Permit Fact Sheet

General Information

Permit Number	WI-0060801-11-0
Permittee Name and Address	VILLAGE OF SPRING GREEN PO Box 158 112 West Monroe Street, Spring Green, WI 53588
Permitted Facility Name and Address	Spring Green Wastewater Treatment Facility 621 CARPENTER LANE, SPRING GREEN, WISCONSIN
Permit Term	July 01, 2025 to June 30, 2030
Discharge Location	North bank of the Wisconsin River, approximately one-half mile from treatment plant. SW ¼ of SE ¼, Section 13, T8N, R3E.
Receiving Water	Wisconsin River (Bear Creek Watershed, LW14 – Lower Wisconsin River Basin) in Sauk County
Stream Flow (Q _{7,10})	2400 cfs
Stream Classification	Warm Water Sport Fish (WWSF), non-public water supply
Discharge Type	Existing, Continuous
Annual Average Design Flow (MGD)	0.26 MGD
Industrial or Commercial Contributors	Cardinal Glass Industries
Plant Classification	A1 - Suspended Growth Processes; B - Solids Separation; C - Biological Solids/Sludges; P - Total Phosphorus; D - Disinfection; L - Laboratory; SS - Sanitary Sewage Collection System
Approved Pretreatment Program?	N/A

Facility Description

The Village of Spring Green operates a secondary wastewater treatment facility providing treatment for domestic and commercial wastewater. Treatment consists of mechanical screening and grit removal, oxidation ditch secondary treatment followed by chemical phosphorus removal, final clarification, and ultraviolet (UV) disinfection prior to discharge to the Wisconsin River. UV disinfection replaced effluent chlorine contact disinfection in 2021. Sludge that is produced is aerobically digested and stored on-site prior to land application on department approved sites.

Substantial Compliance Determination

After a desk top review of all discharge monitoring reports, CMARs, land application reports, and a site visit on February 05, 2024, this facility has been found to be in substantial compliance with their current permit.

Sample Point Descriptions

	Sample Point Designation						
Sample Point NumberDischarge Flow, Units, and Averaging PeriodSample Point Location, Waste Type/Sample Contents and Treatment Description (as applicable)							
701	N/A – Not required to monitor	Influent: 24-hr flow proportional composite samples shall be collected at the influent wet well.					
001	0.14 MGD (January 2019 – September 2024 Average)	Effluent: 24-hr flow proportional composite samples shall be collected prior to UV disinfection. Grab samples shall be collected from the effluent wet well after UV disinfection, prior to discharge to the Wisconsin River. An ultrasonic flow meter is located at the end of the UV disinfection tank.					
002	25 Dry U.S. Tons (2024 Permit Application)	Aerobically digested, Liquid, Class B. Representative sludge samples shall be collected from the sample tap in the sludge pump room.					

Permit Requirements

1 Influent – Monitoring Requirements Sample Point Number: 701- INFLUENT

Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes		
BOD5, Total		mg/L	3/Week	24-Hr Flow Prop Comp			
Suspended Solids, Total		mg/L	3/Week	24-Hr Flow Prop Comp			

Changes from Previous Permit:

Influent limitations and monitoring requirements were evaluated for this permit term and no changes were required in this permit section.

Explanation of Limits and Monitoring Requirements

Monitoring of BOD5 and total suspended solids is required by s. NR 210.04(2), Wis. Adm. Code, to assess wastewater strengths and volumes and to demonstrate the percent removal requirements in s. NR 210.05, Wis. Adm. Code, and in the Standard Requirements section of the permit.

2 Surface Water - Monitoring and Limitations Sample Point Number: 001- EFFLUENT

	Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
Flow Rate		MGD	Daily	Continuous				
BOD5, Total	Weekly Avg	45 mg/L	3/Week	24-Hr Flow Prop Comp				
BOD5, Total	Monthly Avg	30 mg/L	3/Week	24-Hr Flow Prop Comp				
Suspended Solids, Total	Weekly Avg	45 mg/L	3/Week	24-Hr Flow Prop Comp				
Suspended Solids, Total	Monthly Avg	30 mg/L	3/Week	24-Hr Flow Prop Comp				
pH Field	Daily Max	9.0 su	Daily	Grab				
pH Field	Daily Min	6.0 su	Daily	Grab				
E. coli	Geometric Mean - Monthly	126 #/100 ml	Weekly	Grab	May - September			
E. coli	% Exceedance	10 Percent	Monthly	Calculated	May - September			
Phosphorus, Total	Monthly Avg	1.0 mg/L	3/Week	24-Hr Flow Prop Comp				
Nitrogen, Ammonia (NH3-N) Total		mg/L	Monthly	24-Hr Flow Prop Comp	Monthly monitoring in 2029.			
Chloride		mg/L	Monthly	24-Hr Flow Prop Comp	Monthly monitoring in 2029.			
Nitrogen, Total Kjeldahl		mg/L	See Listed Qtr(s)	24-Hr Flow Prop Comp	Annual in rotating quarters. See Nitrogen Series Monitoring section.			
Nitrogen, Nitrite + Nitrate Total		mg/L	See Listed Qtr(s)	24-Hr Flow Prop Comp	Annual in rotating quarters. See Nitrogen Series Monitoring section.			
Nitrogen, Total		mg/L	See Listed Qtr(s)	Calculated	Annual in rotating quarters. See Nitrogen Series Monitoring section. Total Nitrogen shall be calculated as the sum of reported values for Total Kjeldahl Nitrogen and Total Nitrite + Nitrate Nitrogen.			

Changes from Previous Permit

Effluent limitations and monitoring requirements were evaluated for this permit term and the following changes were made from the previous permit.

Flow: The sample frequency for flow has been changed from "Continuous" to "Daily" for eDMR reporting purposes.

pH: The monitoring frequency has changed to "Daily".

E. coli: Fecal coliform monitoring and limits have been replaced with Escherichia coli (E. coli) monitoring and limits.

Ammonia: The monitoring year has been updated.

Chloride: The monitoring year has been updated.

Total Nitrogen Monitoring (TKN, N02+N03 and Total N): Annual monitoring is required in specific quarters as outlined in the permit.

Explanation of Limits and Monitoring Requirements

Detailed discussions of limits and monitoring requirements can be found in the attached Water Quality-Based Effluent Limitations (WQBEL) for the Spring Green Wastewater Treatment Facility memo dated January 22, 2025, prepared by Zainah Masri and used for this reissuance.

E. coli: Revisions to bacteria surface water quality criteria to protect recreational uses and accompanying E. coli WPDES permit implementation procedures became effective May 1, 2020. The new rule requires that WPDES permits for facilities with required disinfection include monitoring for E. coli while facilities are disinfecting during the recreation period, and establish effluent limitations for E. coli established in s. NR 210.06 (2), Wis. Adm Code. The administrative code rule changes included the following actions: revised the bacteria water quality criteria from fecal coliform to E. coli to protect recreation in ch. NR 102, Wis. Adm. Code.; removed fecal coliform criteria for certain individual waters from ch. NR 104, Wis. Adm. Code.; revised permit requirements for publicly and privately owned sewage treatment works in ch. NR 210, Wis. Adm. Code.; and, updated approved analytical methods for bacteria in ch. NR 219, Wis. Adm. Code.

Ammonia: Statistics based upon ammonia data submitted during the permit term do not show reasonable potential for the discharge to exceed the calculated ammonia nitrogen limits. Monthly monitoring during the fourth year of the permit term is included pursuant to s. NR 106.33(1), Wis. Adm. Code. Due to the high amount of dilution available and the low variability of the effluent data, the department has determined that one year of monitoring is appropriate.

Total Nitrogen Monitoring (NO2+NO3, TKN and Total N): The Department has included effluent monitoring for Total Nitrogen through the authority under s. 283.55(1)(e), Wis. Stats., which allows the department to require the permittee to submit information necessary to identify the type and quantity of any pollutants discharged from the point source, and through s. NR 200.065(1)(h), Wis. Adm. Code, which allows for this monitoring to be collected during the permit term. More information on the justification to include total nitrogen monitoring in wastewater permits can be found in the "Guidance for Total Nitrogen Monitoring in Wastewater Permits" dated October 1, 2019.

PFOS and PFOA: NR 106 Subchapter VIII – Permit Requirements for PFOS and PFOA Dischargers became effective on August 1, 2022. Pursuant to s. NR 106.98(3)(b), Wis. Adm. Code, the department evaluated the need for PFOS and PFOA monitoring taking into consideration the presence of potential PFOS or PFOA industrial wastes, remediation sites and other potential sources of PFOS or PFOA. Based on information available at the time the proposed permit was drafted, the department has determined the permittee does not need to sample for PFOS or PFOA as part of this permit reissuance. The department may re-evaluate the need for sampling at the next permit reissuance if new information becomes available that suggests PFOS or PFOA may be present in the discharge.

Monitoring Frequencies: The <u>Monitoring Frequencies for Individual Wastewater Permits</u> guidance (April 12, 2021) recommends that standard monitoring frequencies be included in individual wastewater permits based on the size and type of the facility, in order to characterize effluent quality and variability, to detect events of noncompliance, and to ensure consistency in permits issued across the state. Guidance and requirements in administrative code were considered when determining the appropriate monitoring frequencies for pollutants that have final effluent limits in effect during this permit term.

3 Land Application - Monitoring and Limitations

			U					
Municipal Sludge Description								
Sample Point	Sludge Class (A or B)	Sludge Type (Liquid or Cake)	Pathogen Reduction Method	Vector Attraction Method	Reuse Option	Amount Reused/Disposed (Dry Tons/Year)		
002	В	Liquid	Fecal Coliform	Aerobic SOUR Test	Land Application	25		
Does sludge r	nanagement der	nonstrate complia	ance? Yes.			1		
Is additional s	sludge storage re	equired? No.						
Is Radium-22	6 present in the	water supply at a	level greater than	2 pCi/liter? Yes.				
· · ·	monitoring and sludge from this		ions will be includ	ed in the permit to t	rack any potenti	al problems in		
Is a priority p	ollutant scan rec	uired? No, desig	n flow is less than	5 MGD.				
Priority pollu	tant scans are re	auired once every	v 10 vears at facilit	ies with design flow	vs between 5 MC	GD and 40 MGD.		

Priority pollutant scans are required once every 10 years at facilities with design flows between 5 MGD and 40 MGD, and once every 5 years if design flow is greater than 40 MGD.

Sample Point Number: 002- SLUDGE

Monitoring Requirements and Limitations								
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
Solids, Total		Percent	Annual	Composite				
Arsenic Dry Wt	Ceiling	75 mg/kg	Annual	Composite				
Arsenic Dry Wt	High Quality	41 mg/kg	Annual	Composite				
Cadmium Dry Wt	Ceiling	85 mg/kg	Annual	Composite				
Cadmium Dry Wt	High Quality	39 mg/kg	Annual	Composite				
Copper Dry Wt	Ceiling	4,300 mg/kg	Annual	Composite				
Copper Dry Wt	High Quality	1,500 mg/kg	Annual	Composite				
Lead Dry Wt	Ceiling	840 mg/kg	Annual	Composite				
Lead Dry Wt	High Quality	300 mg/kg	Annual	Composite				
Mercury Dry Wt	Ceiling	57 mg/kg	Annual	Composite				
Mercury Dry Wt	High Quality	17 mg/kg	Annual	Composite				
Molybdenum Dry Wt	Ceiling	75 mg/kg	Annual	Composite				
Nickel Dry Wt	Ceiling	420 mg/kg	Annual	Composite				
Nickel Dry Wt	High Quality	420 mg/kg	Annual	Composite				
Selenium Dry Wt	Ceiling	100 mg/kg	Annual	Composite				

	Monitoring Requirements and Limitations							
Parameter	Limit Type	Limit and Units	Sample Frequency	Sample Type	Notes			
Selenium Dry Wt	High Quality	100 mg/kg	Annual	Composite				
Zinc Dry Wt	Ceiling	7,500 mg/kg	Annual	Composite				
Zinc Dry Wt	High Quality	2,800 mg/kg	Annual	Composite				
Nitrogen, Total Kjeldahl		Percent	Annual	Composite				
Nitrogen, Ammonium (NH4-N) Total		Percent	Annual	Composite				
Phosphorus, Total		Percent	Annual	Composite				
Phosphorus, Water Extractable		% of Tot P	Annual	Composite				
Potassium, Total Recoverable		Percent	Annual	Composite				
Radium 226 Dry Wt		pCi/g	Annual	Composite				
PCB Total Dry Wt	Ceiling	50 mg/kg	Once	Composite	Monitoring once in 2026			
PCB Total Dry Wt	High Quality	10 mg/kg	Once	Composite	Monitoring once in 2026			
PFOA + PFOS		ug/kg	Annual	Calculated	Report the sum of PFOA and PFOS. See PFAS Permit Sections for more information.			
PFAS Dry Wt	·		Annual	Grab	Perfluoroalkyl and Polyfluoroalkyl Substances based on updated DNR PFAS List. See PFAS Permit Sections for more information.			

Changes from Previous Permit:

Sludge limitations and monitoring requirements were evaluated for this permit term and the following changes were made from the previous permit.

PFAS: Monitoring is required annually pursuant to s. NR 204.06(2)(b)9, Wis. Adm. Code.

Explanation of Limits and Monitoring Requirements

Requirements for disposal, including land application of municipal sludge, are determined in accordance with ch. NR 204, Wis. Adm. Code. Ceiling and high-quality limits for metals in sludge are specified in s. NR 204.07(5), Wis. Adm. Code. Requirements for pathogens are specified in s. NR 204.07(6) and in s. NR 204.07(7), Wis. Adm. Code for vector attraction requirements. Limitations for PCBs are addressed in s. NR 204.07(3)(k), Wis. Adm. Code. Radium requirements are addressed in s. NR 204.07(3)(n), Wis. Adm. Code.

PFAS: The presence and fate of PFAS in municipal and industrial sludges is an emerging public health concern. EPA has developed a draft risk assessment to determine future land application rates and released this risk assessment in January of 2025. The department is evaluating this new information. Until a decision is made, the "Interim Strategy for Land Application of Biosolids and Industrial Sludges Containing PFAS" may be followed.

Collecting sludge data on PFAS concentrations from a wide range of wastewater treatment facilities will help protect public health from exposure to elevated levels of PFAS and determine the department's implementation of EPA's recommendations. To quantitate this risk, PFAS sampling has been included in this WPDES permit pursuant to ss. NR 214.18(5)(b) and NR 204.06(2)(b)9, Wis. Adm. Code.

4 Schedules Land Application Management Plan

A management plan is required for the land application system.

Required Action	Due Date
Land Application Management Plan Submittal: Submit an update to the management plan to optimize the land application system performance and demonstrate compliance with ch. NR 204, Wis. Adm. Code, by the Due Date. This management plan shall 1) specify information on pretreatment processes (if any); 2) identify land application sites; 3) describe site limitations; 4) address vegetative cover management and removal; 5) specify availability of storage; 6) describe the type of transporting and spreading vehicle(s); 7) specify monitoring procedures; 8) track site loading; 9) address contingency plans for adverse weather and odor/nuisance abatement; and 10) include any other pertinent information. Once approved, all landspreading activities shall be conducted in accordance with the plan. Any changes to the plan must be approved by the Department prior to implementing the changes.	06/30/2026

Explanation of Schedule

An up-to-date Land Application Management Plan is required that documents how the permittee will manage the land application of biosolids consistent with ch. NR 204, Wis. Adm. Code.

Attachments

Water Quality Based Effluent Limits, dated January 22, 2025

Justification Of Any Waivers From Permit Application Requirements

No waivers requested or granted as part of this permit reissuance.

Prepared By: BetsyJo Howe, Wastewater Specialist

Date: 04/14/2025

CORRESPONDENCE/MEMORANDUM

TO: Betsyjo Howe – SCR/Fitchburg

FROM: Zainah Masri – WY/3

SUBJECT: Water Quality-Based Effluent Limitations for the Spring Green Wastewater Treatment Facility WPDES Permit No. WI-0060801-11-0

This is in response to your request for an evaluation of the need for water quality-based effluent limitations (WQBELs) using chapters NR 102, 104, 105, 106, 207, 210, 212, and 217 of the Wisconsin Administrative Code (where applicable), for the discharge from the Spring Green Wastewater Treatment Facility in Sauk County. This municipal wastewater treatment facility (WWTF) discharges to the Wisconsin River located in the Bear Creek Watershed in the Lower Wisconsin River Basin. The evaluation of the permit recommendations is discussed in more detail in the attached report.

Based on our review, the following recommendations are made on a chemical-specific basis at Outfall 001:

	Daily	Daily	Weekly	Monthly	Footnotes
Parameter	Maximum	Minimum	Average	Average	
Flow Rate					1, 2
BOD ₅			45 mg/L	30 mg/L	1
TSS			45 mg/L	30 mg/L	1
pН	9.0 s.u.	6.0 s.u.			1
Ammonia Nitrogen					5
Bacteria					3
Final Limit <i>E. coli</i>				126 #/100 mL geometric mean	
Chloride					4
Phosphorus				1.0 mg/L	
TKN, Nitrate+Nitrite, and Total Nitrogen					6

Footnotes:

- 1. No changes from the current permit.
- 2. Monitoring only.
- 3. Bacteria limits apply during the disinfection season of May through September. Additional final limit: No more than 10 percent of *E. coli* bacteria samples collected in any calendar month may exceed 410 count/100 mL.
- 4. Monitoring at a frequency to ensure that 11 samples are available at the next permit issuance.
- 5. Monitoring throughout the permit term.
- 6. As recommended in the Department's October 1, 2019 Guidance for Total Nitrogen Monitoring in Wastewater Permits, annual total nitrogen monitoring is recommended for all minor municipal permittees. Total Nitrogen is the sum of nitrate (NO₃), nitrite (NO₂), and total Kjeldahl nitrogen (TKN) (all expressed as N).

No WET testing is required because information related to the discharge indicates low risk for toxicity.

The recommended limits meet the expression of limits requirements in ss. NR 106.07 and NR 205.065(7), Wis. Adm. Code, and additional limits are not required.

Please consult the attached report for details regarding the above recommendations. If there are any questions or comments, please contact Zainah Masri at Zainah.Masri@wisconsin.gov or Diane Figiel at Diane.Figiel@wisconsin.gov.

Attachments (3) - Narrative, Ammonia Nitrogen Calculations and Map

PREPARED BY:

APPROVED BY:

Zainah Masri, Water Resources Engineer Zainah Masri Diane Figiel _____ Date: <u>01/22/202</u>5

Water Resources Engineer

E-cc: Tanner Connors, Wastewater Engineer – SCR/Fitchburg Amy Garbe, Acting Regional Wastewater Supervisor - SER/Waukesha Diane Figiel, Water Resources Engineer – WY/3 Kari Fleming, NR Program Manager - WY/3 Nate Willis, Wastewater Engineer – WY/3

Water Quality-Based Effluent Limitations for Spring Green Wastewater Treatment Facility

WPDES Permit No. WI-000060801-11-0

Prepared by: Zainah Masri

PART 1 – BACKGROUND INFORMATION

Facility Description

Spring Green Wastewater Treatment Facility is a secondary wastewater treatment facility providing treatment for domestic, commercial . Treatment provided consists of mechanical screening removal, oxidation ditch secondary treatment, phosphorus removal using ferric chloride, final clarification, and UV disinfection. UV disinfection replaced effluent chlorine contact disinfection in 2021.

Attachment #2 is a map of the area showing the approximate location of Outfall 001.

Existing Permit Limitations

The current permit which expired on September 30, 2024, includes the following effluent limitations and monitoring requirements.

	Daily	Daily	Weekly	Monthly	Footnotes
Parameter	Maximum	Minimum	Average	Average	
Flow Rate					3
BOD ₅			45 mg/L	30 mg/L	1
TSS			45 mg/L	30 mg/L	1
pН	9.0 s.u.	6.0 s.u.			1
Ammonia Nitrogen					2
Fecal Coliform			656#/100 mL		4
May – September			geometric mean	geometric mean	
Phosphorus				1.0 mg/L	-
Chloride					2

Footnotes:

- 1. These limitations are not being evaluated as part of this review. Because the water quality criteria (WQC), reference effluent flow rates, and receiving water characteristics have not changed, limitations for these water quality characteristics do not need to be re-evaluated at this time.
- 2. Monitoring from January 1, 2023 to December 31, 2023.
- 3. Monitoring only.
- 4. Additional limits to comply with the expression of limits requirements in ss. NR 106.07 and NR 205.065(7) are included in bold.

Receiving Water Information

- Name: Wisconsin River
- Waterbody Identification Code (WBIC): 1179900
- Classification used in accordance with chs. NR 102 and 104, Wis. Adm. Code: Warm Water Sport Fish (WWSF) community, non-public water supply.
- Low flows used in accordance with chs. NR 106 and 217, Wis. Adm. Code: The following 7-Q₁₀ and 7-Q₂ values are from USGS for the Wisconsin River near Spring Green where Outfall 001 is located.

 $7-Q_{10} = 2400$ cfs (cubic feet per second) $7-Q_2 = 3500$ cfs $90-Q_{10} = 3500$ cfs

Harmonic Mean Flow = 6150 cfs

- Hardness = 72 mg/L as CaCO₃. This value represents the geometric mean of data from February 1977 to January 1992 at the USGS Station Wisconsin River at Wisconsin Dells.
- % of low flow used to calculate limits in accordance with s. NR 106.06(4)(c)5., Wis. Adm. Code: 25%
- Source of background concentration data: Metals data from the monitoring station for the Wisconsin River at Wisconsin Dells is used for this. The numerical values are shown in the tables below. If no data is available, the background concentration is assumed to be negligible and a value of zero is used in the computations. Background data for calculating effluent limitations for ammonia nitrogen are described later.
- Multiple dischargers: There are several other dischargers to the Wisconsin River however they are not in the immediate vicinity and the mixing zones do not overlap. Therefore, the other dischargers do not impact this evaluation.
- Impaired water status: The Wisconsin River is listed as impaired for PCB's at the point of discharge. Upstream of the discharge the Wisconsin River is listed as impaired for phosphorus and a TMDL is in place for the discharger in the phosphorus impaired segment.

Effluent Information

• Design flow rate(s):

Annual average = 0.26 MGD (Million Gallons per Day)

For reference, the actual average flow from January 2019 to September 2024 was 0.14 MGD.

- Hardness = 307 mg/L as CaCO₃. This value represents the geometric mean of data from January 2024 in the permit application.
- Acute dilution factor used in accordance with s. NR 106.06(3)(c), Wis. Adm. Code: Not applicable this facility does not have an approved Zone of Initial Dilution (ZID).
- Water source: Public drinking water with water supply from the Village of Spring Green.
- Additives: Ferric Chloride
- Effluent characterization: This facility is categorized as a minor municipality, so the permit application required effluent sample analyses for a limited number of common pollutants, as specified in s. NR 200.065, Table 1, Wis. Adm. Code, primarily metal substances plus ammonia, chloride, hardness and phosphorus.
- Effluent data for substances for which a single sample was analyzed is shown in the tables in Part 2 below, in the column titled "MEAN EFFL. CONC.". Otherwise, substances with multiple effluent data are shown in the tables below or in their respective parts in this evaluation.

Spring Green Wastewater Treatment Facility Page 2 of 14

Sample Date	Copper µg/L	Sample Date	Copper µg/L	Sample Date	Copper µg/L				
12/13/2023	12.6	12/25/2023	11.1	01/06/2024	13.5				
12/16/2023	11.2	12/28/2023	11.3	01/09/2024	11.5				
12/19/2023	10.6	12/31/2023	10.7	01/12/2024	11.8				
12/22/2023	11.6	01/03/2024	11.3						
$1 - day P_{99} = 14 \ \mu g/L$									
	$4 - day P_{99} = 13 \ \mu g/L$								

Copper Effluent Data

Chloride Effluent Data

Sample Date	Chloride mg/L	Sample Date	Chloride mg/L	Sample Date	Chloride mg/L	
03/22/2023	410	06/13/2023	430	10/12/2023	480	
03/29/2023	410	07/24/2023	440	11/30/2023	490	
04/19/2023	450	08/15/2023	370	12/15/2023	430	
05/15/2023	390	09/20/2023	420			
	$1 - day P_{99} = 519 mg/L$					
4-day $P_{99} = 472 \text{ mg/L}$						

The following table presents the average concentrations and loadings at Outfall 001 from January 2019 to September 2024 for all parameters with limits in the current permit to meet the requirements of s. NR 201.03(6), Wis. Adm. Code:

Tarameter Averages with Limits					
	Average Measurement	Average Mass Discharged			
BOD ₅	5.5 mg/L	-			
TSS	9.6 mg/L	-			
pH field	7.6 s.u.	-			
Phosphorus	0.66 mg/L	0.44 lbs/day			
Fecal Coliform	403 #/ 100 mL	-			

Parameter Averages with Limits

PART 2 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR TOXIC SUBSTANCES – EXCEPT AMMONIA NITROGEN

Permit limits for toxic substances are required whenever any of the following occur:

- 1. The maximum effluent concentration exceeds the calculated limit (s. NR 106.05(3), Wis. Adm. Code)
- 2. If 11 or more detected results are available in the effluent, the upper 99th percentile (or P₉₉) value exceeds the comparable calculated limit (s. NR 106.05(4), Wis. Adm. Code)
- 3. If fewer than 11 detected results are available, the mean effluent concentration exceeds 1/5 of the calculated limit (s. NR 106.05(6), Wis. Adm. Code)

Acute Limits based on 1-Q₁₀

Daily maximum effluent limitations for toxic substances are based on the acute toxicity criteria (ATC), listed in ch. NR 105, Wis. Adm. Code. Previously daily maximum limits for toxic substances were calculated as two times the ATC. However, changes to ch. NR 106, Wis. Code, (September 1, 2016) require the Department to calculate acute limitations using the same mass balance equation as used for other limits along with the 1-Q₁₀ receiving water low flow to determine if more restrictive effluent limitations are needed to protect the receiving stream from discharges which may cause or contribute to an exceedance of the acute water quality standards. The mass balance equation is provided below.

Limitation =
$$(WQC) (Qs + (1-f) Qe) - (Qs - f Qe) (Cs)$$

Qe

Where:

- WQC = Acute toxicity criterion or secondary acute value according to ch. NR 105, Wis. Adm. Code.
- $Qs = average minimum 1-day flow which occurs once in 10 years (1-day Q_{10})$
 - if the 1-day Q_{10} flow data is not available = 80% of the average minimum 7-day flow which occurs once in 10 years (7-day Q_{10}).
- Qe = Effluent flow (in units of volume per unit time) as specified in s. NR 106.06(4)(d), Wis. Adm. Code.
- f = Fraction of the effluent flow that is withdrawn from the receiving water, and
- Cs = Background concentration of the substance (in units of mass per unit volume) as specified in s. NR 106.06(4)(e), Wis. Adm. Code.

If the receiving water is effluent dominated under low stream flow conditions, the $1-Q_{10}$ method of limit calculation produces the most stringent daily maximum limitations and should be used while making reasonable potential determinations. This is not the case for Spring Green Wastewater Treatment Facility and the limits are set based on two times the acute toxicity criteria.

The following tables list the calculated WQBELs for this discharge along with the results of effluent sampling for all the detected substances. All concentrations are expressed in terms of micrograms per Liter (μ g/L), except for hardness and chloride (mg/L).

Daily Maximum Limits based on Acute Toxicity Criteria (ATC)

RECEIVING WATER FLOW = 1920 cfs, (1-Q₁₀ (estimated as 80% of 7-Q₁₀)), as specified in s. NR 106.06(3)(bm), Wis. Adm. Code.

	REF. HARD.*	ATC	MAX. EFFL.	1/5 OF EFFL.	MEAN EFFL.	1-day	1-day MAX.
SUBSTANCE	mg/L		LIMIT**	LIMIT	CONC.	P99	CONC.
Arsenic		340	680	136	<7.7		
Cadmium	307	37	75	15	< 0.41		
Chromium	301	4,446	8,892	1,778	1.4		
Copper	307	45	89			14	13.5
Lead	307	316	632	126	1.6		
Nickel	268	1080	2161	432	2.7		
Zinc	307	321	642	128	30		
Chloride (mg/L)		757	1514			519	490

* The indicated hardness may differ from the effluent hardness because the effluent hardness exceeded the maximum range in ch. NR 105, Wis. Adm. Code, over which the acute criteria are applicable. In that case, the maximum of the range is used to calculate the criterion.

* * The 2 × ATC method of limit calculation yields a more restrictive limit than consideration of ambient concentrations and 1- Q_{10} flow rates per the changes to s. NR 106.07(3), Wis. Adm. Code, effective 09/01/2016.

RECEIVING WATER FLOW = 600 cfs ($\frac{1}{4}$ of the 7-Q ₁₀), as specified in s. NR 106.06(4)(c), Wis. Adm. Code							
	REF.		MEAN	WEEKLY	1/5 OF	MEAN	
	HARD.	CTC	BACK-	AVE.	EFFL.	EFFL.	4-day
SUBSTANCE	mg/L		GRD.	LIMIT	LIMIT	CONC.	P99
Arsenic		152	6.6	217,309	43,462	<7.7	
Cadmium	72	2.0	0.09	2,709	542	< 0.41	
Chromium	72	101	2.8	146,488	29,298	1.4	
Copper	72	7.8	7.2	918			13
Lead	72	20	3.1	25,808	5,162	1.6	
Nickel	72	40	0.7	57,953	11,591	2.7	
Zinc	72	90	2.20	131,518	26,304	30	
Chloride (mg/L)		395	15	567,150			472

Weekly Average Limits based on Chronic Toxicity Criteria (CTC) RECEIVING WATER ELOW = 600 cfs ($\frac{1}{6}$ of the 7-Out) as specified in s. NR 106.06(4)(c). Wis, Adm. Code

Monthly Average Limits based on Wildlife Criteria (WC)

The effluent characterization did not include any effluent sampling results for substances for which Wildlife Criteria exist.

Monthly Average Limits based on Human Threshold Criteria (HTC)

RECEIVING WATER FLOW = 1537 cfs (1/4 of Harmonic Mean), as specified in s. NR 106.06(4), Wis. Adm. Code.

		MEAN	MO'LY	1/5 OF	MEAN
	HTC	BACK-	AVE.	EFFL.	EFFL.
SUBSTANCE		GRD.	LIMIT	LIMIT	CONC.
Cadmium	370	0.09	1414137	282827.4	< 0.41
Chromium (+3)	3,818,000	2.8	14,595,707,693	2,919,141,539	1.4
Lead	140	3.1	523,354	104,671	1.6
Nickel	43,000	0.7	164,380,743	32,876,149	2.7

Monthly Average Limits based on Human Cancer Criteria (HCC)

RECEIVING WATER FLOW = 1537 cfs (¹/₄ of Harmonic Mean), as specified in s. NR 106.06(4), Wis. Adm. Code.

		MEAN	MO'LY	1/5 OF	MEAN
	HCC	BACK-	AVE.	EFFL.	EFFL.
SUBSTANCE		GRD.	LIMIT	LIMIT	CONC.
Arsenic	13	6.6	25,620	5,124	<7.7

Conclusions and Recommendations

Based on a comparison of the effluent data and calculated effluent limitations, effluent limitations are not required.

Spring Green Wastewater Treatment Facility Page 5 of 14

<u>Copper</u> – Considering available effluent data from December 2023 to January 2024, the 1-day P_{99} concentration is 14 µg/L, with a maximum concentration of 13.5 µg/L. Neither the maximum effluent concentration nor the 1-day P_{99} of the effluent data exceed the calculated daily maximum limit, therefore **concentration and mass limits, as well as monthly monitoring, are not required.**

<u>Chloride</u> – Considering available effluent data from the current permit term March 2023 to December 2023 the 1-day P₉₉ chloride concentration is 519 mg/L, and the 4-day P₉₉ of effluent data is 472 mg/L.

These effluent concentrations are below the calculated WQBELs for chloride, therefore no effluent limits are needed. Chloride monitoring is recommended to ensure that 11 sample results are available at the next permit issuance to meet the data requirements of s. NR 106.85, Wis. Adm. Code.

<u>Mercury</u> – The permit application did not require monitoring for mercury because the Spring Green Wastewater Treatment Facility is categorized as a minor facility as defined in s. NR 200.02(8), Wis. Adm. Code. In accordance with s. NR 106.145(3)(a)3, Wis. Adm. Code, a minor municipal discharger shall monitor, and report results of influent and effluent mercury monitoring once every three months if, "there are two or more exceedances in the last five years of the high-quality sludge mercury concentration of 17 mg/kg specified in s. NR 204.07(5), Wis. Adm. Code." A review of the past five years of sludge characteristics data reveals that all the sample results are within expected analytical ranges and well below the 17 mg/kg level. The average concentration in the sludge from September 2019 to October 2023 was 0.64 mg/kg, with a maximum reported concentration of 1.7 mg/kg. **Therefore, no mercury monitoring is recommended at Outfall 001.**

<u>PFOS and PFOA</u> – The need for PFOS and PFOA monitoring is evaluated in accordance with s. NR 106.98(2), Wis. Adm. Code. Based on the type of discharge, the effluent flow rate and the types of indirect dischargers contributing to the collection system PFOS and PFOA **monitoring is not recommended.**

The Department may re-evaluate the need for sampling at the next permit reissuance if new information becomes available that suggests PFOS or PFOA may be present in the discharge.

PART 3 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR AMMONIA NITROGEN

The State of Wisconsin promulgated revised water quality standards for ammonia nitrogen in ch. NR 105, Wis. Adm. Code, effective March 1, 2004 which includes criteria based on both acute and chronic toxicity to aquatic life. The current permit has monthly monitoring for one year of the permit term however data was not collected in January and February

Daily Maximum Limits based on Acute Toxicity Criteria (ATC)

Daily maximum limitations are based on acute toxicity criteria in ch. NR 105, Wis. Adm. Code, which are a function of the effluent pH and the receiving water classification. The acute toxicity criterion (ATC) for ammonia is calculated using the following equation:

Spring Green Wastewater Treatment Facility Page 6 of 14

Attachment #1
ATC in mg/L =
$$[A \div (1 + 10^{(7.204 - pH)})] + [B \div (1 + 10^{(pH - 7.204)})]$$

Where:

A = 0.411 and B = 58.4 for a Warm Water Sport fishery pH (s.u.) = that characteristic of the <u>effluent</u>.

The effluent pH data was examined as part of this evaluation. A total of 901 sample results were reported from January 2019 to September 2024. The maximum reported value was 9.6 s.u. (Standard pH Units). The effluent pH was 8.5 s.u. or less 99% of the time. The 1-day P₉₉, calculated in accordance with s. NR 106.05(5), Wis. Adm. Code, is 8.4 s.u. The mean plus the standard deviation multiplied by a factor of 2.33, an estimate of the upper ninety ninth percentile for a normally distributed dataset, is 8.4 s.u. Therefore, a value of 8.4 s.u. is believed to represent the maximum reasonably expected pH, and therefore most appropriate for determining daily maximum limitations for ammonia nitrogen. Substituting a value of 8.4 s.u. into the equation above yields an ATC = 3.9 mg/L.

Daily Maximum Ammonia Nitrogen Effluent Limitations Calculation Method

In accordance with s. NR 106.32(2), Wis. Adm. Code daily maximum ammonia limitations are calculated using the 1- Q_{10} receiving water low flow if it is determined that the previous method of acute ammonia limit calculation (2×ATC) is not sufficiently protective of the fish and aquatic life. The more restrictive calculated limits shall apply.

The calculated daily maximum ammonia nitrogen effluent limits using the mass balance approach with the 1-Q₁₀ (estimated as 80 % of 7-Q₁₀) and the $2 \times ATC$ approach are shown below.

	Ammonia Nitrogen Limit mg/L
2×ATC	7.8
1-Q ₁₀	18,259

Daily Maximum Ammonia Nitrogen Determination

The 2×ATC method yields the most stringent limits for Spring Green Wastewater Treatment Facility.

Presented below is a table of daily maximum limitations corresponding to various effluent pH values. Use of this table is not necessarily recommended in the permit, but it is presented herein for informational purposes.

Daily Maximum Ammonia Nitrogen Limits – WWSF, WWFF & LFF

Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	
$6.0 \le pH \le 6.1$	108	$7.0 < pH \leq 7.1$	66	$8.0 < pH \leq 8.1$	14	
$6.1 < pH \le 6.2$	106	$7.1 < pH \leq 7.2$	59	$8.1 < pH \leq 8.2$	11	
$6.2 < pH \leq 6.3$	104	$7.2 < pH \leq 7.3$	52	$8.2 < pH \leq 8.3$	9.4	
$6.3 < pH \leq 6.4$	101	$7.3 < pH \leq 7.4$	46	$8.3 < pH \leq 8.4$	7.8	
$6.4 < pH \le 6.5$	98	$7.4 < pH \leq 7.5$	40	$8.4 < pH \leq 8.5$	6.4	
$6.5 < pH \leq 6.6$	94	$7.5 < pH \leq 7.6$	34	$8.5 < pH \leq 8.6$	5.3	
$6.6 < \mathrm{pH} \leq 6.7$	89	$7.6 < pH \leq 7.7$	29	$8.6 < pH \leq 8.7$	4.4	

Spring Green Wastewater Treatment Facility Page 7 of 14

Attachment #1					
Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L	Effluent pH s.u.	Limit mg/L
$6.7 < pH \leq 6.8$	84	$7.7 < pH \leq 7.8$	24	$8.7 < pH \leq 8.8$	3.7
$6.8 < pH \leq 6.9$	78	$7.8 < pH \leq 7.9$	20	$8.8 < pH \leq 8.9$	3.1
$6.9 < pH \leq 7.0$	72	$7.9 < pH \leq 8.0$	17	$8.9 < pH \leq 9.0$	2.6

Weekly and Monthly Average Limits based on Chronic Toxicity Criteria (CTC) The weekly and monthly average ammonia nitrogen limits calculation from the previous memo do not change because there have been no changes in the effluent and receiving water flow rates. The calculations from the WQBEL memo dated January 13, 2009 are shown in Attachment #3.

Effluent Data

The following table evaluates the statistics based upon ammonia data reported from March 2023 to December 2023 with those results being compared to the calculated limits to determine the need to include ammonia limits in the Spring Green Wastewater Treatment Facility permit for the respective month ranges. That need is determined by calculating 99th upper percentile (or P₉₉) values for ammonia during each of the month ranges and comparing the daily maximum values to the daily maximum limit.

Ammonia Nitrogen Emuent Data						
Sample Date	Ammonia Nitrogen mg/L	Sample Date	Ammonia Nitrogen mg/L	Sample Date	Ammonia Nitrogen mg/L	
3/22/2023	4.9	6/13/2023	0.2	10/12/2023	0.2	
3/29/2023	0.2	7/24/2023	0.2	11/30/2023	0.2	
4/19/2023	0.2	8/15/2023	0.3	12/15/2023	0.2	
5/15/2023	0.87	9/20/2023	0.2			
$1 \text{-day P}_{99} = 6.0 \text{ mg/L}$						
4-day $P_{99} = 3.5 \text{ mg/L}$						

Ammonia Nitrogen Effluent Data

Ammonia Milogen Elindent Data					
Ammonia Nitrogen mg/L					
1-day P ₉₉	6.01				
4-day P ₉₉	3.45				
30-day P ₉₉	1.50				
Mean	0.70				
Std	1.41				
Sample size	11				
Range	0.20-4.90				

Ammonia Nitrogen Effluent Data

Based on this comparison, there is no reasonable potential for the discharge to exceed any of the calculated ammonia nitrogen limits. No limits are needed however monitoring is recommended in the fourth year of the permit term.

Spring Green Wastewater Treatment Facility Page 8 of 14

Conclusions and Recommendations

In summary, based on reported effluent nitrogen ammonia concentrations and high amount of dilution available, there is no reasonable potential for ammonia levels to exceed the calculated ammonia nitrogen limits. Therefore, no limits and monitoring only are recommended pursuant to s. NR 106.33(1), Wis. Adm. Code. Monitoring throughout the permit term is recommended.

PART 4 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR BACTERIA

On May 1, 2020, revisions to chs. NR 102 and NR 210, Wis. Adm. Codes, became effective which replace fecal coliform limits with new *Escherichia coli* (*E. coli*) limits for protection of recreational uses. Section NR 210.06(2)(a)1, Wis. Adm. Code, includes two limits which must be included in permits for facilities which are required to disinfect:

- 1. The geometric mean of *E. coli* bacteria in effluent samples collected in any calendar month may not exceed 126 counts/100 mL.
- 2. No more than 10 percent of *E. coli* bacteria samples collected in any calendar month may exceed 410 counts/100 mL.

E. coli monitoring is recommended at the same frequency that fecal coliform monitoring is required in the current permit. Because the Spring Green Wastewater Treatment Facility permit requires weekly monitoring, the 410 counts/100 mL limit will effectively function as a daily maximum limit unless the facility performs additional monitoring. Any additional monitoring beyond what is required by the permit must also be reported on the DMR as required in the standard requirements section of the permit.

These limits are required during May through September. No changes are recommended to the current recreational period and the required disinfection season.

Effluent Data

Spring Green Wastewater Treatment Facility has monitored effluent *E. coli* from June 2023 to September 2023 and a total of 14 results are available. This data was submitted with lab sheets as the data reported in the DMRs were reported incorrectly as *E. coli* when they were in fact fecal coliform. A maximum of <2420 counts/100 mL was reported for September 26. 2023, however this value is not considered representative of the discharge. A geometric mean of 126 counts/100 mL was exceeded once in September 2023, with a maximum value of 330 counts/mL. Effluent data has not exceeded 410 counts/100 mL. Based on this effluent data it appears that the facility can meet new *E. coli* limits and a compliance schedule is not needed in the reissued permit.

PART 5 – PHOSPHORUS

Technology-Based Effluent Limit

Subchapter II of Chapter NR 217, Wis. Adm. Code, requires municipal wastewater treatment facilities that discharge greater than 150 pounds of Total Phosphorus per month to comply with a monthly average limit of 1.0 mg/L, or an approved alternative concentration limit.

Because Spring Green Wastewater Treatment Facility currently has a limit of 1.0 mg/L, this limit should

Spring Green Wastewater Treatment Facility Page 9 of 14

be included in the reissued permit. This limit remains applicable unless a more stringent WQBEL is given.

Water Quality-Based Effluent Limits (WQBEL)

Revisions to administrative rules regulating phosphorus took effect on December 1, 2010. These rule revisions include additions to s. NR 102.06, Wis. Adm. Code, which establish phosphorus standards for surface waters. Subchapter III of NR 217, Wis. Adm. Code, establishes procedures for determining WQBELs for phosphorus, based on the applicable standards in ch. NR 102, Wis. Adm. Code.

Section NR 102.06(3)(a), Wis. Adm. Code, specifically names river segments for which a phosphorus criterion of 0.100 mg/L applies. For other stream segments that are not specified in s. NR 102.06(3)(a), Wis. Adm. Code, s. NR 102.06(3)(b), Wis. Adm. Code, specifies a phosphorus criterion of 0.075 mg/L. The phosphorus criterion of 0.100 mg/L applies for the Wisconsin River.

The conservation of mass equation is described in s. NR 217.13(2)(a), Wis. Adm. Code, for phosphorus WQBELs and includes variables of water quality criterion (WQC), receiving water flow rate (Qs), effluent flow rate (Qe), and upstream phosphorus concentrations (Cs) provided below.

Limitation = [(WQC)(Qs+(1-f) Qe) - (Qs-f Qe) (Cs)]/Qe

Where:

$$\begin{split} WQC &= 0.100 \text{ mg/L for Wisconsin River.} \\ Qs &= 100\% \text{ of the } 7\text{-}Q_2 \text{ of } 3500 \text{ cfs} \\ Cs &= \text{background concentration of phosphorus in the receiving water pursuant to s. NR} \\ 217.13(2)(d), Wis. Adm. Code \\ Qe &= \text{effluent flow rate} = 0.26 \text{ MGD} = 0.402 \text{ cfs} \\ f &= \text{the fraction of effluent withdrawn from the receiving water} = 0 \end{split}$$

Section NR 217.13(2)(d), Wis. Adm. Code, specifies that the background phosphorus concentration used in the limit calculation formula shall be calculated as a median using the procedures specified in s. NR 102.07(1)(b) to (c), Wis. Code. All representative data from the most recent 5 years shall be used, but data from the most recent 10 years may be used if representative of current conditions.

A previous evaluation resulted in a WQBEL of 43.6 mg/L using a background concentration of 0.095 mg/L. Section NR 217.13(2)(d), Wis. Adm. Code, states that the determination of upstream concentrations shall be evaluated at each permit reissuance.

A review of all available in stream total phosphorus data stored in the Surface Water Integrated Monitoring System database indicates that no additional data is available and the median background total phosphorus concentration in Wisconsin River at Prairie du sac (SWIMS station ID 5730001) is 0.095 mg/L, just upstream from the point of discharge to Wisconsin River.

> Spring Green Wastewater Treatment Facility Page 10 of 14

Attachment #	#1
--------------	----

SWIMS ID	5730001
Station Name	Monitoring station at Prairie du Sac
Waterbody	Wisconsin River
Sample Count	4 samples
First Sample	05/23/2007
Last Sample	09/17/2007
Mean	0.089 mg/L
Median	0.095 mg/L

Substituting a median value of 0.095 mg/L into the limit calculation equation above, the calculated limit is 43.6 mg/L.

The 1.0 mg/L technology-based limit is more stringent than the calculated water quality-based limit of 43.6 mg/L. As such, the 1.0 mg/L, expressed as a monthly average, is recommended to be retained.

Effluent Data

The following table summarizes effluent total phosphorus monitoring data from January 2019 to September 2024.

Iotal I nosphol us Elliuent Data		
	Phosphorus mg/L	
1-day P ₉₉	3.5	
4-day P ₉₉	1.9	
30-day P ₉₉	1.03	
Mean	0.66	
Std	0.73	
Sample size	894	
Range	0.02 - 17.3	

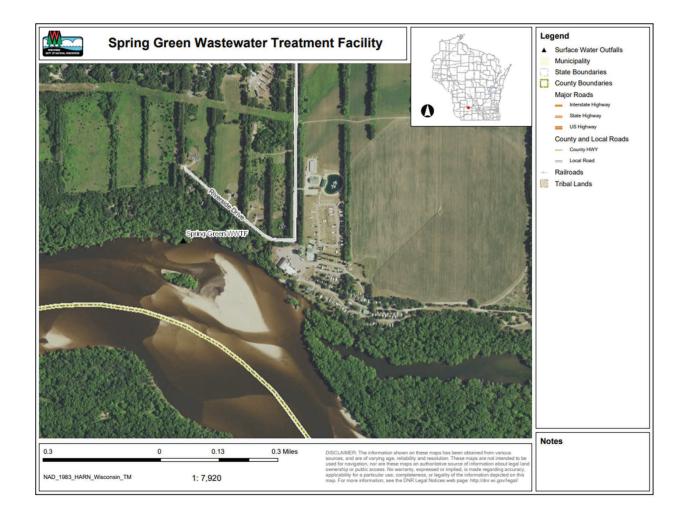
Total Phosphorus	Effluent Data
-------------------------	---------------

PART 6 – WATER QUALITY-BASED EFFLUENT LIMITATIONS FOR THERMAL

Surface water quality standards for temperature took effect on October 1, 2010. These regulations are detailed in chs. NR 102 (Subchapter II – Water Quality Standards for Temperature) and NR 106 (Subchapter V – Effluent Limitations for Temperature) of the Wisconsin Administrative Code. Daily maximum and weekly average temperature criteria are available for the 12 different months of the year depending on the receiving water classification.

Due to the amount of upstream flow available for dilution in the limit calculation, the Qs: Qe ratio is greater than 20:1 (5966:1) for Spring Green Wastewater Treatment Facility. Therefore, the lowest calculated limitation is 120° F (s. NR 106.55(6)(a), Wis. Adm. Code). At temperatures above approximately 103° F, conventional biological treatment systems do not function properly and experience

Spring Green Wastewater Treatment Facility Page 11 of 14


upsets. There is no indication that this has ever occurred in this treatment system. Therefore, there is no reasonable potential for the discharge to exceed this limit, and **no effluent limits or monitoring are recommended for temperature**.

PART 7 – WHOLE EFFLUENT TOXICITY (WET)

WET testing is used to measure, predict, and control the discharge of toxic materials that may be harmful to aquatic life. In WET tests, organisms are exposed to a series of effluent concentrations for a given time and effects are recorded. Decisions below related to the selection of representative data and the need for WET limits were made according to ss. NR 106.08 and 106.09, Wis. Adm. Code. WET monitoring frequency and toxicity reduction evaluation (TRE) recommendations were made using the best professional judgment of staff familiar with the discharge after consideration of the guidance in the *Whole Effluent Toxicity (WET) Program Guidance Document (2022)*.

- Acute tests predict the concentration that causes lethality of aquatic organisms during a 48 to 96-hour exposure. To assure that a discharge is not acutely toxic to organisms in the receiving water, WET tests must produce a statistically valid LC₅₀ (Lethal Concentration to 50% of the test organisms) greater than 100% effluent, according to s. NR 106.09(2)(b), Wis. Adm Code.
- Chronic testing is usually not recommended where the ratio of the 7-Q₁₀ to the effluent flow exceeds 100:1 and acute testing is not typically recommended if the ratio exceeds 1000:1. For the Spring Green Wastewater Treatment Facility, that ratio is approximately 5966:1. With this amount of dilution, there is believed to be little potential for acute or chronic toxicity effects in the Wisconsin River associated with the discharge from the Spring Green Wastewater Treatment Facility so the need for acute and chronic WET testing will not be considered further.

Site Map:

Spring Green Wastewater Treatment Facility Page 13 of 14

CLASSIFICATION: WARMWATER	SPORTFISH (COMMUNITY	
EFFLUENT FLOW (MGD)	0.26		
EFFLUENT FLOW (cfs)	0.402		
BACKGROUND INFORMATION:			
	May-Sept.	OctMarch	April
7-Q ₁₀ (cfs)	2400	2400	2400
$7-Q_2$ (cfs)	3500	3500	3500
Ammonia (mg/L)	0.06	0.12	0.06
Temperature (deg C)	25	3	12
pH (s.u.)	8.21	7.97	7.97
% of river flow used	100	25	50
Reference weekly flow	2400	600	1200
Reference monthly flow	2975	743.75	1487.5
CRITERIA (in mg/L)			
4-day Chronic (@ backgrd. pH)			
early life stages present	2.24	6.35	6.35
early life stages absent	2.24	10.31	7.47
30-day Chronic (@ backgrd. pH)			
early life stages present	0.90	2.54	2.54
early life stages absent	0.90	4.12	2.99
EFFLUENT LIMITS (in mg/L)			
Weekly average			
early life stages present	13034.89	9298.73	18770.08
early life stages absent		15210.59	22111.06
Monthly average			
early life stages present	6196.69	4476.89	9173.11
early life stages absent		7407.81	10829.57

Ammonia Nitrogen Effluent Limits from January 13, 2009 WQBEL Memo

Note: Early life stages present limits apply during the months of April through September and the early life stages absent limits apply to October through March for warm water sport fish community streams.