the excess and accumulated nutrients.

Grand Lake St. Marys Strategic Restoration Plan – KCl developed a Strategic Plan formulated to provide a framework and timeline for restoration of the lake ecosystem utilizing various projects and economic management tools to implement solutions for current and future lake improvements and revitalization. The Strategic Plan was prefaced on the developing economic opportunities and activities that stem directly and/or indirectly from restoring degraded natural resources within Grand Lake St. Marys (GLSM). The creation of an economy derived from restoration of the lake within the GLSM watershed, will provide a new direction that is both environmentally sustainable and economically viable. Recognizing and correcting problems created by current and past activities and applying a new environmental and economic paradigm to the future offers a challenging, yet unique and exciting opportunity for the communities that have come to rely on the lake and watershed.

Phase I Lake Diagnostic Assessments – A diagnostic assessment of the lake was conducted to define the spatial and functional extent of critical functions being performed by the lake and the geomorphic forces acting upon it.

Sediment Transport Analysis - Sediment transport characteristics for eight drainages contributing to the lake were conducted by: 1) Collecting and analyzing bed material/pavement samples using a modified Wolman pebble count methodology, 2) Collecting and analyzing sub pavement/bar bulk samples through sieve and weight field measurements, and 3) by conducting critical shear stress calculations, devel-

ECOSYSTEM RESTORATION SERVICES AT GRAND LAKE ST. MARYS (CONTINUED) MERCER COUNTY, OH

oped an estimate of sediment transport for each drainage.

Littoral Fringe Functional Assessment – The littoral/riparian fringe of the lake was conducted to determine it functional value for water quality, wildlife habitat, flood tolerance and general species composition. Rankings were developed to qualitatively compare the zones and critical stressors which may be limiting function will be identified. This assessment determined the spatial extents of littoral/riparian features that can be restored, enhanced, ecological engineered to aid in the natural processing of phosphorus from the lake water.

Littoral Process Analysis – A littoral process analysis was conducted through collection

and analysis of data on wind speed, direction, duration and period of occurrence and in conjunction with lake depths determine the anticipated wave energies acting on the system. This information was extrapolated to predict critical areas of wave action on the littoral/riparian zone, loading and distribution of suspended load from the contributing drainages, and define focus areas for work efforts.

Prairie Creek Treatment Train - The Prairie Creek Treatment Train (PCTT) was the initial large scale restoration system to be implemented by Grand Lake St. Marys Restoration Commission and Mercer County Commissioners. KCI coordinated and developed the necessary elements to design, permit, construct, and commission the systems operation. The treatment train (train) consists of multiple Best Management Practices (BMPs) integrated by stream flows that jointly result in improvements to the quality of water discharged into Grand Lake St. Marys (GLSM) from the watershed. The "train" initiates with a stream bed load collector with integrated alum dosing, followed by a constructed wetland to provide secondary treatment, then filtration through a restored wetland for tertiary refinement prior to entering an embayment isolated from the main lake by a berm such that biological filtration and aeration can be employed in advance of discharge into GLSM.

Grant Application Development - KCI prepared grant applications for the Grand Lake Restoration Commission, CIC and Mercer County. Each application required coordination to determine the specific type, location and merits of the project, and justify its technical merits, costs, local match and value to the GLSM Strategic Plan. *On-Site Lake Restoration Manager* - KCI provides agency program management services through on full time on-site position that is responsible for day-to-day operations of the Grand Lake Saint Marys Restoration Commission.

Key responsibilities of this position include; Coordinating with the responsible/respective federal, state, and local agencies and/ or persons managing Grand Lake St. Marys restoration plans and activities, representing the GLSMRC at meetings, assisting in securing funding for projects, acting as project manager for various projects to improve the lake, identifying funding sources, facilitating grant application proposal and agreements, serving on advisory committees and association boards, providing assistance in implementing the Grand Lake St. Marys Strategic Action Plan, facilitating the GLSMRC Board in developing continuing work plans (both short and long-term), by coordinating with other federal, state and local agencies, organizations, and schools, and any other responsibilities associated with the lake. Assists federal, state, and local government agencies and elected office holders in restoring the lake to environmentally acceptable standards through existing or new legislation, manages assigned projects to improve the lake including coordination of design, funding, contract development and award, construction, and activation, monitors and coordinates the operation of systems installed to improve the lake.

OWNER REFERENCE: Jared Ebbing, 419.586.4209

LOCATION: Indianapolis, IN CLIENT: Indiana Department of Transportation VALUE: \$460,000 DELIVERY METHOD: General Engineering Contract SERVICES:

- Sediment transport analysis
- Functional assessment
- Treatment train
- Grant application development
- On-site lake restoration manager

WEHMILLER WETLAND RESTORATION SITE

AUSTIN, IN

The Wehmiller Wetland Restoration Site was developed as part of required mitigation for the I-65 Design Build Best Value project for INDOT. The site is approximately 80 acres located near Austin, IN in the Muscatatuck River watershed and Austin Bottoms Conservation Area. To provide the greatest potential for ecological uplift, KCI staff sought to develop a site adjacent to already protected land. The site is directly adjacent to an Indiana Department of Natural Resources Nature Preserve and required additional coordination to ensure the design plan was approved by DNR ecologists and the site would be acquired for long-term maintenance by DNR.

KCl also negotiated with regulatory agencies to allow for a mosaic of wetland habitats driven by site conditions in the design approach, as opposed to focusing solely on the specific impacted wetland types, which consisted mainly of roadside ditch wetlands. Site restoration plans included decommissioning of over 2 miles of drainage tile on the site through exploratory spot trenching, and then crushing or removing a length of tile where identified. Site design also included the installation of abandoned beaver dam mimics, low, earthen berms planted in willow stakes that stretch across the remnant swales onsite mimicking the beaver dam hydrologic influence seen on neighboring parcels creating a more diverse habitat complex and slowing flow across the site. Site construction was completed in 2020 and it is now in monitoring for regulatory compliance.

OWNER REFERENCE: Steve Sperry, 317.417.3623 LOCATION: Austin, IN CLIENT: Indiana Department of Transportation VALUE: \$587,000 DELIVERY METHOD: Open-Ended Contract SERVICES: • Site identification and assessment

- Permitting
- Site design
- Monitoring

I-69 ENVIRONMENTAL MITIGATION MONITORING + MAINTENANCE

EVANSVILLE TO INDIANAPOLIS, IN

Under a twelve -year contract, KCI is providing monitoring and maintenance services for mitigation sites associated with construction of I-69 Sections 1-4 in southwest Indiana for INDOT. Tasks assigned to date include monitoring of mitigation wetlands, streams, endangered species habitat, construction observation, minor maintenance, and preparation of remedial design plans. Monitoring involves delineation of wetland boundaries, assessment of vegetation, and evaluation of mitigation sites based on established success criteria. Stream monitoring involves visual assessment of stability as well as geomorphic survey of cross-section and profile, pebble counts, and QHEI/HHEI. Hydrology is monitored within wetlands and streams using electronic data loggers as well as identification of traditional hydrologic indicators. Currently, there are 35 monitored on Section 1-4 sites totaling approximately 3,475 acres containing 250 acres of wetland restoration and over 57,350 linear feet of stream restoration.

Annual reports summarizing site data are submitted to each regulatory agency and indicate whether the site is compliant with established permit requirements. As part of this contract, KCl is responsible for performing maintenance work at the sites to bring under-performing areas into compliance. Maintenance activities are completed in an adaptive management framework and typically consist of invasive species management and supplemental vegetation planting. KCl is currently completing remedial designs on five failing stream mitigation sites, all of which KCl/ETC will be completing the remedial construction. Remedial design tasks included geomorphological data collection, hydrology analyses, departure analyses, and the submittal of a remedial memorandum to the client to outline the current state of the stream and the recommended remedial approach. Design plans were then prepared to the 60% stage for permitting and construction In order to efficiently and securely manage monitoring data, KCI's geospatial solutions practice was asked to develop an Environmental Management System (commonly referred to as GeoFusion) which allows users to geographically relate project documents to spatial features within a GIS interface. Geofusion allows controlled access to all project data and yearly monitoring reports are submitted electronically through the application to regulatory agency reviewers.

OWNER REFERENCE: Steve Sperry, 317.232.5206

LOCATION: Southwestern, IN CLIENT: Indiana Department of Transportation VALUE: \$10 million DELIVERY METHOD: Open-Ended Contract

SERVICES:

- Monitoring
- Maintenance
- Site remediation

GEOGRAPHIC PRESENCE

We understand the logistics required to implement long-term mitigations projects and are extremely confident in our ability to implement the projects from our office locations in the Midwest. Our closest office location is in La Crosse, WI. We have additional local resources in our Indianapolis, IN office.

KCI's strategically located offices share resources and personnel when necessary. It is our customary practice to shift personnel and resources between offices to meet the staffing and scheduling requirements of a particular project.

Our offices are immediately accessible to each other through the intranet, Internet, e-mail, fax, and telephone. Each office has technical and administrative support, production facilities, and QA /QC procedures to successfully complete task assignments.

KCI TECHNOLOGIES, INC. Joe Pfeiffer, SPWS, Regional Practice Leader 300 2nd Street North Suite 350 La Crosse, WI 54601 608.790.9634 joe.pfeiffer@kci.com