Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

WETLAND ENHANCEMENT

CODE 659

(ac)

DEFINITION
The augmentation of wetland functions beyond the original natural conditions on a former, degraded, or naturally functioning wetland site; sometimes at the expense of other functions.

PURPOSE
To increase the capacity of specific wetland functions (such as habitat for targeted species, and recreational and educational opportunities) by enhancing:

- Hydric soil functions (changing soil hydrodynamic and/or bio-geochemical properties)
- Hydrology (dominant water source, hydroperiod, and hydrodynamics)
- Vegetation (including the removal of undesired species, and/or seeding or planting of desired species)
- Enhancing plant and animal habitats

CONDITIONS WHERE PRACTICE APPLIES
This practice applies to any degraded or non-degraded wetland sites with hydric soils, where the objective is to enhance selected wetland functions to conditions different than those that originally existed on the site.

This practice does not apply to:

- The treatment of point and non-point sources of water pollution (Constructed Wetland – Code 656);
- The rehabilitation of a degraded wetland or the reestablishment of a former wetland so that soils, hydrology, vegetative community, and habitat are a close approximation of the original natural condition and boundary that existed prior to the modification (Wetland Restoration - Code 657).
- The creation of a wetland on a site location that was historically non-wetland. (Wetland Creation – Code 658).
- The management of fish and wildlife habitat on wetlands enhanced under this standard.
- Excessive nutrient, pesticide, or other pollutant inflows shall be addressed. Examples of excessive inflows include direct runoff from a feedlot or other obvious pollution source, an actively eroding gully emptying into the site, or a poorly treated watershed that is contributing sediment and its associated pollutants.
CRITERIA

General Criteria Applicable to All Purposes
The purpose, goals, and objectives of the enhancement shall be clearly defined in the enhancement plan, including soils, hydrology, vegetation, and fish and wildlife habitat criteria that are to be met and are appropriate for the site and the project objectives.

The planning process will evaluate the impact of this practice on existing non-degraded wetland functions and/or values. The relative increase or decrease in functions will be assessed with the use of a functional assessment procedure or state approved equivalent. The functions to be increased or decreased on wetlands found to be currently functioning at or near a “reference” condition will be documented.

The soils, hydrology, and vegetative conditions existing on the site, the adjacent landscape, and the contributing watershed shall be documented in the planning process.

The nutrient and pesticide tolerance of the plant and animal species likely to occur shall be evaluated where known nutrient and pesticide contamination exists. Sites suspected of containing hazardous material shall be tested to identify appropriate remedial measures. If remedial measures are not possible or practicable, the practice shall not be planned.

Upon completion, the site shall meet the appropriate wetland criteria and provide wetland functions as defined in the project’s objectives.

Invasive species, federal/state listed noxious plant species, and nuisance species (e.g., those whose presence or overpopulation jeopardize the practice) shall be controlled on the site as necessary to enhance wetland functions. The establishment and/or use of non-native plant species shall be discouraged.

Criteria for Hydric Soil Enhancement
Enhancement sites will be located on soils that are hydric. Hydric soil that is excavated to improve wetland hydrology shall be removed when possible. Hydric soil that cannot be removed shall be spread to a minimum depth of 4 inches.

Changes to soil hydrodynamic and bio-geochemical properties such as permeability, porosity, pH, or soil organic carbon levels shall be made as needed to meet the planned objectives.

Criteria for Hydrology Enhancement
The hydroperiod, hydrodynamics, and dominant water source of the enhanced site shall meet the project objectives. The enhancement plan shall document the adequacy of available water sources based on groundwater investigation, stream gage data, water budgeting, or other appropriate means.

The work associated with the wetland shall not adversely affect adjacent properties or other water users unless agreed to by signed written letter, easement or permit.

Timing and level setting of water control structures required for the establishment and maintenance of vegetation, soil, and wildlife and fish habitat functions shall be created to support the wetland type being established and create the wetland function(s) desired. Refer to Biology Technical Note 2 to create diversity of water depths and vegetative communities.

Other structural practices, macrotopography and/or microtopography may be used to meet the planned objectives.

If embankments, water control structures, surface or subsurface drainage manipulation, or grade stabilization structures are required, use Wisconsin NRCS Conservation Practice Standard (WI NRCS CPS), Wetland Restoration (657), or Structure For Water Control (587). Macrotopographic features, including ditch plugs installed in lieu of re-filling surface drainage ditches, shall meet the requirements of
other practice standards to which they may apply due to purpose, size, water storage capacity, hazard class, or other parameters. If no other practice standard applies, they shall meet the requirements for WI NRCS CPS, Dike (356) unless there is no potential for damage to the feature or other areas on or off site due to erosion, breaching, or overtopping.

Water control structures that may impede the movement of target aquatic species or species of concern shall meet the criteria in WI NRCS CPS, Fish Passage (396).

Criteria for Vegetative Enhancement
Hydrophytic vegetation restoration shall be of species typical for the wetland type(s) being established and the varying hydrologic regimes and soil types within the wetland. Preference shall be given to native wetland plants with localized genetic material. Refer to Wisconsin Agronomy Technical Note 5 for specific details on seeding.

Where natural colonization of acceptable species can realistically be expected to occur within 5 years, sites may be left to re-vegetate naturally. It is beneficial to top-dress at least 50% of the site with soil containing a seed bank of desired native species to a minimum depth of 4 inches.

Adequate substrate material and site preparation necessary for proper establishment of the selected plant species shall be included in the plan.

Where planting and/or seeding is necessary, the minimum number of native species to be established shall be based on a reference wetland unless the objectives require a different plant community.

- If the targeted hydrophytic vegetation is predominantly herbaceous, species diversity will be maximized as appropriate to meet the targeted functions. Seeding rates shall be based upon the percentage of pure live seed and labeled with a current seed tag from a registered seed laboratory identifying the germination rate, purity analysis, and other seed statistics.
- Where the dominant vegetation will be forest or woodland community types, vegetation establishment will include a mix of woody species (trees and/or shrubs) adequate to establish the reference wetland community.

CONSIDERATIONS

Soil Considerations
Consider making changes to physical soil properties, including:

- Increasing or decreasing saturated hydraulic conductivity by mechanical compaction or tillage, as appropriate,
- Incorporating soil amendments,
- The effect of construction equipment on soil density, infiltration, and structure.

Hydrology Considerations
Consider the general hydrologic effects of the enhancement, including:

- Impacts on downstream stream hydrographs, volumes of surface runoff, and groundwater resources due to changes of water use and movement created by the enhancement.

Consider adverse effects on downstream flows or aquifers that would impact other water uses or users.

Consider the impacts of water level management, including:

- Increased predation due to concentrating aquatic organisms, including herptivores, in small pool areas during draw downs.
- Increased predation of amphibians due to high water levels that can sustain predator fish.
• Decreased ability of aquatic organisms to move within the wetland and from the wetland area to adjacent habitats, including fish and amphibians, as water levels are decreased.
• Increases in water temperature on-site, and in off-site receiving waters.
• Changes in the quantity and direction of movement of subsurface flows due to increases or decreases in water depth.
• The effect changes in anaerobic conditions have on soil bio-geochemical properties; including oxidation/reduction, and maintenance of organic soils.
• The potential for water control structures, dikes, and macrotopographic features to negatively impact the movement of non-target aquatic organisms.

Vegetation Considerations
Consider:

• The relative effects of planting density on fish and wildlife habitat versus production rates in woody plantings.
• The potential for vegetative buffers to increase function by trapping sediment, cycling nutrients, and removing pesticides.
• The selection of vegetation for the protection of structural measures that is appropriate for wetland function.
• The potential for invasive or noxious plant species to establish on bare soils after construction and before the planned plant community is established.
• The use of prescribed burning to maintain wetland and adjacent upland plant communities.

Fish and Wildlife Habitat Considerations
Consider:

• The addition of coarse woody debris to provide an initial carbon source and fish and wildlife cover.
• The potential to restore habitat capable of supporting fish and wildlife with the ability to control disease vectors such as mosquitoes.
• The potential to establish fish and wildlife corridors linking the site to adjacent landscapes, streams, and water bodies and to increase the sites colonization by native flora.
• The need to provide barriers to passage for unwanted or predatory fish and wildlife species.
• Consider nutrients, pesticides, and other pollutants contained in surface and ground water as well as accumulated sediments, that may have an adverse effect on wetland vegetation. The nutrient and pesticide tolerance of the species planned along with the wetland objectives should be considered where known nutrient and pesticide contamination exists.
• Consider the need for buffer practices beneficial to wildlife around the perimeter of the site. Plan practices such as WI NRCS CPS, Filter Strip (393); Field Border (386), and or Conservation Cover (327) to create a vegetative buffer between the management unit and the adjacent land uses. This buffer should be at least 30 feet wide and match WI NRCS CPS, Filter Strip (393).
• Consider the use of these areas by reptiles and amphibians. Stacked logs and/or rock piles may be located near the water’s edge to provide critical habitat for local reptile and amphibian species.

PLANS AND SPECIFICATIONS
Plans and specifications for this practice shall be prepared for each site. Plans and specifications shall be recorded using approved specifications sheets, job sheets, or other documentation. The plans and specifications for structural features will include, at a minimum, a plan view, quantities, and sufficient profiles and cross-sections to define the location, line, and grade for stakeout and checkout. Plans and specifications shall be reviewed and approved by staff with appropriate job approval authority.
OPERATION AND MAINTENANCE

A separate Operation and Maintenance Plan will be prepared for sites that have structural features. The plan will include specific actions for the normal and repetitive operation of installed structural items, especially water control structures, if included in the project.

The plan will also include the actions necessary to assure that constructed items are maintained for the life of the project. It will include the inspection schedule, a list of items to inspect, a checklist of potential damages to look for, recommended repairs, and procedures for documentation.

Management and monitoring activities needed to ensure the continued success of the wetland enhancement objectives may be included in the above plan, or in a separate Management and Monitoring Plan. In addition to the monitoring schedule, this plan may include the following:

- The timing and methods for the use of fertilizers, pesticides, prescribed burning, or mechanical treatments.
- Circumstances when the use of biological control of undesirable plant species and pests (e.g. using predator or parasitic species) is appropriate, and the approved methods.
- Actions which specifically address any expected problems from invasive or noxious species. Management needed to maintain vegetation, including control of unwanted vegetation.
- The depth of sediment accumulation circumstances which requires the removal of accumulated sediment.
- Repair and upkeep of the practices shall be carried out as needed such as repair or replacement of vegetative or structural components.
- Timing and level setting of water control structures required for establishment of desired hydrologic conditions or for management of vegetation.
- Inspection schedule of embankments and structures for damage assessment.
- Conditions which indicate the need to use haying or grazing as a management tool, including timing and methods.

FEDERAL, STATE, AND LOCAL LAWS

Users of this standard should be aware of applicable federal, state, and local laws, rules, regulations, or permit requirements governing wetland enhancement. All laws and regulations pertaining to flooding, surface and subsurface drainage will be followed.

REFERENCES


USDA, NRCS Wisconsin Agronomy Technical Note 5

USDA, NRCS Wisconsin Biology Technical Note 2