Appendix A

Cover Page – General Information

Cover Page – General Information

÷

-

Date of submittal:June 29, 2012
Levee owner point of contact:Mr. Timothy C. Muehlfeld, P.E.
Name of levee owner. We Energies
Levee owner point of contact:
Name: Mr. Timothy C. Muehlfeld, P.E.
Address: We Energies, 333 West Everett Street
Milwaukee, WI 53203
Phone number: (414) 221-2206
Fax number:(414) 221-2020
E-mail address:
Name of levee system: Pleasant Prairie Ash Landfill Floodplain Levee
County:Kenosha
City:Pleasant Prairie
State:Wisconsin
Most recent letter of map revision case number, if applicable: $____N/A$
Name of submitting engineer(s) for 65.10(b) certifications:
John M. Trast, P.E.
End of 24-month PAL documentation period (certification submittal deadline): <u>August 11</u> , 2012
Have risk and uncertainty modeling approaches been used for the freeboard analysis? $_{}^{ m NO}$
DFIRM panel number(s) (preliminary or final): <u>192</u> (Map No. 55059C0192D)

FEMA Region V Suggested Tabbed Submission for 44 CFR 65.10(b) Version 1.1

2

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 1

44 CFR 65.10(b); Operation and Maintenance Systems

44 CFR 65.10(b) Tab

.

For levee (NAME of Levee) to be recognized by FEMA, evidence that adequate design and operation and maintenance systems are in place to provide reasonable assurance that protection from the base flood exists is provided here forth in this submission.

Note: According to 44 CFR 65.2, "(b) For the purpose of this part, a certification by a registered professional engineer or other party does not constitute a warranty or guarantee of performance, expressed or implied. Certification of data is a statement that the data is accurate to the best of the certifier's knowledge. Certification of analyses is a statement that the analyses have been performed correctly and in accordance with sound engineering practices. Certification of structural works is a statement that the works are designed in accordance with sound engineering practices to provide protection from the base flood. Certification of 'as built' conditions is a statement that the structure(s) has been built according to the plans being certified, is in place, and is fully functioning.

P.E. Signature:

P.E. Name: John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

	44 CFR (Is this 44 CFR 65.10 Subpart Applicable to Your Levee System? (Y/N)	If applicable, please cite where document(s) address this 44 CFR 65.10 Subpart criteria. Please include page number.	
Operation Plans and Criteria [44 CFR, 65.10(c)]. For a levee	(1) Closures. Operation plans for closures must include the following:	(i) Documentation of the flood warning system, under the jurisdiction of Federal, State, or community officials, that will be used to trigger emergency operation activities and demonstration that sufficient flood warning time exists for the completed operation of all closure structures, including necessary sealing, before floodwaters reach the base of the closure.	N	
system to be recognized, the operational criteria must be as described		(ii) A formal plan of operation including specific actions and assignments of responsibility by individual name or title.	Ν	
below. All closure devices or mechanical systems for internal drainage, whether		(iii) Provisions for periodic operation, at not less than one- year intervals, of the closure structure for testing and training purposes.		Appended Operation and Maintenance Plan Page 1
manual or automatic, must be operated in accordance with an officially adopted operation manual, a copy of which must be provided	(2) Interior drainage systems. Interior drainage systems associated with levee systems usually include storage	(i) Documentation of the flood warning system, under the jurisdiction of Federal, State, or community officials, that will be used to trigger emergency operation activities and demonstration that sufficient flood warning time exists to permit activation of mechanized portions of the drainage system.	N	
to FEMA by the operator when levee or drainage system recognition is being sought or when the	areas, gravity outlets, pumping stations, or a combination	(ii) A formal plan of operation including specific actions and assignments of responsibility by individual name or title.	Y	Appended Operation and Maintenance Plan Page 1
manual for a previously recognized system is revised in any manner. All	drainage systems will be recognized by FEMA on NFIP maps	(iii) Provision for manual backup for the activation of automatic systems.	N	
operations must be under the jurisdiction of a Federal or State agency, an agency created by Federal or	for flood protection purposes only if the following minimum criteria are included in the operation plan:	(iv) Provisions for periodic inspection of interior drainage systems and periodic operation of any mechanized portions for testing and training purposes. No more than one year shall elapse between either the inspections or the operations.	У	Attached Operation and Maintenance Plan Page 1
a community participating in the NFIP.	(3) Other operation pla required by FEMA to er situations. In such case standard upon which FE	ans and criteria. Other operating plans and criteria may be sure that adequate protection is provided in specific s, sound emergency management practice will be the EMA determinations will be based.	Ν	

Maintenance Plans and Criteria [44 CFR, 65.10(d)]. For levee systems to be recognized as providing protection from the base flood, the maintenance criteria must be as described herein. Levee systems must be maintained in accordance with an officially adopted maintenance plan, and a copy of this plan must be provided to FEMA by the owner of the levee system when recognition is being sought or when the plan for a previously recognized system is revised in any manner. All maintenance activities must be under the jurisdiction of a Federal or State agency, an agency created by Federal or State law, or an agency of a community participating in the NFIP that must assume ultimate responsibility for maintenance. This plan must document the formal procedure that ensures that the stability, height, and overall integrity of the levee and its associated structures and systems are maintained. At a minimum, maintenance plans shall specify the maintenance activities to be performed, the frequency of their performance, and the person by name or title responsible for their performance.	Y	Attached Operation and Maintenance Plan Page 2
--	---	--

Name of Levee System:

Date of Operations Plan: May 25, 2012

Date of Maintenance Plan (if NA separate document):

Name of Levee Owner and/or Sponsor Responsible for Operation We Energies, Timothy C. Muehlfeld, P.E., Facility Manager and Maintenance of Levee System:

By signing this form, you acknowledge the information provided is accurate and complete according to 44 CFR 65.10 (c) and (d).

Levee Owner and/or Sponsor Signature:

Levee Owner and/or Sponsor Name: Timothy C. Muehlfeld, P.E.

We Energies Pleasant Prairie Ash Landfill Floodplain Levee

Operation and Maintenance Plan

Background:

The Pleasant Prairie Ash Landfill Floodplain Levee was constructed in 2000 to prevent a portion of We Energies owned property, permitted as landfill space, from being mapped within the 100-year floodplain. Designation of this property within the floodplain would prevent landfill development within the designated area. Construction of the levee was coordinated with SEWRPC and the Village of Pleasant Prairie, in accordance with applicable permits. An aerial view of the levee is included as Attachment 1.

This Maintenance Plan was prepared to comply with 44 CFR 65.10 and NR 116.17(2)(a)6.

Operations:

In the event that flood elevations in the Unnamed Tributary No. 2 to Jerome Creek approach the FEMA 1% annual chance flood elevation, the owner shall be responsible for installing temporary sandbag flood protection along the west 95 feet of the Pleasant Prairie Ash Landfill Floodplain Levee up to elevation 685.0. This protection shall remain in place until flood waters recede.

Annual Inspections:

The entire length of the levee and all four culverts will be inspected at least once annually each spring (April through June). The inspection will be conducted by the We Energies Facility Manager for the Pleasant Prairie Power Plant Ash Landfill, or his designee. The annual inspections will consist of the following activities:

<u>Levee:</u> Inspect both sides and the top of the levee over the entire length. Note any soil erosion, bare spots (lack of vegetation), cracks, evidence of seepage, slumping or any other sign of structural degradation.

<u>Culverts:</u> Inspect culvert inlets for obstructions, inspect inside of culverts for blockages or structural damage, inspect inlets and outlets for scouring or evidence of seepage and inspect check valves for obstructions and proper operation.

Document inspections and note required maintenance activities on the Inspection Form, included as Attachment 2.

Maintenance:

The We Energies Facility Manager will coordinate all maintenance items identified on the Inspection Form so that all identified maintenance items are completed no later than October 31 of the year the maintenance item was identified.

In addition to any maintenance item identified on the Inspection Form, the We Energies Facility Manger will arrange to have the levee mown at least once a year in order to facilitate inspections and to promote vigorous vegetative growth.

Annual Report:

An annual summary report will be prepared by the We Energies Facility Manager and submitted to the Wisconsin Department of Natural Resources and the Village of Pleasant Prairie by March 31 of the following year. The annual report will include the site inspection documentation and a description of any maintenance work or other site related activities for the year. The annual report will be certified by a professional engineer registered in Wisconsin.

ATTACHMENTS

Attachment 1: Pleasant Prairie Ash Landfill Floodplain Levee Attachment 2: Pleasant Prairie Ash Landfill Floodplain Levee Inspection Form

Created by: TKS Frid

Friday, February 19, 2010 8:02 AM

File: J:\DATA\FO\Env_Strategy\GIS Projects\Landfill_Properties\Maps\PPPP_Floodplain_levee.mxd

Page 2

Pleasant Prairie Ash Landfill Floodplain Levee

ANNUAL INSPECTION FORM

Inspection Date:

Inspectors:

Weather:

Levee: Inspect both sides and the top of the levee over the entire length. Note any soil erosion, bare spots (lack of vegetation), cracks, evidence of seepage, slumping or any other sign of structural degradation. Indicate coordinates of any area requiring attention in US State Plane 1983.

Culvert 1: Check inlet and outlet for obstructions or erosion. Check inside for blockages or damage. Check that the Tideflex checkvalve is free to operate.

Culverts 2, 3 & 4: Check inlet and outlet for obstructions or erosion. Check inside for blockages or damage. Manually operate the Fontaine flap gate valves to ensure they open freely and reset securely.

Culvert 2: Culvert 3: Culvert 4:

Action Items: Summarize all items identified above that require maintenance.

Note: Attach inspection and maintenance photos to Form.

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 2

44 CFR 65.10(b)(1)(i); Riverine Levee Freeboard

44 CFR 65.10(b) (1) (i) Tab

(1) *Freeboard.* (i) Riverine levees must provide a minimum freeboard of three feet above the water-surface level of the base flood. An additional one foot above the minimum is required within 100 feet in either side of structures (such as bridges) riverward of the levee or wherever the flow is constricted. An additional one-half foot above the minimum at the upstream end of the levee, tapering to not less than the minimum at the downstream end of the levee, is also required.

P.E. Signature:

Non Applicable:

P.E. Name: _______ John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

CALCULATION SHEET

				г	aye _	I		1	
				P	Project	No.	60218395		
Client	We Energies	Subject	Freeboard	P	Prepare	ed By	CF	Date	05/13
Project	Pleasant Prairie Ash			F	Review	ed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert			A	Approv	ed By	JXT	Date	06/13

D - ----

~

FREEBOARD ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (1) Freeboard (i) Riverine, which states:

Riverine levees must provide a minimum freeboard of three feet above the water-surface level of the base flood. An additional one foot above the minimum is required within 100 feet in either side of structures (such as bridges) riverward of the levee or wherever the flow is constricted. An additional one-half foot above the minimum at the upstream end of the levee, tapering to not less than the minimum at the downstream end of the levee, is also required.

Assumptions

1. The base flood elevation listed in the draft Flood Insurance Study effective June 19, 2012 (FIS) will remain unchanged upon adoption of the study.

Calculations

Freeboard

The base flood elevation for the main channel adjacent to the Pleasant Prairie Ash Landfill Floodplain Levee ranges from 680.5 to 681.0 according to Table 9 of the FIS (Unnamed Tributary No. 2 to Jerome Creek Cross-Sections A-F and Unnamed Tributary No. 3 to Jerome Creek Cross-Section G). The minimum elevation of the top of the levee is 685.3 according to surveys performed by AECOM in November and December 2011. The topographic maps generated from the surveys are provided as Drawings 1-4 As-Built Drawings/Site Conditions, Plan & Profile Stations 0+00 to 15+00, Plan & Profile Stations 15+00 to 30+00, and Plan & Profile Stations 30+00 to 41+93. Based on the survey information the floodplain levee provides a minimum of 4.3 feet of freeboard, with one exception. Approximately 13 feet of levee on the southwest end tapers to meet existing grade at the site access road and does not meet the minimum freeboard requirement. This condition was outlined in the Levee Certification Questionnaire and evaluated by FEMA prior to the issuance of the PAL.

Conclusions

The Pleasant Prairie Ash Landfill Floodplain Levee satisfies 44 CFR 65.10(b) (1) (i) with the exception of the 26 feet of levee on the southwest end which tapers to meet existing grade as shown on Drawings 1 As-Built Drawings/Site Conditions and Drawing 4 – Plan & Profile Stations 30+00 to 41+93.

References

Federal Emergency Management Agency. (2012). Flood Insurance Study – Kenosha County, Wisconsin and Incorporated Areas, Effective June 19, 2012. Federal Emergency Management Agency. Retrieved January 19, 2012 from: ftp://ftp.wi.gov/DNR/shared/floodplain/Temporary/To_Kenosha/FIS FIGURE

Figure 01 – Pleasant Prairie Landfill Levee Freeboard Requirement

Landfill Flood Plain Levee Certification We Energies, Pleasant Prairie, WI Project No.: 60218395 2012-02

FIGURE 2

APPENDIX

EXCERPTS FROM KENOSHA COUNTY FIS

KENOSHA COUNTY, WISCONSIN, AND INCORPORATED AREAS

Community Name	Community Number
Bristol, Village of	550595
*Genoa City, Village of	550465
Kenosha, City of	550209
Kenosha County, Unincorporated Areas	550523
Paddock Lake, Village of	550073
Pleasant Prairie, Village of	550613
Silver Lake, Village of	550210
Twin Lakes, Village of	550211

*No Special Flood Hazard Areas Identified

EFFECTIVE: June 19, 2012

FLOOD INSURANCE STUDY NUMBER 55059CV001A

TABLE 6 - SUMMARY OF DISCHARGES

PEAK DISCHARGES (cfs)

		10-			
FLOODING SOURCE AND LOCATION	DRAINAGE AREA <u>(sq. miles)</u>	PERCENT ANNUAL <u>CHANCE</u>	2-PERCENT ANNUAL <u>CHANCE</u>	1-PERCENT ANNUAL <u>CHANCE</u>	0.2-PERCENT ANNUAL <u>CHANCE</u>
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER					
At Confluence with Des Plaines River UNNAMED TRIBUTARY	0.6	149	229	268	*
NO. 2 TO JEROME CREEK At Confluence with Jerome					
Creek UNNAMED TRIBUTARY	0.3	36	41	43	*
BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY	0.8	69	97	110	*
At Confluence with Dutch Gap Canal	3.5	63	106	129	*
UNNAMED TRIBUTARY NO. 3 TO JEROME					
At Confluence with Jerome Creek Just upstream of divergence	0.7	19	23	25	*
with Unnamed Tributary No. 2 to Jerome Creek UNNAMED TRIBUTARY	*	35	39	41	*
NO. 3 TO SALEM BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY TO NO. 4 TO DUTCH	0.7	34	48	55	*
GAP CANAL At Confluence with Dutch Gap Canal	1.6	35	62	77	*

FLOODING SO	FLOODING SOURCE			DDWAY 1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)					DOD IAVD 88)
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER (CONTINUED) K	8,380 ¹	31	53	1.8	0	704.1	704.1	704.1	0.0
UNNAMED TRIBUTARY NO. 2 TO JEROME CREEK						588.9			
A	1.961 ²	33	107	0.4	0	680.8	680.8	680.8	0.0
В	2.109 ²	29	92	0.6	0	680.8	680.8	680.8	0.0
С	2,468 ²	93	260	0.3	0	680.9	680.9	680.9	0.0
D	2.780 ²	162	262	0.3	0	680.9	680.9	680.9	0.0
E	3,440 ²	172	217	0.3	0	680.9	680.9	680.9	0.0
F	4,000 ²	142	178	0.2	0	681.0	681.0	681.0	0.0
UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHTON CREEK									
A	100 ³	*	*	*	*	752.1	*	*	*
В	950 ³	*	*	*	*	763.1	*	*	*
С	1,352 ³	*	*	*	*	768.3	*	*	*
D	1,621 ³	*	*	*	*	768.6	*	*	*
E	1,874 ³	*	*	*	*	772.7	*	*	*
F	2,767 ³	*	*	*	*	780.6	*	*	*
G	3,216 ³	*	*	*	*	789.1	*	*	*
¹ FEET ABOVE CONFLUENCE WIT CREEK, *DATA NOT AVAILABLE	H UNNAMED TRIBUTA	RY NO. 1E TO DE	S PLAINES RIVER	, ² FEET ABOVE CC	ONFLUENCE WITH JI	EROME CREEK, ³ FEE	ABOVE CONFLUEN	CE WITH SALEM BRA	NCH BRIGHTON
	FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOC	DWAY D	ATA	
KENOSH AND INCOR	A COUNTY PORATED A	, WI REAS		UNNAMED TRIBUTARY 2 TO DES PLAINES RIVER - UNNAMED TRIBUTARY JEROME CREEK - UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHT				RIBUTARY NO. 2 CH BRIGHTON C	

FLOODING SOURCE			FLOODWAY			1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88			IAVD 88)
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
TRIBUTARY NO. 3 TO JEROME CREEK									
А	1,950 ¹	5	11	2.3	0	680.5	680.5	680.5	0.0
В	2,200 ¹	40	98	0.3	0	680.5	680.5	680.5	0.0
С	2,395 ¹	4	12	2.1	0	680.5	680.5	680.5	0.0
D	2,515 ¹	4	17	1.4	0	680.5	680.5	680.5	0.0
E	2,556 ¹	4	15	1.6	0	588.9	680.6	680.6	0.0
F	2,946 ¹	20	40	0.8	0	680.7	680.7	680.7	0.0
G	4,429 ¹	3	9	4.8	0	681.0	681.0	681.0	0.0
Н	4,504 ¹	3	10	4.3	0	681.9	681.9	681.9	0.0
I	4,984 ¹	472	302	0.2	0	682.3	682.3	682.3	0.0
J	6,879 ¹	37	33	1.7	0	683.4	683.4	683.4	0.0
К	7,059 ¹	122	38	1.8	0	684.0	684.0	684.0	0.0
L	7,185 ¹	130	56	1.0	0	684.3	684.3	684.3	0.0
М	7,755 ¹	8	19	2.2	0	687.7	687.7	687.7	0.0
UNNAMED TRIBUTARY NO. 3 TO SALEM BRANCH BRIGHTON CREEK									
A	201 ²	*	*	*	*	756.8	*	*	*
В	623 ²	*	*	*	*	762.8	*	*	*
С	898 ²	*	*	*	*	769.2	*	*	*
D	1,119 ²	*	*	*	*	771.0	*	*	*
E	1,463 ²	*	*	*	*	775.4	*	*	*
F	2,656 ²	*	*	*	*	789.9	*	*	*
¹ FEET ABOVE CONFLUENCE V	VITH JEROME CRE	EK, ² FEET ABO	/E CONFLUENCE	WITH SALEM B	RANCH BRIGHTOI	N CREEK, *DATA NO			
FEDERAL EMERGE						FLOO	DWAY D	ATA	
KENOSH AND INCOR	A COUNTY PORATED A	, WI REAS		UNNAMED TRIBUTARY NO. 3 TO JEROME CREEK - UNNAMED TRIBUTARY SALEM BRANCH BRIGHTON CREEK				RIBUTARY NO	

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 16N. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from the National Agriculture Imagery Program's (NAIP) digital orthoimagery produced by the USDA, Farm Service Agency. The orthophoto was collected in the summer of 2005 and produced at a resolution of 1 meter.

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Based on updated topographic information, this map reflects more detailed and p-to-date stream channel configurations and floodplain delineations that those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Provisionally Accredited Levee Notes to Users: Check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system shown as providing protection for areas on this panel. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations by August 11, 2012. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA website at ww.fema.gov/business/nfip/index.shtm.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average ZONE AO depths determined. For areas of alluvial fan flooding, velocities also determined. Special Flood Hazard Areas formerly protected from the 1% annual chance ZONE AR flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood ZONE A99 protection system under construction; no Base Flood Elevations determined. ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. LOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with ZONE X average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. ZONE X ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS $\langle || \rangle$ OTHERWISE PROTECTED AREAS (OPAs) 11.11 CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. 1% Annual Chance Floodplain Boundary 0.2% Annual Chance Floodplain Boundary -----Floodway boundary ____ Zone D boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths, or flood velocities. Base Flood Elevation line and value; elevation in feet* ~ 513~~ Base Flood Elevation value where uniform within zone; elevation in (EL 987) *Referenced to the North American Vertical Datum of 1988 $\langle A \rangle$ Cross section line 23 - - - - - - - - - 23 Transect line -----Culvert Geographic coordinates referenced to the North American Datum of 45° 02' 08", 93° 02' 12" 1983 (NAD 83) Western Hemisphere 5000-foot ticks: Wisconsin State Plane South Zone (FIPS Zone 4803), Lambert Conformal Conic projection 4989000 N 1000-meter Universal Transverse Mercator grid values, zone 16N Bench mark (see explanation in Notes to Users section of this FIRM DX5510 🗙 • FT1,000 **River Station** MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP June 19, 2012 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 1000 FEET _ **METERS** 300 150 PANEL 0192D MARA FIRM FLOOD INSURANCE RATE MAP **KENOSHA COUNTY**, WISCONSIN AND INCORPORATED AREAS 100 PANEL 192 OF 331 E COOLD IN SULTANCE (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX KENOSHA, CITY OF 550209 0192 D PLEASANT PRAIRIE, 550613 0192 VILLAGE OF Notice to User: The Map Number shown below should be used when placing map orders; the JAVANOJAV Community Number shown above should be used on insurance applications for the subject community. MAP NUMBER NO. 55059C0192D **EFFECTIVE DATE** JUNE 19, 2012 AND SEC Federal Emergency Management Agency

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 3

44 CFR 65.10(b)(1)(ii); Riverine Levee Freeboard Exception

44 CFR 65.10(b) (1) (ii) Tab

.

(ii) Occasionally, exceptions to the minimum riverine freeboard requirement described in paragraph (b)(1)(i) of this section, may be approved. Appropriate engineering analyses demonstrating adequate protection with a lesser freeboard must be submitted to support a request for such an exception. The material presented must evaluate the uncertainty in the estimated base flood elevation profile and include, but not necessarily be limited to an assessment of statistical confidence limits of the 100-year discharge; changes in stage-discharge relationships; and the sources, potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee will remain structurally stable during the base flood when such additional loading considerations are imposed. Under no circumstances will freeboard of less than two feet be accepted.

P.E. Signature:

Non Applicable: _____

P.E. Name: _ John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

CALCULATION SHEET

				Page	1	Of	1	
				Project	t No.	1325060		
Client	We Energies	Subject	Freeboard	Prepar	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Exception	is Analysis	Review	ed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert			Approv	/ed By	/ JXT	Date	06/13

FREEBOARD EXCEPTIONS ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (1) (ii) which states:

"Occasionally, exceptions to the minimum riverine freeboard requirement described in paragraph (b)(1)(i) of this section, may be approved. Appropriate engineering analyses demonstrating adequate protection with a lesser freeboard must be submitted to support a request for such an exception. The material presented must evaluate the uncertainty in the estimated base flood elevation profile and include, but not necessarily be limited to an assessment of statistical confidence limits of the 100-year discharge; changes in stagedischarge relationships; and the sources, potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee will remain structurally stable during the base flood when such additional loading considerations are imposed. Under no circumstances will freeboard of less than two feet be accepted."

Assumptions

1. The base flood elevation listed in the draft Flood Insurance Study effective June 19, 2012 (FIS) will remain unchanged upon adoption of the study.

Calculations

Exceptions to Freeboard

The west 13 feet of the Pleasant Prairie Ash Landfill Floodplain Levee does not meet the freeboard requirement described in 44 CFR 65.10(b)(1)(i). According to 44 CFR 65.10(b)(1)(i), the minimum freeboard is 3.0 feet for the main levee and 4.0 feet within 100 feet of structures. The west 13 feet of the Pleasant Prairie Ash Landfill Floodplain Levee is within 100 feet of a structure and the Base Flood Elevation is 680.5. Therefore, the minimum elevation to meet the 4.0 foot freeboard requirement required under 44 CFR 65.10(b)(1)(i) is 684.5.

The following language shall be included in the operation and maintenance plan for the Pleasant Prairie Ash Landfill Floodplain Levee:

"In the event that flood elevations in the Unnamed Tributary No. 2 to Jerome Creek approach the FEMA 1% annual chance flood elevation, the owner shall be responsible for installing temporary sandbag flood protection along the west 13 feet of the Pleasant Prairie Ash Landfill Floodplain Levee up to elevation 684.5. This protection shall remain in place until flood waters recede."

This temporary sandbag protection required by the operation and maintenance plan will ensure a minimum of 4.0 feet of freeboard during the Base Flood event.

Conclusions

The Pleasant Prairie Ash Landfill Floodplain Levee satisfies 44 CFR 65.10(b)(1)(ii) with the inclusion of temporary sandbag protection in the operation and maintenance plan for the part of the levee that does not satisfy 44 CFR 65.10(b)(1)(i).

CALCULATION SHEET

	CALCOLATION CHELT					Of	1	
				Project	t No.	1325060		
Client	We Energies	Subject	Freeboard	Prepar	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Exception	is Analysis	Review	/ed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert			Approv	/ed By	/ JXT	Date	06/13

References

Federal Emergency Management Agency. (2012). *Flood Insurance Study – Kenosha County,* Wisconsin and Incorporated Areas, Effective June 19, 2012. Federal Emergency Management Agency. Retrieved January 19, 2012 from: ftp://ftp.wi.gov/DNR/shared/floodplain/Temporary/To_Kenosha/FIS

FIGURES

Figure 01 – Pleasant Prairie Landfill Levee Freeboard Requirement

Landfill Flood Plain Levee Certification We Energies, Pleasant Prairie, WI Project No.: 60218395 2012-02

FIGURE 2

APPENDIX

EXCERPTS FROM KENOSHA COUNTY FIS

KENOSHA COUNTY, WISCONSIN, AND INCORPORATED AREAS

Community Name	Community Number
Bristol, Village of	550595
*Genoa City, Village of	550465
Kenosha, City of	550209
Kenosha County, Unincorporated Areas	550523
Paddock Lake, Village of	550073
Pleasant Prairie, Village of	550613
Silver Lake, Village of	550210
Twin Lakes, Village of	550211

*No Special Flood Hazard Areas Identified

EFFECTIVE: June 19, 2012

FLOOD INSURANCE STUDY NUMBER 55059CV001A

TABLE 6 - SUMMARY OF DISCHARGES

PEAK DISCHARGES (cfs)

		10-			
FLOODING SOURCE AND LOCATION	DRAINAGE AREA <u>(sq. miles)</u>	PERCENT ANNUAL <u>CHANCE</u>	2-PERCENT ANNUAL <u>CHANCE</u>	1-PERCENT ANNUAL <u>CHANCE</u>	0.2-PERCENT ANNUAL <u>CHANCE</u>
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER					
At Confluence with Des Plaines River UNNAMED TRIBUTARY	0.6	149	229	268	*
NO. 2 TO JEROME CREEK At Confluence with Jerome					
Creek UNNAMED TRIBUTARY	0.3	36	41	43	*
BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY	0.8	69	97	110	*
CANAL At Confluence with Dutch Gap Canal	3.5	63	106	129	*
UNNAMED TRIBUTARY NO. 3 TO JEROME					
At Confluence with Jerome Creek Just upstream of divergence	0.7	19	23	25	*
With Unnamed Tributary No. 2 to Jerome Creek UNNAMED TRIBUTARY	*	35	39	41	*
BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY TO NO. 4 TO DUTCH	0.7	34	48	55	*
GAP CANAL At Confluence with Dutch Gap Canal	1.6	35	62	77	*

FLOODING SO	FLOODING SOURCE		FLOODWAY				1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER (CONTINUED) K	8,380 ¹	31	53	1.8	0	704.1	704.1	704.1	0.0	
UNNAMED TRIBUTARY NO. 2 TO JEROME CREEK						588.9				
A	1.961 ²	33	107	0.4	0	680.8	680.8	680.8	0.0	
В	2.109 ²	29	92	0.6	0	680.8	680.8	680.8	0.0	
С	2,468 ²	93	260	0.3	0	680.9	680.9	680.9	0.0	
D	2.780 ²	162	262	0.3	0	680.9	680.9	680.9	0.0	
E	3,440 ²	172	217	0.3	0	680.9	680.9	680.9	0.0	
F	4,000 ²	142	178	0.2	0	681.0	681.0	681.0	0.0	
UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHTON CREEK										
A	100 ³	*	*	*	*	752.1	*	*	*	
В	950 ³	*	*	*	*	763.1	*	*	*	
С	1,352 ³	*	*	*	*	768.3	*	*	*	
D	1,621 ³	*	*	*	*	768.6	*	*	*	
E	1,874 ³	*	*	*	*	772.7	*	*	*	
F	2,767 ³	*	*	*	*	780.6	*	*	*	
G	3,216 ³	*	*	*	*	789.1	*	*	*	
¹ FEET ABOVE CONFLUENCE WIT CREEK, *DATA NOT AVAILABLE	H UNNAMED TRIBUTA	RY NO. 1E TO DE	S PLAINES RIVER	, ² FEET ABOVE CC	ONFLUENCE WITH JI	EROME CREEK, ³ FEE	FABOVE CONFLUEN	CE WITH SALEM BRA	NCH BRIGHTON	
FEDERAL EMERGENCY MANAGEMENT AGENCY KENOSHA COUNTY, WI AND INCORPORATED AREAS				FLOODWAY DATA						
				UNNAMED TRIBUTARY 2 TO DES PLAINES RIVER - UNNAMED TRIBUTARY NO. 2 JEROME CREEK - UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHTON CI						

FLOODING SOURCE		FLOODWAY			1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
TRIBUTARY NO. 3 TO JEROME CREEK										
А	1,950 ¹	5	11	2.3	0	680.5	680.5	680.5	0.0	
В	2,200 ¹	40	98	0.3	0	680.5	680.5	680.5	0.0	
С	2,395 ¹	4	12	2.1	0	680.5	680.5	680.5	0.0	
D	2,515 ¹	4	17	1.4	0	680.5	680.5	680.5	0.0	
E	2,556 ¹	4	15	1.6	0	588.9	680.6	680.6	0.0	
F	2,946 ¹	20	40	0.8	0	680.7	680.7	680.7	0.0	
G	4,429 ¹	3	9	4.8	0	681.0	681.0	681.0	0.0	
Н	4,504 ¹	3	10	4.3	0	681.9	681.9	681.9	0.0	
I	4,984 ¹	472	302	0.2	0	682.3	682.3	682.3	0.0	
J	6,879 ¹	37	33	1.7	0	683.4	683.4	683.4	0.0	
K	7,059 ¹	122	38	1.8	0	684.0	684.0	684.0	0.0	
L	7,185 ¹	130	56	1.0	0	684.3	684.3	684.3	0.0	
М	7,755 ¹	8	19	2.2	0	687.7	687.7	687.7	0.0	
UNNAMED TRIBUTARY NO. 3 TO SALEM BRANCH BRIGHTON CREEK										
A	201 ²	*	*	*	*	756.8	*	*	*	
В	623 ²	*	*	*	*	762.8	*	*	*	
С	898 ²	*	*	*	*	769.2	*	*	*	
D	1,119 ²	*	*	*	*	771.0	*	*	*	
E	1,463 ²	*	*	*	*	775.4	*	*	*	
F	2,656 ²	*	*	*	*	789.9	*	*	*	
¹ FEET ABOVE CONFLUENCE V	VITH JEROME CRE	EK, ² FEET ABO	/E CONFLUENCE	WITH SALEM B	RANCH BRIGHTOI	N CREEK, *DATA NO	T AVAILABLE			
FEDERAL EMERGENCY MANAGEMENT AGENCY			FLOODWAY DATA							
KENOSHA COUNTY, WI AND INCORPORATED AREAS				UNNAMED TRIBUTARY NO. 3 TO JEROME CREEK - UNNAMED TRIBUTARY NO SALEM BRANCH BRIGHTON CREEK						

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 16N. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from the National Agriculture Imagery Program's (NAIP) digital orthoimagery produced by the USDA, Farm Service Agency. The orthophoto was collected in the summer of 2005 and produced at a resolution of 1 meter.

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Based on updated topographic information, this map reflects more detailed and p-to-date stream channel configurations and floodplain delineations that those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Provisionally Accredited Levee Notes to Users: Check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system shown as providing protection for areas on this panel. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations by August 11, 2012. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA website at ww.fema.gov/business/nfip/index.shtm.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average ZONE AO depths determined. For areas of alluvial fan flooding, velocities also determined. Special Flood Hazard Areas formerly protected from the 1% annual chance ZONE AR flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood ZONE A99 protection system under construction; no Base Flood Elevations determined. ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. LOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with ZONE X average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. ZONE X ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS $\langle || \rangle$ OTHERWISE PROTECTED AREAS (OPAs) 11.11 CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. 1% Annual Chance Floodplain Boundary 0.2% Annual Chance Floodplain Boundary -----Floodway boundary ____ Zone D boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths, or flood velocities. Base Flood Elevation line and value; elevation in feet* ~ 513~~ Base Flood Elevation value where uniform within zone; elevation in (EL 987) *Referenced to the North American Vertical Datum of 1988 $\langle A \rangle$ Cross section line 23 - - - - - - - - - 23 Transect line -----Culvert Geographic coordinates referenced to the North American Datum of 45° 02' 08", 93° 02' 12" 1983 (NAD 83) Western Hemisphere 5000-foot ticks: Wisconsin State Plane South Zone (FIPS Zone 4803), Lambert Conformal Conic projection 4989000m N 1000-meter Universal Transverse Mercator grid values, zone 16N Bench mark (see explanation in Notes to Users section of this FIRM DX5510 🗙 • FT1,000 **River Station** MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP June 19, 2012 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 1000 FEET _ **METERS** 300 150 PANEL 0192D MARA FIRM FLOOD INSURANCE RATE MAP **KENOSHA COUNTY**, WISCONSIN AND INCORPORATED AREAS 100 PANEL 192 OF 331 E COOLD IN SULTANCE (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX KENOSHA, CITY OF 550209 0192 D PLEASANT PRAIRIE, 550613 0192 VILLAGE OF Notice to User: The Map Number shown below should be used when placing map orders; the JAVANOJAV Community Number shown above should be used on insurance applications for the subject community. MAP NUMBER NO. 55059C0192D **EFFECTIVE DATE** JUNE 19, 2012 AND SEC Federal Emergency Management Agency

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 4

44 CFR 65.10(b)(1)(iii); Coastal Levee Freeboard

.

44 CFR 65.10(b) (1) (iii) Tab

(iii) For coastal levees, the freeboard must be established at one foot above the height of the one percent wave or the maximum wave runup (whichever is greater) associated with the 100-year stillwater surge elevation at the site.

P.E. Signature:

Non Applicable:

P.E. Name: _____John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

6

TAB 4: 44 CFR 65.10(b)(1)(iii) – Coastal Levee Freeboard

44 CFR 65.10(b)(1)(iii) - Coastal Levee Freeboard

The Pleasant Prairie Ash Landfill Floodplain Levee was constructed in 2000 to prevent a portion of the We Energies owned property, permitted as landfill space, from being mapped within the 100-year floodplain of the Unnamed Tributary No. 2 and No. 3 to Jerome Creek. It is a riverine levee and the coastal levee freeboard requirements and exceptions are not applicable.

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 5

44 CFR 65.10(b)(1)(iv); Coastal Levee Freeboard Exception

44 CFR 65.10 (b) (1) (iv)

(iv) Occasionally, exceptions to the minimum coastal levee freeboard requirement described in paragraph (b)(1)(iii) of this section, may be approved. Appropriate engineering analyses demonstrating adequate protection with a lesser freeboard must be submitted to support a request for such an exception. The material presented must evaluate the uncertainty in the estimated base flood loading conditions. Particular emphasis must be placed on the effects of wave attack and overtopping on the stability of the levee. Under no circumstances, however, will a freeboard of less than two feet above the 100-year stillwater surge elevation be accepted.

P.E. Signature:

Non Applicable:

P.E. Name: __ John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

TAB 5: 44 CFR 65.10(b)(1)(iv) – Coastal Levee Freeboard Exception

44 CFR 65.10(b)(1)(iv) – Coastal Levee Freeboard Exception

The Pleasant Prairie Ash Landfill Floodplain Levee was constructed in 2000 to prevent a portion of the We Energies owned property, permitted as landfill space, from being mapped within the 100-year floodplain of the Unnamed Tributary No. 2 and No. 3 to Jerome Creek. It is a riverine levee and the coastal levee freeboard requirements and exceptions are not applicable.

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 6

44 CFR 65.10(b)(2); Closures

Tab 6

.

44 CFR 65.10 (b) (2) Tab

(2) *Closures*. All openings must be provided with closure devices that are structural parts of the system during operation and design according to sound engineering practice.

P.E. Signature:

Non Applicable: _____

P.E. License Number and State: _____ 31792-6 WI

TAB 6: 44 CFR 65.10(b)(2) – Closures

44 CFR 65.10(b)(2) - Closures

The Pleasant Prairie Ash Landfill Floodplain Levee includes four culverts to provide interior drainage. The outlet of each culvert is equipped with a self-closing valve. Culvert 1 has a Tideflex check valve. Culverts 2, 3, and 4 have Fontaine flap gate valves. Descriptions and photos of the closure devices are provided with the Annual Inspection Report which is appended to the Operations and Maintenance Plan provided in Tab 1: 44 CFR 65.10(b); Operation and Maintenance Systems. All closure devices are structural parts of the levee system and designed according to sound engineering practice.

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 7

44 CFR 65.10(b)(3); Embankment Protection

44 CFR 65.10 (b) (3) Tab

(3) Embankment protection. Engineering analyses must be submitted that demonstrate that no appreciable erosion of the levee embankment can be expected during the base flood, as a result of either currents or waves, and that anticipated erosion will not result in failure of the levee embankment or foundation directly or indirectly through reduction of the seepage path and subsequent instability. The factors to be addressed in such analyses include, but are not limited to: Expected flow velocities (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope protection techniques; duration of flooding at various stages and velocities; embankment and foundation materials; levee alignment, bends, and transitions; and levee side slopes.

P.E. Signature:

Non Applicable:

P.E. Name: _____ John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

			U			
			Project No. 🧕	60218395		
Client	We Energies	Subject Embankment	Prepared By	MAB	Date	04/2012
Project	Pleasant Prairie Ash	Protection	Reviewed By	BKS	Date	04/2012
Landfill F	loodplain Levee Cert.	44 CFR 65.10(b)(3)	Approved By	JXT	Date	05/2012

Page 1

Of

5

EMBANKMENT PROTECTION ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (3) Embankment Protection:

Engineering analyses must be submitted that demonstrate that no appreciable erosion of the levee embankment can be expected during the base flood, as a result of either currents or waves, and that anticipated erosion will not result in failure of the levee embankment or foundation directly or indirectly through reduction of the seepage path and subsequent instability. The factors to be addressed in such analyses include, but are not limited to: Expected flow velocities (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope protection techniques; duration of flooding at various stages and velocities; embankment and foundation materials; levee alignment, bends, and transitions; and levee side slopes.

Assumptions

1. The base flood elevation and velocities listed in the draft Flood Insurance Study effective June 2012 (FIS) will remain unchanged upon adoption of the study.

Calculations

Expected Flow Velocities

According to the FIS, flow velocities along the Pleasant Prairie Ash Landfill Floodplain Levee are less than 0.6 ft/s at all locations except where a 36-inch diameter culvert discharges near the levee to the northeast. The Pleasant Prairie Ash Landfill Floodplain Levee is constructed of compacted and vegetated native silty clay soil. According to Chow (1959), the maximum permissible velocity for bare compacted silty clay soil is approximately 3 ft/s. Therefore, no erosion of the Pleasant Prairie Ash Landfill Floodplain Levee is expected due to channel velocities.

The velocity at the outlet of the 36-inch diameter culvert may be calculated by:

$$Q = \frac{1.49}{n} R^{2/3} S_0^{1/2} A$$

Where:

 $\begin{array}{l} \mbox{$Q$ = flowrate (cfs) = 41(from FIS)$} \\ \mbox{$n$ = Manning's number = 0.01 (concrete pipe)$} \\ \mbox{$R$ = hydraulic radius (ft)$} \\ \mbox{$S_{o}$ = friction slope (ft/ft) = 0.0068 (pipe slope from AECOM survey)$} \\ \mbox{$A$ = flow area (ft^{2})$} \end{array}$

Solving iteratively for R and A yields: R = 0.79 ft $A = 3.91 \text{ ft}^2$

Using the relationship V=Q/A yields a velocity of approximately 10.5 ft/s. A HEC-RAS computer

Page 2 Of 5

			Project No.	60218395	
Client	We Energies	Subject Embankment	Prepared By	MAB	Date 04/2012
Project	Pleasant Prairie Ash	Protection	Reviewed By	BKS	Date <u>04/2012</u>
Landfill I	<u>-loodplain Levee Cert.</u>	44 CFR 65.10(b)(3)	Approved By	JXT	Date 05/2012

model (USACE, 2010) was created to determine the approximate velocity at the Pleasant Prairie Ash Landfill Floodplain Levee due to this flow. The model required several input parameters including the ground geometry, flow expansion rate, starting conditions, and Manning's roughness values.

The model geometry was obtained from the AECOM survey.

A conservative assumption for the expansion rate of this flow is 4:1 (i.e. the width of flow increases 1 foot for every 4 feet along the direction of flow on each side of the culvert).

The downstream starting condition was assumed to be critical depth. This assumption resulted in the most conservative velocity calculation. The upstream starting condition and flow rate were determined from the pipe flow calculations above.

Manning's roughness values were determined from the HEC-RAS user's manual (USACE, 2010).

The velocity at the Pleasant Prairie Ash Landfill Floodplain Levee due to culvert discharge was determined to be approximately 2.87 ft/s. This velocity is not expected to cause erosion of the levee. Detailed HEC-RAS output is provided as Appendix A.

Wave Runup

Wave run-up is a function of several variables including wind speed, basin fetch, basin depth, and embankment slope.

The basin fetch for the Pleasant Prairie Ash Landfill Floodplain Levee is calculated as 0.44 miles or 2,325 feet as shown in Figure 2.

Wind speed in the vicinity of the levee is assumed to be similar to the one hour average wind speeds available from the Milwaukee International Airport. Data at this site from 1931 through 2008 was obtained from the Midwest Regional Climate Center. A Log-Pearson Type III distribution (USDA, 1998) was used with this data to determine the one hour wind speed for several recurrence intervals as shown on Table 1. From this table, the 1% annual chance wind speed was estimated to be 29.8 m/s which is approximately 97.8 ft/s or 66.7 miles/hr.

According to Figure 6-31 from Roberson et. al. (1998), the minimum time duration for wind to generate a wave acting in a reservoir with a fetch of 0.44 miles is approximately 8 minutes. According to the United Stated Army Corps of Engineers (USACE) Coastal Engineering Manual (2002) Figure II-2-1, wind speed for a given time duration in seconds, t, can be related with the following equation:

 $U_t/U_{1hr} = 1.277 + 0.296 \tanh \{0.9 \log_{10} (45/t)\}$

For $U_{1hr} = 66.7$ miles/hr and t = 480 seconds (8 minutes), the revised design wind velocity is 70.8 miles/hr or 103.8 ft/s. The significant wave height, H, for this velocity is approximately 2.2 ft according to Figure 6-31 from Roberson et. al. (1998) as shown in Appendix B.

Before calculating run-up of the significant wave, the wind setup must first be established. According to Roberson et. al. (1998), vertical setup height, S, is defined as:

Page 3 Of 5

			Project No.	60218395	
Client	We Energies	Subject Embankment	Prepared By	MAB	Date <u>04/2012</u>
Project	Pleasant Prairie Ash	Protection	Reviewed By	BKS	Date <u>04/2012</u>
Landfill F	loodplain Levee Cert.	44 CFR 65.10(b)(3)	Approved By	JXT	Date 05/2012

S=2.025 x 10⁻⁶ x
$$\frac{V^2 F}{g D}$$

Where:

And

V = Wind Velocity (ft/s) = 103.8 F = Fetch (ft) = 2,325 g = Gravitational Acceleration (ft/s²) = 32.2 D = Average Basin Depth (ft) = 2 (from AECOM survey)

This equation yields a wind setup of 0.79 ft.

Wave runup is also a function of wave period (T) and wave length (L). These parameters are defined by Roberson et. al. (1998) as:

 $T = \frac{0.429V^{0.44}F^{0.28}}{g^{0.72}}$ $L = 0.159qT^{2}$

Solving these equations for the problem parameters yields a wave period of 2.38 seconds and a wave length of 29.0 feet.

Figure 6-33 from Roberson et. al. (1998), shows the relationship between embankment slope, H/L, and relative runup (R/H), where R is equal to the vertical runup height. The embankment slope of the Pleasant Prairie Ash Landfill Floodplain Levee is approximately 1:3 based on the AECOM survey. H/L is calculated as 0.076 based on the problem parameters. Using Figure 6-33, the relative runup is determined to be:

R/H = 1.45

As shown in Appendix B. Therefore:

R = 1.45H = 1.45(2.2) = 3.19 ft

The total runup distance for the Pleasant Prairie Ash Landfill Floodplain Levee is the runup plus the setup:

Total Runup Height = 3.19 + 0.79 = 3.98 ft

The minimum height of the Pleasant Prairie Ash Landfill Floodplain Levee is approximately 4.3 feet.

Other Erosive Factors

Ice Loading: Due to the low flow rate in the vicinity of the Pleasant Prairie Ash Landfill Floodplain Levee during normal conditions, it is highly unlikely that significant ice loading will occur near the Levee.

Impact of Debris: The unnamed tributary that runs adjacent to the Pleasant Prairie Ash Landfill Floodplain Levee is restricted at the upstream end by a culvert. This culvert will tend to prevent

Of

E

			Page 4	_ Of _	5
			Project No.	60218395	
Client	We Energies	Subject Embankment	Prepared By	MAB	Date <u>04/2012</u>
Project	Pleasant Prairie Ash	Protection	Reviewed By	BKS	Date <u>04/2012</u>
Landfill F	loodplain Levee Cert.	44 CFR 65.10(b)(3)	Approved By	JXT	Date 05/2012

significant debris from being transported downstream to the vicinity of the levee.

Slope Protection: The Pleasant Prairie Ash Landfill Floodplain Levee Slopes are composed of native soil with grass vegetation. Due to the low velocities described above, no additional protection is required.

Duration of Flooding: Flood water duration is not expected to contribute to the erosion of the Pleasant Prairie Ash Landfill Floodplain Levee as the water is not predicted to reach elevations where significant seepage would occur, nor will it be flowing at erosive velocities.

Levee Materials and Geometry: The levee is composed of native clay that is not expected to erode at predicted flow velocities. Although the levee has many bends, the low velocities are not expected to produce significant eddy currents that would cause erosion of the levee. The side slopes of the levee are 1H:3V or flatter and are not expected to erode at the low predicted flow velocities.

Conclusions

These calculations have analyzed the potential erosion of the Pleasant Prairie Ash Landfill Floodplain Levee due to flow velocities, wind and wave action, and other minor factors. The calculations have shown that the Pleasant Prairie Ash Landfill Floodplain Levee should not experience significant erosion under expected conditions.

References

- Chow, V.T. (1959). Open-Channel Hydraulics. New York, New York: McGraw-Hill.
- Federal Emergency Management Agency. (2012). Flood Insurance Study Kenosha County, Wisconsin and Incorporated Areas, Effective June 2012. Federal Emergency Management Agency. Retrieved January 19, 2012 from
 - ftp://ftp.wi.gov/DNR/shared/floodplain/Temporary/To Kenosha/FIS
- Roberson, J.A., Cassidy, J.J., & Chaudhry, M.H. (1998). *Hydraulic Engineering*, 2nd Edition. New York, New York: John Wiley and Sons, Inc.
- United States Army Corps of Engineers. (2002). Coastal Engineering Manual (EM 1110-2-1100). Washington, DC: United States Army Corps of Engineers.
- United States Army Corps of Engineers. (2010). HEC-RAS River Analysis System User's Manual. Davis, California: United States Army Corps of Engineers – Hydraulic Engineering Center.
- United States Department of Agriculture. (1998). Tables of Percentage Points of the Pearson *Type III Distribution – Technical Release 38.* United States Department of Agriculture.

TABLES

Table 1	
/lilwaukee Airport Wind Data - Log Pearson Type III Analys	sis

Milw	aukee Wind I	Data	Milw	/aukee Wi
Date	Speed (m/s)	Log(Speed)	Date	Speed (m
1931	22.5	1.352	1974	19.6
1932	18.9	1.276	1975	20.1
1933	18.9	1.276	1976	17.0
1934	20.3	1.307	1977	25.8
1935	20.7	1.316	1978	18.5
1936	20.3	1.307	1979	25.8
1937	20.3	1.307	1980	19.6
1938	20.3	1.307	1981	16.5
1939	18.0	1.255	1982	20.6
1940	30.6	1.486	1983	19.1
1941	19.4	1.288	1984	19.1
1942	21.6	1.334	1985	16.5
1943	24.3	1.386	1986	15.5
1944	23.4	1.369	1987	18.0
1945	27.5	1.439	1988	17.0
1946	24.3	1.386	1989	19.6
1947	26.1	1.417	1990	17.5
1948	24.7	1.393	1991	16.0
1949	21.1	1.324	1992	15.5
1950	25.2	1.401	1993	17.0
1951	18.5	1.267	1994	15.5
1952	23.2	1.365	1995	15.5
1953	22.1	1.344	1996	18.5
1954	22.7	1.356	1997	17.5
1955	22.1	1.344	1998	22.7
1956	20.6	1.314	1999	18.5
1957	19.6	1.292	2000	14.4
1958	20.1	1.303	2001	18.5
1959	17.5	1.243	2002	12.9
1960	20.6	1.314	2003	16.5
1961	18.0	1.255	2004	16.0
1962	14.9	1.173	2005	15.5
1963	20.6	1.314	2006	15.9
1964	18.0	1.255	2007	16.5
1973	15.5	1.190	2008	14.4

Milwaukee Wind Data								
Date	Speed (m/s)	Log(Speed)						
1974	19.6	1.292						
1975	20.1	1.303						
1976	17.0	1.230						
1977	25.8	1.412						
1978	18.5	1.267						
1979	25.8	1.412						
1980	19.6	1.292						
1981	16.5	1.217						
1982	20.6	1.314						
1983	19.1	1.281						
1984	19.1	1.281						
1985	16.5	1.217						
1986	15.5	1.190						
1987	18.0	1.255						
1988	17.0	1.230						
1989	19.6	1.292						
1990	17.5	1.243						
1991	16.0	1.204						
1992	15.5	1.190						
1993	17.0	1.230						
1994	15.5	1.190						
1995	15.5	1.190						
1996	18.5	1.267						
1997	17.5	1.243						
1998	22.7	1.356						
1999	18.5	1.267						
2000	14.4	1.158						
2001	18.5	1.267						
2002	12.9	1.111						
2003	16.5	1.217						
2004	16.0	1.204						
2005	15.5	1.190						
2006	15.9	1.201						
2007	16.5	1.217						
2008	14.4	1.158						

Statistics							
Mean	S.D.	Skew					
1.284	0.075	0.275					

Log Pearson Analysis (Speed=10^(Mean+S.D.*K _T)							
10-yr 50-yr 100-yr				500-yr			
K _T	1.30732	2.19820	2.52658	3.21381			
Speed (m/s)	24.1	28.1	29.8	33.6			

APPENDIX A

HEC-RAS Output

Culvert.rep

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	Х	х	XXXX
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	Х	Х			Х	Х	Х	Х	Х
XXX>	XXXX	XXXX	Х		XXX	XX	XX	XXX	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	XX	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA Project Title: Culvert Project File : Culvert.prj Run Date and Time: 5/25/2012 10:24:38 AM

Project in English units

PLAN DATA

Plan Title: Plan 01
Plan File : g:\01dept03\Users\BakerMichael\60218395\HEC-RAS\Culvert.p01 Geometry Title: geometry Geometry File : g:\01dept03\Users\BakerMichael\60218395\HEC-RAS\Culvert.g01 : steady : g:\01dept03\Users\BakerMichael\60218395\HEC-RAS\Culvert.f01 Flow Title Flow File Plan Summary Information: 7 Cross Sections = Multiple Openings = 0 Number of: Inline Structures = Lateral Structures = = 0 Culverts 0 Bridges = 0 Ω Computational Information Water surface calculation tolerance = 0.01Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 0.3 Maximum difference tolerance = Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed_Flow FLOW DATA Flow Title: steady Flow File : g:\01dept03\Users\BakerMichael\60218395\HEC-RAS\Culvert.f01 Flow Data (cfs) River Reach PF 1 RS culvert culvert 114 41 Boundary Conditions Profile River Reach Upstream Downstream culvert culvert PF 1 Known WS = 683.39Known WS = 682.1

Culvert.rep

GEOMETRY DATA

Geometry Title: geometry Geometry File : g:\01dept03\Users\BakerMichael\60218395\HEC-RAS\Culvert.g01							
CROSS SECTION							
RIVER: culvert REACH: culvert	RS: 114						
INPUT Description: 114 Station Elevation Data Sta Elev Sta 0 685 0 .4 682.24 .5 .9 681.89 1 1.4 681.76 1.5 1.9 681.81 2 2.4 682.06 2.5 2.9 682.72 3	num= Elev 683.26 682.14 681.85 681.76 681.85 682.14 683.26	33 Sta Elev .1 682.72 .6 682.06 1.1 681.81 1.6 681.76 2.1 681.89 2.6 682.24 3 685	Sta .2 .7 1.2 1.7 2.2 2.7	Elev Sta 682.51 .3 681.99 .8 681.79 1.3 681.77 1.8 681.93 2.3 682.36 2.8	Elev 682.36 681.93 681.77 681.79 681.99 682.51		
Manning's n Values Sta n Val Sta 0 .03 0	num= n Val .03	3 Sta n Val 3 .03					
Bank Sta: Left Right 0 3	Lengths:	Left Channel 12 12	Right 12	Coeff Contr. .3	Expan. .5		
CROSS SECTION OUTPUT Pro	file #PF 1						
E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft)	$\begin{array}{c} 685.10\\ 1.71\\ 683.39\\ 683.88\\ 0.061993\\ 41.00\\ 3.00\\ 10.50\\ 1.63\\ 164.7\\ 12.00\\ 681.76\\ 1.00\\ \end{array}$	Element Wt. n-Val. Reach Len. Flow Area (sq ft Flow (cfs) Top Width (Avg. Vel. (Hydr. Depth Conv. (cfs) Wetted Per. Shear (lb/so Stream Powe Cum Volume Cum SA (acre	(ft) sq ft)) ft/s) (ft) (ft) q ft) r (lb/ft (acre-ft) es)	Left OB 12.00 s) 3.00	Channel 0.030 12.00 3.90 41.00 3.00 10.50 1.30 164.7 4.97 3.04 0.00 0.06 0.08	Right OB 12.00 0.00	
CROSS SECTION							
RIVER: culvert REACH: culvert	RS: 102						
INPUT Description: 102 Station Elevation Data Sta Elev Sta 0 680.1 4.5	num= Ele∨ 680	3 Sta Elev 9 680.1					
Manning's n Values Sta n Val Sta 0 .03 0	num= n Val .03	3 Sta nVal 9.03					
Bank Sta: Left Right 0 9	Lengths:	Left Channel 12 12	Right 12	Coeff Contr. .1	Expan. .3		
CROSS SECTION OUTPUT Pro	file #PF 1						
E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s)	682.85 0.04 682.81 680.91 0.000540 41.00 9.00 1.65	Element Wt. n-Val. Reach Len. Flow Area (s Area (sq ft Flow (cfs) Top Width (Avg. Vel. ((ft) sq ft)) ft) ft/s) Page 2	Left OB 12.00	Channel 0.030 12.00 24.81 24.81 41.00 9.00 1.65	Right OB 12.00	

Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft)	$2.81 \\ 1764.6 \\ 12.00 \\ 680.00 \\ 1.00 \\ 0.00 \\ 0.01 $	Culvert.rep Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s) Cum Volume (acre-ft) Cum SA (acres)	9.00	$\begin{array}{c} 2.76 \\ 1764.6 \\ 14.42 \\ 0.06 \\ 0.00 \\ 0.06 \\ 0.08 \end{array}$	0.00
Warning: The cross-sectio Warning: The conveyance r greater than 1.4. This may indica Note: Hydraulic jump h	n end points atio (upstro te the need as occurred	s had to be extended ver eam conveyance divided b for additional cross se between this cross sect	tically for the y downstream co ctions. ion and the pro	e computed onveyance) evious upst	water surface. is less than 0.7 or ream section.
CROSS SECTION					
RIVER: culvert REACH: culvert	RS: 90				
INPUT Description: 90 Station Elevation Data Sta Elev Sta 0 680.1 7.5	num= Ele∨ 680	3 Sta Elev 15 680.1			
Manning's n Values Sta n Val Sta 0 .03 0	num= n Val .03	3 Sta n Val 15 .03			
Bank Sta: Left Right 0 15	Lengths: Lo	eft Channel Right 8 8 8	Coeff Contr. .1	Expan. .3	
CROSS SECTION OUTPUT Pro	file #PF 1				
E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft)	$\begin{array}{c} 682.84\\ 0.02\\ 682.82\\ 0.000154\\ 41.00\\ 15.00\\ 0.99\\ 2.82\\ 3306.4\\ 8.00\\ 680.00\\ 1.00\\ \end{array}$	Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s)	Left OB 8.00	Channel 0.030 8.00 41.58 41.58 41.00 15.00 0.99 2.77 3306.4 20.45 0.02 0.00	Right OB 8.00
Frctn Loss (ft) C & E Loss (ft)	0.00	Cum Volume (acre-ft) Cum SA (acres)	13.00	0.05 0.08	0.00
Wanning, The space static	n and notet	a had to be extended were	tically for the	م مصمم مناج ما ا	watan cunfaca

Warning: The cross-section end points had to be extended vertically for the computed water surface. CROSS SECTION

RIVER: culvert REACH: culvert	RS: 82		
INPUT Description: 82 Station Elevation Data Sta Elev Sta 0 680.1 9.5	num= 3 Elev Sta Elev 680 19 680.1		
Manning's n Values Sta n Val Sta 0 .03 0	num= 3 n Val Sta n Val .03 19 .03		
Bank Sta: Left Right 0 19	Lengths: Left Channel 8 8	Right Coeff Contr. 8 .1	Expan. .3
CROSS SECTION OUTPUT Pro	file #PF 1		
E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft)	682.83 Element 0.01 wt. n-val. 682.83 Reach Len.	Left OB (ft) 8.00 Page 3	Channel Right OB 0.030 8.00 8.00

		Culvert.rep			
Crit W.S. (ft)		Flow Area (sq ft)		52.73	
E.G. Slope (ft/ft)	0.000088	Area (sq ft)		52.73	
Q Total (cfs)	41.00	Flow (cfs)		41.00	
Top Width (ft)	19.00	Top Width (ft)		19.00	
Vel Total (ft/s)	0.78	Avg. Vel. (ft/s)		0.78	
Max Chl Dpth (ft)	2.83	Hydr. Depth (ft)		2.78	
Conv. Total (cfs)	4359.6	Conv. (cfs)		4359.6	
Length Wtd. (ft)	8.00	Wetted Per. (ft)		24.45	
Min ^{Ch} El (ft)	680.00	Shear (1b/sq ft)		0.01	
Alpha	1.00	Stream Power (lb/ft s)	19.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)		0.04	
C & E LOSS (ft)	0.01	Cum SA (acres)		0.07	

Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: culvert REACH: culvert	RS: 74				
INPUT Description: 74 Station Elevation Data Sta Elev Sta 0 682.1 11.5	num= Elev 682	3 Sta Elev 23 682.1			
Manning's n Values Sta n Val Sta 0 .03 0	num= n Val .03	3 Sta n Val 23 .03			
Bank Sta: Left Right 0 23	Lengths: Le	eft Channel Right 37 37 37 37	Coeff Contr. .1	Expan. .3	
CROSS SECTION OUTPUT Pro	file #PF 1				
E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs)	682.82 0.11 682.71 0.005597 41.00 23.00 2.71 0.71 548.0	Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs)	Left OB 37.00	Channel 0.030 37.00 15.14 15.14 41.00 23.00 2.71 0.66 548.0	Right OB 37.00
Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft)	37.00 682.00 1.00 0.14 0.02	Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s) Cum Volume (acre-ft) Cum SA (acres)	23.00	24.22 0.22 0.00 0.03 0.07	0.00

Warning: The cross-section end points had to be extended vertically for the computed water surface.

CROSS SECTION

RIVER: culvert REACH: culvert RS: 37 INPUT Description: 37 Station Elevation Data Sta Elev St 0 682.1 20.7 num= 3 Sta 20.75 Elev Sta Elev 682 41.5 682.1 Manning's n Values Sta n Val 3 num= n Val Ŝta Sta n Val .03 41.5 0 0 .03 .03 Right 41.5 Lengths: Left Channel 37 37 Right Coeff Contr. Bank Sta: Left Expan. 37 37 0 .1 .3 CROSS SECTION OUTPUT Profile #PF 1

Culvert.rep

E.G. Elev (ft)	682.66	Element _	Left OB	Channel	Right OB
Vel Head (ft)	0.05	Wt. n-Val.		0.030	
W.S. Elev (ft)	682.61	Reach Len. (ft)	37.00	37.00	37.00
Crit W.S. (ft)	682.36	Flow Area (sq ft)		23.32	
E.G. Slope (ft/ft)	0.002807	Area (sq ft)		23.32	
Q Total (cfs)	41.00	Flow (cfs)		41.00	
Top Width (ft)	41.50	Top Width (ft)		41.50	
Vel Total (ft/s)	1.76	Avg. Vel. (ft/s)		1.76	
Max Chl Dpth (ft)	0.61	Hydr. Depth (ft)		0.56	
Conv. Total (cfs)	773.9	Conv. (cfs)		773.9	
Length Wtd. (ft)	37.00	Wetted Per. (ft)		42.52	
Min [°] Ch El (ft)	682.00	Shear (1b/sq ft)		0.10	
Alpha	1.00	Stream Power (lb/ft s)	41.50	0.00	0.00
Frctn Loss (ft)	0.23	Cum Volume (acre-ft)		0.02	
C & E LOSS (ft)	0.01	Cum SA (acres)		0.04	

Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: culvert REACH: culvert RS: 0 INPUT Description: 0 Station Elevation Data Sta Elev St 3 num= Elev Sta 29 Elev Sta 58 682.1 682.1 0 682 Manning's n Values 3 num= n Val n Val Sta Sta n Val Sta 0 .03 0 .03 58 .03 Coeff Contr. Bank Sta: Left Right Expan. 0 58 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) 682.42 Left OB Channel Right OB Element 0.13 Wt. n-Val. 0.030 682.30 682.30 Reach Len. (ft) Flow Area (sq ft) 14.28 E.G. Slope (ft/ft) Q Total (cfs) Area (sq ft) Flow (cfs) 0.021969 14.28 41.00 41.00 Flow (CTS) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s) Top Width (ft) Vel Total (ft/s) 58.00 58.00 2.87 2.87 Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) 0.30 0.25 276.6 276.6 58.39 Min Ch El (ft) 682.00 0.34 Alpha 1.00 58.00 0.00 0.00 Cum Volume (acre-ft) Cum SA (acres) Frctn Loss (ft) C & E Loss (ft)

Warning: User specified water surface is not possible for the specified flow regime. The program used critical depth as the starting water surface.

SUMMARY OF MANNING'S N VALUES

River:culvert

Reach	River Sta.	n1	n2	n3
culvert culvert culvert culvert culvert culvert	114 102 90 82 74 37	.03 .03 .03 .03 .03 .03	.03 .03 .03 .03 .03 .03 .03 Page 5	.03 .03 .03 .03 .03 .03

		Cul	vert.rep	
culvert	0	.03	.03	.03

SUMMARY OF REACH LENGTHS

River: culvert

Reach	River Sta.	Left	Channel	Right
culvert culvert culvert culvert culvert culvert culvert	114 102 90 82 74 37 0	12 12 8 8 37 37	12 12 8 8 37 37	12 12 8 37 37

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS river: culvert

Reach	River Sta.	Contr.	Expan.
culvert	114	.3	.5
culvert	102	.1	.3
culvert	90	.1	.3
culvert	82	.1	.3
culvert	74	.1	
culvert	37	.1	.3
culvert	0	.1	.3

APPENDIX B

WAVE RUNUP CALCULATION FIGURES

Pleasant Prairie Power Plant Landfill Flood Plain Levee Certification We Energies, Pleasant Prairie, WI Project No.: 60218395 2012-04

Fetch Calculation

Figure 6-31 Significant wave height, H_s , as a function of wind speed and fetch (15)

Figure 6-33 Wave runup ratios versus wave steepness and embankment slopes (15)

APPENDIX C

EXCERPTS FROM KENOSHA COUNTY FIS

KENOSHA COUNTY, WISCONSIN, AND INCORPORATED AREAS

Community Name	Community Number
Bristol, Village of	550595
*Genoa City, Village of	550465
Kenosha, City of	550209
Kenosha County, Unincorporated Areas	550523
Paddock Lake, Village of	550073
Pleasant Prairie, Village of	550613
Silver Lake, Village of	550210
Twin Lakes, Village of	550211

*No Special Flood Hazard Areas Identified

EFFECTIVE: June 19, 2012

FLOOD INSURANCE STUDY NUMBER 55059CV001A

TABLE 6 - SUMMARY OF DISCHARGES

PEAK DISCHARGES (cfs)

		10-			
FLOODING SOURCE AND LOCATION	DRAINAGE AREA <u>(sq. miles)</u>	PERCENT ANNUAL <u>CHANCE</u>	2-PERCENT ANNUAL <u>CHANCE</u>	1-PERCENT ANNUAL <u>CHANCE</u>	0.2-PERCENT ANNUAL <u>CHANCE</u>
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER					
At Confluence with Des Plaines River UNNAMED TRIBUTARY	0.6	149	229	268	*
NO. 2 TO JEROME CREEK At Confluence with Jerome					
Creek UNNAMED TRIBUTARY	0.3	36	41	43	*
BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY	0.8	69	97	110	*
At Confluence with Dutch Gap Canal	3.5	63	106	129	*
UNNAMED TRIBUTARY NO. 3 TO JEROME					
At Confluence with Jerome Creek Just upstream of divergence	0.7	19	23	25	*
with Unnamed Tributary No. 2 to Jerome Creek UNNAMED TRIBUTARY	*	35	39	41	*
NO. 3 TO SALEM BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY TO NO. 4 TO DUTCH	0.7	34	48	55	*
GAP CANAL At Confluence with Dutch Gap Canal	1.6	35	62	77	*

FLOODING SO	URCE		FLOO	DWAY		1-PE WATER S	RCENT-ANNU	AL-CHANCE FLO	DOD IAVD 88)
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER (CONTINUED) K	8,380 ¹	31	53	1.8	0	704.1	704.1	704.1	0.0
UNNAMED TRIBUTARY NO. 2 TO JEROME CREEK						588.9			
A	1.961 ²	33	107	0.4	0	680.8	680.8	680.8	0.0
В	2.109 ²	29	92	0.6	0	680.8	680.8	680.8	0.0
С	2,468 ²	93	260	0.3	0	680.9	680.9	680.9	0.0
D	2.780 ²	162	262	0.3	0	680.9	680.9	680.9	0.0
E	3,440 ²	172	217	0.3	0	680.9	680.9	680.9	0.0
F	4,000 ²	142	178	0.2	0	681.0	681.0	681.0	0.0
UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHTON CREEK									
A	100 ³	*	*	*	*	752.1	*	*	*
В	950 ³	*	*	*	*	763.1	*	*	*
С	1,352 ³	*	*	*	*	768.3	*	*	*
D	1,621 ³	*	*	*	*	768.6	*	*	*
E	1,874 ³	*	*	*	*	772.7	*	*	*
F	2,767 ³	*	*	*	*	780.6	*	*	*
G	3,216 ³	*	*	*	*	789.1	*	*	*
¹ FEET ABOVE CONFLUENCE WIT CREEK, *DATA NOT AVAILABLE	H UNNAMED TRIBUTA	RY NO. 1E TO DE	S PLAINES RIVER	, ² FEET ABOVE CC	ONFLUENCE WITH JI	EROME CREEK, ³ FEE	ABOVE CONFLUEN	CE WITH SALEM BRA	NCH BRIGHTON
	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOODWAY DATA				
KENOSH AND INCOR	A COUNTY PORATED A	, WI REAS		UNNAMED TRIBUTARY 2 TO DES PLAINES RIVER - UNNAMED TRIBU JEROME CREEK - UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH B			RIBUTARY NO. 2 CH BRIGHTON C		

FLOODING SOU	JRCE	FLOODWAY				1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)			IAVD 88)
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
TRIBUTARY NO. 3 TO JEROME CREEK									
А	1,950 ¹	5	11	2.3	0	680.5	680.5	680.5	0.0
В	2,200 ¹	40	98	0.3	0	680.5	680.5	680.5	0.0
С	2,395 ¹	4	12	2.1	0	680.5	680.5	680.5	0.0
D	2,515 ¹	4	17	1.4	0	680.5	680.5	680.5	0.0
E	2,556 ¹	4	15	1.6	0	588.9	680.6	680.6	0.0
F	2,946 ¹	20	40	0.8	0	680.7	680.7	680.7	0.0
G	4,429 ¹	3	9	4.8	0	681.0	681.0	681.0	0.0
Н	4,504 ¹	3	10	4.3	0	681.9	681.9	681.9	0.0
I	4,984 ¹	472	302	0.2	0	682.3	682.3	682.3	0.0
J	6,879 ¹	37	33	1.7	0	683.4	683.4	683.4	0.0
K	7,059 ¹	122	38	1.8	0	684.0	684.0	684.0	0.0
L	7,185 ¹	130	56	1.0	0	684.3	684.3	684.3	0.0
М	7,755 ¹	8	19	2.2	0	687.7	687.7	687.7	0.0
UNNAMED TRIBUTARY NO. 3 TO SALEM BRANCH BRIGHTON CREEK									
A	201 ²	*	*	*	*	756.8	*	*	*
В	623 ²	*	*	*	*	762.8	*	*	*
С	898 ²	*	*	*	*	769.2	*	*	*
D	1,119 ²	*	*	*	*	771.0	*	*	*
E	1,463 ²	*	*	*	*	775.4	*	*	*
F	2,656 ²	*	*	*	*	789.9	*	*	*
¹ FEET ABOVE CONFLUENCE V	VITH JEROME CRE	EK, ² FEET ABO	/E CONFLUENCE	WITH SALEM B	RANCH BRIGHTOI	N CREEK, *DATA NO			
FEDERAL EMERGE						FLOO	DWAY D	ATA	
KENOSH AND INCOR	ENOSHA COUNTY, WI ID INCORPORATED AREAS			UNNAMED TRIBUTARY NO. 3 TO JEROME CREEK - UNNAMED TRIBUT SALEM BRANCH BRIGHTON CREEK			RIBUTARY NO		

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 16N. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from the National Agriculture Imagery Program's (NAIP) digital orthoimagery produced by the USDA, Farm Service Agency. The orthophoto was collected in the summer of 2005 and produced at a resolution of 1 meter.

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Based on updated topographic information, this map reflects more detailed and p-to-date stream channel configurations and floodplain delineations that those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on the map. Also, the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Provisionally Accredited Levee Notes to Users: Check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system shown as providing protection for areas on this panel. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations by August 11, 2012. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA website at ww.fema.gov/business/nfip/index.shtm.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average ZONE AO depths determined. For areas of alluvial fan flooding, velocities also determined. Special Flood Hazard Areas formerly protected from the 1% annual chance ZONE AR flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood ZONE A99 protection system under construction; no Base Flood Elevations determined. ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. LOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with ZONE X average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. ZONE X ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS $\langle || \rangle$ OTHERWISE PROTECTED AREAS (OPAs) 11.11 CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. 1% Annual Chance Floodplain Boundary 0.2% Annual Chance Floodplain Boundary -----Floodway boundary ____ Zone D boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Area Zones and boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths, or flood velocities. Base Flood Elevation line and value; elevation in feet* ~ 513~~ Base Flood Elevation value where uniform within zone; elevation in (EL 987) *Referenced to the North American Vertical Datum of 1988 $\langle A \rangle$ Cross section line 23 - - - - - - - - - 23 Transect line -----Culvert Geographic coordinates referenced to the North American Datum of 45° 02' 08", 93° 02' 12" 1983 (NAD 83) Western Hemisphere 5000-foot ticks: Wisconsin State Plane South Zone (FIPS Zone 4803), Lambert Conformal Conic projection 4989000 N 1000-meter Universal Transverse Mercator grid values, zone 16N Bench mark (see explanation in Notes to Users section of this FIRM DX5510 🗙 • FT1,000 **River Station** MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP June 19, 2012 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 1000 FEET _ **METERS** 300 150 PANEL 0192D MARA FIRM FLOOD INSURANCE RATE MAP **KENOSHA COUNTY**, WISCONSIN AND INCORPORATED AREAS 100 PANEL 192 OF 331 E COOLD IN SULTANCE (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX KENOSHA, CITY OF 550209 0192 D PLEASANT PRAIRIE, 550613 0192 VILLAGE OF Notice to User: The Map Number shown below should be used when placing map orders; the JAVANOJAV Community Number shown above should be used on insurance applications for the subject community. MAP NUMBER NO. 55059C0192D **EFFECTIVE DATE** JUNE 19, 2012 AND SEC Federal Emergency Management Agency

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 8

44 CFR 65.10(b)(4); Embankment and Foundation Stability

Tab 8

44 CFR 65.10 (b) (4) Tab

(4) Embankment and foundation stability.

Engineering analyses that evaluate levee embankment stability must be submitted. The analyses provided shall evaluate expected seepage during loading conditions associated with the base flood and shall demonstrate that seepage into or through the levee foundation and embankment will not jeopardize embankment or foundation stability. An alternative analysis demonstrating that the levee is designed and constructed for stability against loading conditions for Case IV as defined in the U.S. Army Corps of Engineers (COE) manual, "Design and Construction of Levees" (EM 1110–2–1913, Chapter 6, Section II), may be used. The factors that shall be addressed in the analyses include: Depth of flooding, duration of flooding, embankment geometry and length of seepage path at critical locations, embankment and foundation materials, embankment compaction, penetrations, other design factors affecting seepage (such as drainage layers), and other design factors affecting embankment and foundation stability (such as berms).

P.E. Signature:

Non Applicable:

P.E. Name: ____ John M. Trast, P.E.

P.E. License Number and State: _____31792-6, WI

				Project No.	60218395		
Client	We Energies	Subject	Seepage and	Prepared By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Global St	ability Analysis	Reviewed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert	44 CFR 6	5.10 (b) (4)	Approved By	JXT	Date	06/13

Page 1

Of

9

SEEPAGE AND GLOBAL STABILITY ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (4): Embankment and Foundation Stability.

Engineering analyses that evaluate levee embankment stability must be submitted. The analyses provided shall evaluate expected seepage during loading conditions associated with the base flood and shall demonstrate that seepage into or through the levee foundation and embankment will not jeopardize embankment or foundation stability. An alternative analysis demonstrating that the levee is designed and constructed for stability against loading conditions for Case IV as defined in the U.S. Army Corps of Engineers Manual, *Design and Construction of Levees* (EM 1110–2–1913, Chapter 6, Section II), may be used. The factors that shall be addressed in the analyses include: Depth of flooding, duration of flooding, embankment geometry and length of seepage path at critical locations, embankment and foundation materials, embankment compaction, penetrations, other design factors affecting seepage (such as drainage layers), and other design factors affecting embankment and foundation stability (such as berms).

A seepage evaluation of the Pleasant Prairie Ash Landfill Floodplain Levee was conducted to predict the pore water pressure conditions within the levee during flood conditions. The stability of the levee during flood conditions was then evaluated using the pore water pressure conditions predicted from the seepage evaluation. The stability of the levee was evaluated for normal, flood (steady state seepage from full flood stage), and rapid drawdown conditions. The seepage and stability models were developed in accordance with United States Army Corps of Engineers, Engineering Manual 1110-2-1902 *Slope Stability*, as recommended by 1110-2-1913 *Design and Construction of Levees*. The following subsections outline the methods used to develop the seepage and stability models and present the results of the evaluation.

Subsurface Profile and Levee Geometry

Soil borings were not completed as part of the levee certification process. However, soils borings from the site were completed as part of the landfill permitting process. This information was used to estimate the subsurface profile and material parameters. The subsurface profile and material parameters were estimated from the following resources:

- Previous project experience near the Pleasant Prairie Ash Landfill Floodplain Levee.
- Published soil maps obtained from United States Department of Agriculture (USDA) National Resource Conservation online Web Soil Survey (WSS) for Kenosha County.
- Published engineering correlations with material types.

Based on previous project experience and a review of the WSS for Kenosha County, the subsurface profile beneath the Pleasant Prairie Ash Landfill Floodplain Levee consists of native silty clay soil to depths greater than 50 feet below the ground surface. The static groundwater table is anticipated to be approximately 10 feet below the ground surface.

The levee was constructed with on-site low-plasticity silty clay soil similar in composition to the native site soils. The cross-section geometry of the levee was based on the results of AECOM topographic surveys completed in November and December 2011. Based on the results of the survey, the cross-sectional geometry of the levee is relatively consistent across its entire length.

				гаус	Z	_ 0 _	9	
				Project	No.	60218395		
Client	We Energies	Subject	Seepage and	Prepar	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Global Sta	ability Analysis	Review	ved By	, JXT	Date	05/13
Landfill F	loodplain Levee Cert	44 CFR 6	5.10 (b) (4)		ved By	JXT	Date	06/13

Dere

~

0

Model Development

The computer program SEEP/W (Geo-Slope International, Ltd., GeoStudio 2007, Version 7.13) was used for seepage evaluation of the floodplain levee. The program was used to model the flow of groundwater and estimate the position of the phreatic surface within the levee during normal, flood, and rapid drawdown conditions. The SEEP/W program uses a finite-element approach as applied to fluid flow to simulate the flow of groundwater through porous media.

The computer program SLOPE/W (Geo-Slope International, Ltd., GeoStudio 2007, Version 7.13) was used to evaluate the stability of the levee under normal, flood, and rapid drawdown conditions. The SLOPE/W program uses a limit equilibrium approach as applied to the method of slices to determine slope stability. Factors of Safety (FS) were computed using the Morgenstern-Price method which satisfies both force and moment equilibrium. The pore water pressure conditions predicted by the SEEP/W program for flood conditions were directly imported into SLOPE/W for determining the global factor of safety.

Seepage Evaluation Boundary Conditions

For flood conditions, groundwater seepage through the levee was evaluated using a steady state analysis. In a steady state analysis, the boundary conditions are held constant with time. Therefore, a steady state analysis does not predict the timing at which steady state seepage conditions will occur, but rather the long term groundwater conditions (i.e., long term embankment phreatic surface) that will result from a given set of boundary conditions. Due to the relatively impermeable nature of the silty clay used to construct the levee, the use of a steady-state analysis is considered conservative because the flood pool will likely recede before steady-state embankment seepage conditions occur.

The phreatic surface is the position of the water table within the water retaining earth embankment. Pore water pressure is positive below the phreatic surface (saturated conditions) and negative above the phreatic surface (unsaturated conditions). In SEEP/W, the position of the phreatic surface within an earth embankment is estimated by evaluating a finite-element model based on boundary conditions and material hydraulic conductivities input by the user. The methods used to select the appropriate boundary conditions and material hydraulic conductivities for the Pleasant Prairie Ash Landfill Floodplain Levee are summarized below:

Flood Pool Condition

Water Side Reservoir (Headwater Boundary Condition) is elevation 683 feet. Estimated flood pool elevation data was not available at the time of this report; therefore, we have conservatively estimated the maximum flood pool elevation is 3 feet below the crest elevation of the levee at elevation 686 feet.

The point where the phreatic surface intersects the land side of an earth embankment is typically referred to as a "seepage face". The position of the seepage face along the land side of an earth embankment is influenced by several factors including embankment geometry, subsurface profile, etc. In order to predict the position of the steady-state seepage face, the land side toe and slope face of the Pleasant Prairie Ash Landfill Floodplain Levee were defined as "potential seepage faces" in SEEP/W. A seepage face represents an area where water reaches the ground surface and exits the embankment, but cannot pond (pore water pressure equals 0 but constant head is not maintained) because of the typically sloped nature of the face. Seepage faces along the toe and land side slope face of embankments can be detrimental to slope stability.

Stability Evaluation Phreatic Surface

The steady state phreatic surface and seepage pressure conditions predicted from the SEEP/W seepage

				Page	3	Of	9	
				Project	No.	60218395		
Client	We Energies	Subject	Seepage and	Prepare	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Global St	ability Analysis	Review	ed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert	44 CFR 6	5.10 (b) (4)	Approv	ed By	/ JXT	Date	06/13

evaluation for the flood pool conditions were directly imported into the SLOPE/W model to determine the global stability of the levee.

For normal conditions, the embankment phreatic surface was assumed to equal the elevation of the estimated static groundwater table (670 feet).

For rapid drawdown conditions, groundwater seepage through an embankment is typically evaluated using a transient seepage analysis. In a transient analysis, the boundary conditions are varied with time. Thus, a transient analysis can predict the magnitude and timing of changes in the embankment phreatic surface under a time-dependent set of boundary conditions.

A transient seepage analysis for the existing levee geometry under rapid drawdown conditions was not conducted because insufficient data was available to develop the boundary conditions required for a transient model. Thus, the position of the phreatic surface within the levee was conservatively assumed to be equivalent to the steady-state phreatic surface estimated for the flood pool condition (maximum surcharge), with the exception that the water side reservoir (headwater) elevation was reduced to the bottom of reservoir elevation (680 feet) which is equivalent to a 100% drawdown. This condition assumes that the phreatic surface within the levee long after the flood pool has been drawn down, which represents a worst-case scenario.

Critical Failure Surface Definition

Slope failures in embankments with seepage are typically characterized as 'rotational', i.e. the failure mass appears to have rotated around an imaginary axis point. Thus, a circular failure, defined by user specified 'entry', 'exit', and radius ranges, was used to estimate potential failure surfaces and corresponding factors of safety in the SLOPE/W model. The entry and exit ranges were each defined by 20 possible entry/exit increments over the range. Additionally, the radius range was defined by 20 possible radius increments over the entry and exit ranges. This means that each SLOPE/W model was evaluated for roughly 9000 possible failure surfaces.

For both the normal pool and flood pool conditions, it was assumed that the entry point of the failure surface range would be located on the land side and that the failure mass would move left to right (water side to land side). For the rapid drawdown condition, it was assumed that the entry point of the failure surface range would be located on the water side and that the failure mass would move from right to left (land side to water side).

The critical failure surface and corresponding factor of safety was selected using engineering judgment based on the following criteria:

- The critical failure surface must extend a minimum of 5 feet below the ground surface at its deepest point (to eliminate the inclusion of shallow erosion type failures that are considered overly conservative and/or controllable with adequate slope vegetation), or
- The critical failure surface must intersect the phreatic surface within the levee (which could lead to progressive failures at an exposed seepage face), or
- The critical failure surface must result in a loss of freeboard at the levee crest.

Material Properties

The material hydraulic conductivities used in the seepage evaluation were estimated based on accepted engineering correlations with grain size and material type. The material hydraulic conductivities utilized in the seepage analysis are summarized in Table 1 below.

For the stability analysis, the soil profile was modeled using the Mohr-Coulomb failure criterion under drained conditions (i.e., effective stress analysis (ESA)) where excess pore water pressure has fully

				Page	4		9	
				Project	No.	60218395		
Client	We Energies	Subject	Seepage and	Prepar	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Global Sta	ability Analysis	Review	ved By	JXT	Date	05/13
Landfill F	loodplain Levee Cert	44 CFR 6	5.10 (b) (4)		ved By	JXT	Date	06/13

Dere

~f

0

dissipated. Material unit weight and drained strength data was unavailable for the levee and native soils were unavailable; therefore, the unit weight and drained strength properties used in the stability analysis were estimated based on published engineering correlations with material type. The material properties used in the stability analysis are summarized in Table 1 below.

Table 1 SLOPE/W Material Properties										
Metorial	Unit	Hydraulic	Drained Paramete	Def						
Material	(pcf)	(ft/sect)	Cohesion (psf)	Friction Angle (deg)	Rei.					
Embankment Fill (CL)	120	3.28E-9	0	30	(a)(b)(c)					
Native Brown Silty Clay (CL)	125	3.28E-9	0	30	(a)(b)(c))					
Native Gray Silty Clay (CL)	130	3.28E-9	0	30	(a)(b)(c)					

References:

(a) Holtz and Kovacs, 1981. Figure 7.6, Page 210.

(b) Effective cohesion conservatively assumed to equal 0 psf.

(c) NAVFAC DM 7.01, Table 6.

Conclusions

The individual seepage and stability outputs for the Pleasant Prairie Ash Landfill Floodplain Levee are presented on Pages 6 through 9. The stability analysis results for the levee are summarized in Table 2. According to Table 6.1b Minimum Factors of Safety – Levee Slope Stability of the United States Army Corps of Engineers, Engineering Manual 1110-2-1913 *Design and Construction of Levees*, the following factors of safety are required:

Table 2 - Stability Analysis Results Summary									
Reservoir Condition	Factor of Safety	Minimum Required Factor of Safety							
Existing Normal Pool Condition	2.60								
Steady State Seepage Condition	1.64	1.4							
Sudden Drawdown Condition	1.38	1.0 to 1.2							

Based on these requirements, the Pleasant Prairie Ash Landfill Floodplain Levee is considered stable under existing normal pool conditions, steady state seepage conditions, and sudden drawdown conditions.

				Page	5	Of	9	
				Project	No.	60218395		
Client	We Energies	Subject	Seepage and	Prepar	ed By	CEF	Date	05/13
Project	Pleasant Prairie Ash	Global Sta	ability Analysis	Review	ed By	JXT	Date	05/13
Landfill F	loodplain Levee Cert	44 CFR 6	5.10 (b) (4)		ved By	JXT	Date	06/13

References

Holtz, Robert D. and Kovacs, William D. An Introduction to Geotechnical Engineering. Prentice-Hall Inc., Englewood Cliffs, New Jersey. 1981.

Naval Facilities Engineering Command, Soil Mechanics Design Manual 7.01, NAVFAC, September, 1986.

United States Army Corps of Engineers, Engineering Manual 1110-2-1902 Slope Stability, October 31, 2003.

United States Army Corps of Engineers, Engineering Manual 1110-2-1913 Design and Construction of Levees, April 30, 2000

List of Seepage Stability Outputs

Page 6 – SEEP/W Seepage Analysis, Flood Pool (Steady State Seepage) Condition

Page 7 – SLOPE/W Stability Analysis, Flood Pool (Steady State Seepage) Condition

Page 8 - SLOPE/W Stability Analysis, Empty Reservoir (Existing Normal Pool) Condition

Page 9 – SLOPE/W Stability Analysis, Sudden Drawdown Condition

FIGURES

Figure 1 – SEEP/W Seepage Analysis, Flood Pool (Steady State Seepage) Condition Figure 2 – SLOPE/W Stability Analysis, Flood Pool (Steady State Seepage) Condition Figure 3 – SLOPE/W Stability Analysis, Empty Reservoir (Existing Normal Pool) Condition Figure 4 – SLOPE/W Stability Analysis, Sudden Drawdown Condition PROJECT: P4 Flood Plain Levee PROJECT NO.: 60223980 SUBJECT: Groundwater Seepage Analysis PAGE NO.: 6 of 9

CROSS SECTION: D-D' ANALYSIS TYPE: Steady-State RESERVOIR CONDITION: Flood Pool HEADWATER ELEVATION: 683 Feet

ORIGINATED BY: JDW DATE: 01/17/2012 CHECKED BY: DLH DATE: 01/27/2012

Material Properties:

Name: Native Brown Silty Clay (CL) Model: Saturated Only K-Sat: 3.28e-009 ft/sec K-Ratio: 1

Name: Native Gray Silty Clay (CL) Model: Saturated Only K-Sat: 3.28e-009 ft/sec K-Ratio: 1

Name: Embankment Fill (CL) Model: Saturated Only K-Sat: 3.28e-009 ft/sec K-Ratio: 1

Assumptions:

- Steady-state conditions exist (likely conservative given that flood pool will likely not be in place long enough for steady-state conditions to occur)
- 2) Minimum 3 feet of freeboard is maintained between the flood pool elevation and the crest of the embankment

Notes:

1) Contour Type: Total Head 2) Contour Interval: 0.2 Feet

PROJECT: P4 Flood Plain Levee PROJECT NO.: 60223980 SUBJECT: Global Stability Analysis PAGE NO.: 7 of 9

CROSS SECTION: D-D' ANALYSIS TYPE: Morgenstern-Price RESERVOIR CONDITION: Flood Pool HEADWATER ELEVATION: 683 Feet

ORIGINATED BY: JDW DATE: 01/18/2012 CHECKED BY: DLH DATE: 01/27/2012

Material Properties:

Name: Native Brown Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 125 pcf Cohesion: 0 psf Phi: 30 ° Name: Native Gray Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion: 0 psf Phi: 30 ° Name: Embankment Fill (CL) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 30 °

Assumptions:

1) Analysis performed using long-term (drained) material properties assuming embankment has been in place long enough such that excess pore water pressure has dissipated

2) Effection cohesion = 0 psf under drained conditions (likely conservative for cohesive soils)

Notes:

1) Critical Factor of Safety: 1.64 (10 most critical surfaces shown, FOS Range is 1.64 to 1.67)

2) Minimum Failure Depth: 5 feet, unless failure intercepts phreatic surface or results in a loss of freeboard

3) Failure Surface Type: Entry and Exit

4) Failure Surface Movement: Left to Right

PROJECT: P4 Flood Plain Levee PROJECT NO.: 60223980 SUBJECT: Global Stability Analysis PAGE NO.: 8 of 9

CROSS SECTION: D-D' ANALYSIS TYPE: Morgenstern-Price RESERVOIR CONDITION: Empty Pool (Normal) STATIC WATER TABLE ELEVATION: 670 Feet

ORIGINATED BY: JDW DATE: 01/18/2012 CHECKED BY: DLH DATE: 01/27/2012

Material Properties:

Name: Native Brown Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 125 pcf Cohesion: 0 psf Phi: 30 ° Name: Native Gray Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion: 0 psf Phi: 30 ° Name: Embankment Fill (CL) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 30 °

Assumptions:

1) Analysis performed using long-term (drained) material properties assuming embankment has been in place long enough such that excess pore water pressure has dissipated

2) Effection cohesion = 0 psf under drained conditions (likely conservative for cohesive soils)

Notes:

1) Critical Factor of Safety: 2.60 (10 most critical surfaces shown, FOS Range is 2.60 to 2.71)

2) Minimum Failure Depth: 5 feet, unless failure intercepts phreatic surface or results in a loss of freeboard

3) Failure Surface Type: Entry and Exit

4) Failure Surface Movement: Left to Right

PROJECT: P4 Flood Plain Levee PROJECT NO.: 60223980 SUBJECT: Global Stability Analysis PAGE NO.: 9 of 9

CROSS SECTION: D-D' ANALYSIS TYPE: Morgenstern-Price RESERVOIR CONDITION: Rapid Drawdown HEADWATER ELEVATION: 680 Feet

ORIGINATED BY: JDW DATE: 01/18/2012 CHECKED BY: DLH DATE: 01/27/2012

Material Properties:

Name: Native Brown Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 125 pcf Cohesion: 0 psf Phi: 30 ° Name: Native Gray Silty Clay (CL) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion: 0 psf Phi: 30 ° Name: Embankment Fill (CL) Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 0 psf Phi: 30 °

Assumptions:

1) Analysis performed using long-term (drained) material properties assuming embankment has been in place long enough such that excess pore water pressure has dissipated

2) Effection cohesion = 0 psf under drained conditions (likely conservative for cohesive soils)

Notes:

1) Critical Factor of Safety: 1.38 (10 most critical surfaces shown, FOS Range is 1.38 to 1.42)

2) Minimum Failure Depth: 5 feet, unless failure intercepts phreatic surface or results in a loss of freeboard

3) Failure Surface Type: Entry and Exit

4) Failure Surface Movement: Right to Left

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 9

44 CFR 65.10(b)(5); Settlement

a second an appropriate second s

44 CFR 65.10 (b) (5) Tab

(5) Settlement. Engineering analyses must be submitted that assess the potential and magnitude of future losses of freeboard as a result of levee settlement and demonstrate that freeboard will be maintained within the minimum standards set forth in paragraph (b)(1) of this section. This analysis must address embankment loads, compressibility of embankment soils, compressibility of foundation soils, age of the levee system, and construction compaction methods. In addition, detailed settlement analysis using procedures such as those described in the COE manual, "Soil Mechanics Design— Settlement Analysis" (EM 1100–2–1904) must be submitted.

P.E. Signature:

Non Applicable:

P.E. Name: _____ John M. Trast, P.E.

P.E. License Number and State: <u>31792-6</u>, WI

Page 1 Of 5

			Project No.	60223980	
Client	We Energies	Subject Settlement	Prepared By	JDW	Date 01/2012
Project	Pleasant Prairie Ash	44 CFR 65.10 (b) (5)	Reviewed By	<u>DLH</u>	Date 01/2012
Landfill F	-loodplain Levee Cert		Approved By	<u>JXT</u>	Date 05/2012

SETTLEMENT ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (5): Settlement.

Engineering analyses must be submitted that assess the potential and magnitude of future losses of freeboard as a result of levee settlement and demonstrate that freeboard will be maintained within the minimum standards set forth in paragraph (b)(1) of this section. This analysis must address embankment loads, compressibility of embankment soils, compressibility of foundation soils, age of the levee system, and construction compaction methods. In addition, detailed settlement analysis using procedures such as those described in the COE manual, "Soil Mechanics Design—Settlement Analysis" (EM 1100–2–1904) must be submitted.

Estimate the amount of primary consolidation settlement that has occurred in the native soils as a result of the Pleasant Prairie Ash Landfill Floodplain Levee. Estimate the time required for the majority of primary consolidation settlement to be completed. This analysis also assesses the magnitude of possible freeboard loss as a result of levee settlement.

Design Criteria and Assumptions

- 1. Soil borings were not completed as part of the levee certification process. However, soils borings from the site were completed as part of the landfill permitting process. This information was used to estimate the subsurface profile and material parameters. The subsurface profile and material parameters were estimated from the following resources:
 - Previous project experience near the Pleasant Prairie Ash Landfill Floodplain Levee.
 - Published soil maps obtained from United States Department of Agriculture (USDA) National Resource Conservation online Web Soil Survey (WSS) for Kenosha County.
 - Published engineering correlations with material types.
- 2. Based on previous project experience and a review of the WSS for Kenosha County, it is anticipated that the subsurface profile beneath Pleasant Prairie Ash Landfill Floodplain Levee likely consists of native silty clay to depths greater than 50 feet below the ground surface. The static groundwater table is anticipated to approximately 10 feet below the ground surface. Typically, the glacial-lacustrine clay soils in southeastern Wisconsin are over-consolidated with time due to desiccation. Conversely, the clayey soils below the water table are more normally consolidated. The material parameters used in the calculation are summarized in Table 1 on Page 4.
- 3. The levee is assumed to have been constructed with silty clay similar in composition to the native soils of the Kenosha area.
- 4. Cohesive soils above the water table are assumed to be unsaturated, whereas cohesive soils below the water table are assumed to be saturated
- 5. The specific gravity of cohesive soils is assumed to be approximately 2.67
- 6. The cross-section geometry of the levee is based on the results of an AECOM survey

Of

5

			Project No. 602239	80
Client	We Energies	Subject Settlement	Prepared By JDW	Date01/2012
Project	Pleasant Prairie Ash	44 CFR 65.10 (b) (5)	Reviewed By DLH	Date 01/2012
Landfill F	loodplain Levee Cert		Approved By <u>JXT</u>	Date

Aned

2

completed in August 2011. The levee was originally constructed in 2000. Based on the results of the survey, the cross-sectional geometry of the levee is relatively consistent across its entire length. The levee geometry is summarized in Table 2 on Page 4.

7. Settlement was calculated beneath the center of the levee, which is conservative as settlement will generally be less towards the toe of the levee.

Conclusions

The results of the settlement analysis are included in Tables 4 and 5 on Page 5. Based on the results of the settlement analysis, it is estimated that approximately 1.5 to 2 inches of primary consolidation settlement has occurred beneath the center of the levee since the original construction in 2000. The estimated time required to complete 90% of primary consolidation in the silty clay soils is approximately 15 to 20 months; therefore, it is anticipated that primary consolidation is mostly complete as of the November 2011 survey. Additionally, the magnitude of levee settlement is generally expected to be less towards the toe. A minimum freeboard requirement of 3 feet is required for certification. Based on the results of this analysis, it is our opinion that settlements on the order of 2 inches or less do not have a major impact on the overall crest elevation or freeboard height of the levee.

References

Das, Braja M. Principles of Geotechnical Engineering. 5th edition. Brooks-Cole, Pacific Grove, California. 2002.

Holtz, Robert D. and Kovacs, William D. An Introduction to Geotechnical Engineering. Prentice-Hall Inc., Englewood Cliffs, New Jersey. 1981. PROJECT: P4 Flood Plain Levee PROJECT NO.: 60223980 SUBJECT: Settlement Analysis PAGE NO.: 3 of 5

CROSS SECTION: Typical ANALYSIS TYPE: Primary Consolidation RESERVOIR CONDITION: Empty Pool (Normal) STATIC WATER TABLE ELEVATION: 670 Feet

ORIGINATED BY: JDW DATE: 01/17/2012 CHECKED BY: DLH DATE: 01/27/2012

Material Properties:

Name: Native Brown Silty Clay (CL) Unit Weight: 125 pcf Moisture Content: 10% Coefficient of Compression: 0.06 Coefficient of Recompression: 0.012 Initial Void Ratio: 0.47

Name: Embankment Fill (CL)

Name: Native Gray Silty Clay (CL) Unit Weight: 130 pcf Moisture Content: 20% Coefficient of Compression: 0.08 Coefficient of Recompression: 0.016 Initial Void Ratio: 0.53

Unit Weight: 120 pcf
Assumptions:

- 1) Cohesive soils above the water table are unsaturated (S < 100%)
- 2) Cohesive soils below the water table are saturated (S = 100%)
- 3) Cohesive soils above the water table are overconsolidated due to dessication
- 4) Cohesive soils below the water table are assumed to be normally consolidated
- 5) Specific gravity of cohesive soils is approximately 2.67

	Table 1 Pleasant Prairie Power Plant Floodplain Levee Material Properties									
					Cohesive Settle	ment Properties				
Layer No.	Soil Type	Cohesive (c) or Granular (g)?	Unit Weight, γ (pcf)	Natural Moisture Content, w (%)	Coefficient of Compression, C_c	Coefficient of Recompression, C _{cr}	Initial Void Ratio, e	References		
1	Native Brown Silty Clay (above water table)	с	125	10	0.06	0.012	0.47	[1][2]		
2	Native Gray Silty Clay (below water table)	с	130	20	0.08	0.016	0.53	[1][2]		

Table 2

Levee Geometry and Material Parameters							
U/S Embankment Side Slope, s (deg)	11.31						
U/S Side Slope Width, B2 (feet)	30						
U/S Embankment Crest Width, B1 (feet)	1.5						
D/S Embankment Side Slope, s (deg)	16.70						
D/S Side Slope Width, B2 (feet)	20						
D/S Embankment Crest Width, B1 (feet)	1.5						
New Fill Thickness, t (feet)	6						
New Fill Unit Weight, γ_f (pcf)	120						
New Fill Surcharge, q _f (psf)	720						

Table 3							
Groundwater Parameters							
Depth to Groundwater, d (feet)	10						
Unit Weight of Water, γ_w (pcf)	62.4						

REFERENCES:

[1] Das (2002), Principles of Geotechnical Engineering . 5th ed., Table 3.2, Page 53

[2] Holtz and Kovacs (1981), An Introduction to Geotechnical Engineering. Table 8-2, Page 341

ASSUMPTIONS:

- 1) Cohesive soils above the water table are unsaturated (S < 100%)
- 2) Cohesive soils below the water table are saturated (S = 100%)
- 3) Cohesive soils above the water table are overconsolidated due to dessication
- 4) Cohesive soils below the water table are normally consolidated
- 5) Specific gravity of cohesive soils is approximately 2.67

FORMULAS

 $(1+w)G_s*\gamma_w-1$... for unsaturated soils, from Das (2002), Equation 3.15, Page 49 $e = w^* Gs$... for saturated soils, from Das (2002), Equation 3.20, Page 49 $= 0.30(e_o - 0.27)$...from Holtz and Kovacs (1981), Table 8-2, Page 341 ...from Das (2002), Equation 10.31, Page 282 $= \gamma$ $\sigma' = \sum \gamma_e$ $\alpha 1 = \tan^{-1}(\frac{B1+B2}{z}) - \tan^{-1}(\frac{B1}{z})$...from Das (2002), Equation 9.20, Page 238 $\alpha 2 = \tan^{-1}(\frac{B1}{z})$...from Das (2002), Equation 9.21, Page 238 $\frac{B1}{B2}(\alpha 2)$ $\frac{B1+B2}{B1}$ $(\alpha 1 + \alpha 2) -$...from Das (2002), Equation 9.19, Page 238 π $\Delta \sigma = q_f * I$..from Das (2002), Equation 9.22, Page 239 $\frac{C_c}{1+e_o} * \log(\frac{\sigma' + \Delta \sigma}{\sigma'})$ S(cohesive) =...for normally consolidated soils, from Das (2002), Equation 10.24, Page 281 $-*\log(\frac{\sigma'+\Delta\sigma}{\sigma'})$ S(cohesive) =...for overconsolidated soils, from Das (2002), Equation 10.26, Page 281

	Table 4															
							Primary Conse		Jpstream Sid	de	Do	wnstream S	ide			
Depth, z (ft) From: To:	Midpoint Depth (ft)	Midpoint Elevation (ft)	Layer Height, H (ft)	Layer No.	Unit Weight, γ (pcf)	Effective Unit Weight, γ _e (pcf)	Overburden Pressure at Layer Midpoint, σ' (psf)	α1 (radians)	α2 (radians)	Influence Factor, I	α1 (radians)	α2 (radians)	Influence Factor, I	Surcharge, Δσ _z (psf)	Primary Settlement, S (in.)	Total Settlement Per Layer (in.)
0 1	0.5	685.5	1		125	125	200.0	0.31	1.2	0.4998	0.30	1.2	0.4997	719.7	0.064	
1 2	1.5	684.5	1]	125	125	200.0	0.74	0.8	0.4966	0.72	0.8	0.4949	713.9	0.064	
2 3	2.5	683.5	1		125	125	312.5	0.95	0.5	0.4899	0.91	0.5	0.4850	701.9	0.049	
3 4	3.5	682.5	1		125	125	437.5	1.06	0.4	0.4816	1.00	0.4	0.4726	687.0	0.039	
4 5	4.5	681.5	1	1	125	125	562.5	1.11	0.3	0.4725	1.04	0.3	0.4592	670.8	0.033	0.358
5 6	5.5	680.5	1	-	125	125	687.5	1.13	0.3	0.4630	1.05	0.3	0.4454	654.1	0.028	
6 /	0.5	679.5	1	-	125	125	812.5	1.14	0.2	0.4534	1.05	0.2	0.4316	637.2	0.024	
7 0 8 0	8.5	677.5	1	-	125	125	937.5	1.14	0.2	0.4437	1.04	0.2	0.4179	603.8	0.021	
9 10	9.5	676.5	1	-	125	125	1187.5	1.13	0.2	0.4341	1.02	0.2	0.4043	587.5	0.013	
10 11	10.5	675.5	1		130	67.6	1283.8	1.12	0.2	0.4152	0.97	0.1	0.3787	571.6	0.099	
11 12	11.5	674.5	1	-	130	67.6	1351.4	1.09	0.1	0.4059	0.95	0.1	0.3663	556.0	0.093	
12 13	12.5	673.5	1		130	67.6	1419.0	1.07	0.1	0.3968	0.92	0.1	0.3544	540.9	0.087	
13 14	13.5	672.5	1		130	67.6	1486.6	1.06	0.1	0.3879	0.90	0.1	0.3430	526.3	0.082	
14 15	14.5	671.5	1		130	67.6	1554.2	1.04	0.1	0.3792	0.87	0.1	0.3320	512.0	0.077	
15 16	15.5	670.5	1		130	67.6	1621.8	1.02	0.1	0.3706	0.85	0.1	0.3215	498.3	0.072	
16 17	16.5	669.5	1]	130	67.6	1689.4	1.00	0.1	0.3623	0.83	0.1	0.3114	485.0	0.068	
17 18	17.5	668.5	1		130	67.6	1757.0	0.98	0.1	0.3542	0.80	0.1	0.3017	472.2	0.064	
18 19	18.5	667.5	1		130	67.6	1824.6	0.96	0.1	0.3462	0.78	0.1	0.2924	459.8	0.060	
19 20	19.5	666.5	1		130	67.6	1892.2	0.94	0.1	0.3385	0.76	0.1	0.2836	447.9	0.057	
20 21	20.5	665.5	1		130	67.6	1959.8	0.92	0.1	0.3310	0.74	0.1	0.2752	436.4	0.054	
21 22	21.5	664.5	1		130	67.6	2027.4	0.90	0.1	0.3237	0.72	0.1	0.2671	425.4	0.051	
22 23	22.5	663.5	1	_	130	67.6	2095.0	0.88	0.1	0.3166	0.70	0.1	0.2594	414.7	0.049	
23 24	23.5	662.5	1	-	130	67.6	2162.6	0.87	0.1	0.3098	0.68	0.1	0.2520	404.5	0.046	
24 25	24.5	661.5	1	-	130	67.6	2230.2	0.85	0.1	0.3031	0.66	0.1	0.2450	394.6	0.044	
25 26	25.5	660.5	1	-	130	67.6	2297.8	0.83	0.1	0.2966	0.64	0.1	0.2383	385.1	0.042	
20 27	20.3	009.0 659.5	1	-	130	67.6	2300.4	0.81	0.1	0.2903	0.63	0.1	0.2319	370.0	0.040	
21 20	27.5	657.5	1	-	130	67.6	2433.0	0.00	0.1	0.2643	0.01	0.1	0.2200	358.7	0.036	
20 29	20.5	656.5	1	-	130	67.6	2568.2	0.70	0.1	0.2704	0.59	0.1	0.2133	350.6	0.030	
30 31	30.5	655.5	1	2	130	67.6	2635.8	0.75	0.1	0.2671	0.56	0.1	0.2140	342.8	0.033	1.651
31 32	31.5	654.5	1	-	130	67.6	2703.4	0.76	0.0	0.2617	0.55	0.0	0.2038	335.2	0.031	
32 33	32.5	653.5	1		130	67.6	2771.0	0.72	0.0	0.2565	0.54	0.0	0.1989	327.9	0.030	
33 34	33.5	652.5	1		130	67.6	2838.6	0.71	0.0	0.2515	0.53	0.0	0.1942	320.9	0.029	
34 35	34.5	651.5	1		130	67.6	2906.2	0.70	0.0	0.2466	0.51	0.0	0.1897	314.1	0.028	
35 36	35.5	650.5	1		130	67.6	2973.8	0.68	0.0	0.2419	0.50	0.0	0.1853	307.6	0.026	
36 37	36.5	649.5	1		130	67.6	3041.4	0.67	0.0	0.2373	0.49	0.0	0.1812	301.3	0.025	
37 38	37.5	648.5	1	1	130	67.6	3109.0	0.66	0.0	0.2329	0.48	0.0	0.1772	295.2	0.024	
38 39	38.5	647.5	1		130	67.6	3176.6	0.65	0.0	0.2286	0.47	0.0	0.1733	289.4	0.023	
39 40	39.5	646.5	1	4	130	67.6	3244.2	0.64	0.0	0.2244	0.46	0.0	0.1697	283.7	0.023	
40 41	40.5	645.5	1	4	130	67.6	3311.8	0.62	0.0	0.2203	0.45	0.0	0.1661	278.3	0.022	
41 42	41.5	644.5		-	130	67.6	3379.4	0.61	0.0	0.2164	0.44	0.0	0.1627	273.0	0.021	
42 43	42.5	643.5	1	4	130	67.6	3447.0	0.60	0.0	0.2126	0.43	0.0	0.1594	267.9	0.020	
43 44	43.5	642.5	1	-	130	67.6	3514.0	0.59	0.0	0.2089	0.42	0.0	0.1503	202.9	0.019	
44 45	44.5 AE E	640.5	1	-	130	67.6	3582.2	0.58	0.0	0.2053	0.42	0.0	0.1532	258.2	0.019	
40 40	40.0	630 5	1	-	120	67.6	3717 /	0.57	0.0	0.2019	0.41	0.0	0.1503	200.0	0.010	
40 47 47 49	40.0	638.5	1	1	130	67.6	3785.0	0.50	0.0	0.1900	0.40	0.0	0.1474	249.1	0.017	
48 40	48.5	637.5	1	1	130	67.6	3852.6	0.55	0.0	0.1932	0.39	0.0	0.1447	240.5	0.016	
49 50	49.5	636.5	1	1	130	67.6	3920.2	0.54	0.0	0.1889	0.38	0.0	0.1395	236.5	0.016	
		000.0		1		00	00-0.4	0.01	0.0	0000	0.00	0.0	0000			2.0

arge, Δσ _z	Primary	Total Settlement
(psf)	(in.)	Per Layer (in.)
'19.7	0.064	
'13.9	0.064	Ī
'01.9	0.049	İ
87.0	0.039	İ
570.8	0.033	0.050
54.1	0.028	0.358
37.2	0.024	İ
20.4	0.021	İ
603.8	0.019	İ
687.5	0.017	Ì
71.6	0.099	
56.0	0.093	t
40.9	0.087	t
26.3	0.007	
12 0.0	0.002	
08.3	0.077	
85.0	0.072	
72.2	0.000	
50.9	0.004	
47.0	0.000	
47.9	0.057	
30.4	0.054	
25.4	0.051	
14.7	0.049	
04.5	0.046	
94.6	0.044	
85.1	0.042	
376.0	0.040	
67.2	0.038	
58.7	0.036	
50.6	0.034	1 651
42.8	0.033	
35.2	0.031	ļ
27.9	0.030	ļ
20.9	0.029	ļ
814.1	0.028	
07.6	0.026	l
01.3	0.025	
95.2	0.024	
89.4	0.023	[
83.7	0.023	
78.3	0.022	[
73.0	0.021	Ĩ
67.9	0.020	Ĩ
62.9	0.019	Ì
58.2	0.019	Ì
253.5	0.018	t
49.1	0.017	t
44.7	0.017	t
40.5	0.016	t
36.5	0.016	t
OTAL SET	TLEMENT	2 0

-	Table 5		
Time Rate	of Consolidation		
Coefficient of Consolidation	tion, cv (in²/sec)	4.40E-05	from
Time Factor for 90% Co	insolidation, Tu	0.848	from
Drainage Distance,	Hdr (feet)	50	assı
Time required for 90% Cons	olidation, t90 (days)	558	

om Das (2002), Table 10.6, Page 297 om Das (2002), Table 10.5, Page 293 sumed soil profile is singly drained

 $t90 = \frac{Tu * Hdr^2}{}$..from Das (2002), Equation 10.55, Page 295 CV

SUMMARY:

Primary Consolidation Settlement (Cohesive Soil) = 2.0 inches Approximately 558 days will be required to achieve 90 percent consolidation once embankment load is applied

FEMA Floodplain Levee Certification We Energies Pleasant Prairie Ash Landfill Floodplain Levee Certification Pleasant Prairie, Wisconsin June 5, 2013

Tab 10

44 CFR 65.10(b)(6); Interior Drainage

Tab 10

44 CFR 65.10 (b) (6) Tab

(6) Interior drainage. An analysis must be submitted that identifies the source(s) of such flooding, the extent of the flooded area, and, if the average depth is greater than one foot, the water-surface elevation(s) of the base flood. This analysis must be based on the joint probability of interior and exterior flooding and the capacity of facilities (such as drainage lines and pumps) for evacuating interior floodwaters.

P.E. Signature:

Non Applicable: _____

P.E.Name:_____John M. Trast, P.E.

P.E. License Number and State: 31792-6 WI

						<u> </u>	
				Project No.	1325060		
Client	We Energies	Subject	Interior Drainage	Prepared By	CEF	Date	05/2013
Project	Pleasant Prairie Ash	44 CFR 6	5.10 (b) (6)	Reviewed By	JXT	Date	05/2013
Landfill F	loodplain Levee Cert			Approved By	JXT	Date	06/2013

Page

1

Of

3

INTERIOR DRAINAGE ANALYSIS

Objective

Verify that the Pleasant Prairie Ash Landfill Floodplain Levee meets the requirements of 44 CFR 65.10(b) (6) Interior Drainage, which states:

An analysis must be submitted that identifies the source(s) of such flooding, the extent of the flooded area, and, if the average depth is greater than one foot, the water-surface elevation(s) of the base flood. This analysis must be based on the joint probability of interior and exterior flooding and the capacity of facilities (such as drainage lines and pumps) for evacuating interior floodwaters.

Assumptions

- 1. The worst-case combined flooding event is assumed to be a 1% annual chance flood in the channel and a 1% annual chance local rainfall.
- 2. The worst-case 1% annual chance local rainfall is based on the SCS 24-hour storm.
- 3. The area behind the Pleasant Prairie Ash Landfill Floodplain Levee acts as a level-pool reservoir during flood events.

Calculations

Watershed Area

The watershed area behind the Pleasant Prairie Ash Landfill Floodplain Levee was determined from existing topography prepared by AECOM based on 2011 surveys and is shown on Figure 01. The watershed area behind the Pleasant Prairie Ash Landfill Floodplain Levee was calculated in AutoCAD to be 100.1 acres.

Time of Concentration

Time of concentration for the Pleasant Prairie Ash Landfill Floodplain Levee watershed was calculated using TR-55 methodology (NRCS, 1986). Time of concentration (T_c) is the time it takes for runoff to travel from the most hydraulically remote portion of the watershed to a point of interest within the watershed. The time of concentration is determined by adding all of the travel times for consecutive components of the drainage conveyance system. The longest flow path lengths for each TR-55 flow type are shown on Figure 01. The longest flow path to the point of interest for the levee watershed consists of 100 feet of sheet flow, 1,230 feet of shallow concentrated flow, and 3,175 feet of channel flow for a total length of 4,505 feet. Input parameters were obtain from the AECOM survey and selected using TR-55 methodologies. Time of concentration calculations are included in Appendix B.

Runoff Curve Number

The soils in the Pleasant Prairie Ash Landfill Floodplain Levee watershed consist of Martinton Silt Loam and Montgomery Silty Clay (NRCS, 2012). A map of the soil for this area is included in Appendix A. These soils are consistent with SCS hydrologic soil group "C" which applies for "soils with a subsurface layer that impedes downward movement of water, or soils with moderately fine to fine texture" (Mays, 2001). Using TR-55, the P4 Levee watershed was estimated to consist of "Open Space" in "Fair Condition" which corresponds to a curve number of 79 for soil group C.

<u>Rainfall</u>

An SCS Type II 100-year 24-hour rainfall event was used to determine flooding in the Pleasant Prairie Ash Landfill Floodplain Levee watershed. Additionally, the SCS Type II 2-year 24-hour rainfall event was needed to calculate sheet flow time. These rainfall depths were obtained from NRCS data available from

			raye	2	0	3	
			Project I	No.	1325060		
Client We Energies	Subject	Interior Drainage	Prepare	d By	CEF	Date	05/2013
Project Pleasant Prairie	e Ash 44 CFR	65.10 (b) (6)	Reviewe	d By	JXT	Date	05/2013
Landfill Floodplain Levee	Cert		Approve	d By	JXT	Date	06/2013

Dere

~

0

the WinTR-55 computer program and equal 5.7 inches and 2.8 inches, respectively.

Flood Storage and Reservoir Routing Methodology

The U.S Army Corps of Engineers (USACE) Hydrologic Engineering Center – hydrologic Modeling System (HEC-HMS) version 3.5 (2010) computer model was used to analyze the area behind the Pleasant Prairie Ash Landfill Floodplain Levee. The HEC-HMS computer model simulates watershed response to precipitation by representing the drainage basin as a system of interconnected hydrologic and hydraulic components. Typical input parameters to the program include basin area, overland flow travel time, soil permeability, soil infiltration relationships, land use characteristics, precipitation depths and distribution, and base flow.

HEC-HMS was used to estimate flow rates, runoff volumes, and to generate hydrographs to describe the magnitude, timing of runoff, and identify areas of interior flooding with areas of ponding and BFEs. Three 12-inch outlet pipes and a 36-inch pipe equipped with backflow preventers were set as the outlet to the reservoir based on the AECOM survey. A stage-storage table was input into HEC-HMS based on AECOM survey data (Appendix B). The HEC-HMS model was run with three tailwater scenarios:

- 1. Free-Discharge This condition will not occur during a combined event but represents the best case flooding scenario
- 2. Tailwater at Elevation 681.0 This condition represents the 1% Annual Chance flood elevation for the main channel presented in the 2012 flood insurance study (FEMA, 2012).
- Tailwater at Elevation 690.0 This condition is also not likely to occur but represents a worst case flooding scenario where the watershed is essentially unable to discharge to the main channel.

The peak elevation for the P4 Levee reservoir for the above scenarios is 681.1, 681.2, and 681.4 respectively. These results are provided in the attached HEC-HMS output files (Appendix B) and the flooding extents for scenario 2 are shown on Figure 02.

Conclusions

These calculations have provided the 1% annual chance flood elevations for the interior watershed of the Pleasant Prairie Ash Landfill Floodplain Levee based on standard hydrologic techniques. The results indicate that the elevation of interior flooding is relatively insensitive to tailwater condition with a minimum water surface of 681.1 for a free discharge condition and a water surface of 681.4 for a zero discharge condition. The expected elevation of interior flooding for a combined 1% annual chance flood occurring both within the Pleasant Prairie Ash Landfill Floodplain Levee watershed and in the adjacent channel is 681.2 and the extents of this flooding are provided as Figure 02.

References

- Federal Emergency Management Agency. (2012). *Flood Insurance Study Kenosha County, Wisconsin and Incorporated Areas, Effective June 2012*. Federal Emergency Management Agency. Retrieved January 19, 2012 from ftp://ftp.wi.gov/DNR/shared/floodplain/Temporary/To_Kenosha/FIS
- Mays, L.W. (2001). *Stormwater Collection Systems Design Handbook*. New York, New York: McGraw-Hill.
- Natural Resources Conservation Service. (1986). Urban Hydrology for Small Watersheds Technical Release 55. United Stated Department of Agriculture.
- Natural Resources Conservation Service. (2012). Soil Map Kenosha and Racine Counties, Wisconsin. Web Soil Survey. Retrieved January 18, 2012 from http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm

				Page	3	Of	3	
				Projec	t No.	1325060		
Client	We Energies	Subject	Interior Drainage	Prepar	ed By	CEF	Date	05/2013
Project	Pleasant Prairie Ash	44 CFR 6	5.10 (b) (6)	Review	ved By	JXT	Date	05/2013
Landfill F	loodplain Levee Cert			Approv	ved By	JXT	Date	06/2013

Natural Resource Conservation Service, (2013) *WinTR-55, version 1.00.10* (February 7, 2013), United Stated Department of Agriculture.

Hydrologic Engineering Center, (2010), *HEC-HMS, version 3.5*, (August 2010) US Army Corp of Engineers, Washington DC.

FIGURES

Pleasant Prairie Power Plant Landfill Flood Plain Levee Certification We Energies, Pleasant Prairie, WI Project No.: 60218395 2012-04

Watershed Boundary and Longest Flow Path

Last Plotted: 2012-04-19 FRMICHAEL\60218395\CAD\G60218395 Last saved by: BAKERM(2012-04-19) Filename: G:01DFPT03/HSFRS/RAKF

> **Pleasant Prairie Power Plant** Landfill Flood Plain Levee Certification We Energies, Pleasant Prairie, WI Project No.: 60218395 2012-04

Flooding Depth Plan

APPENDIX A

KENOSHA COUNTY SOIL MAP

Soil Map—Kenosha and Racine Counties, Wisconsin

Map Unit Legend

Kenosha and Racine Counties, Wisconsin (WI601)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
AtA	Ashkum silty clay loam, 0 to 3 percent slopes	53.8	7.7%		
AzB	Aztalan loam, 2 to 6 percent slopes	4.2	0.6%		
BcA	Beecher silt loam, 1 to 3 percent slopes	7.0	1.0%		
EtB	Elliott silty clay loam, 2 to 6 percent slopes	26.1	3.7%		
HeB2	Hebron loam, 2 to 6 percent slopes, eroded	6.0	0.9%		
Ht	Houghton muck	2.3	0.3%		
KhA	Kane silt loam, clayey substratum, 1 to 3 percent slopes	3.4	0.5%		
MeB	Markham silt loam, 2 to 6 percent slopes	95.5	13.6%		
MeB2	Markham silt loam, 2 to 6 percent slopes, eroded	6.3	0.9%		
Mf	Marsh	1.8	0.3%		
MgA	Martinton silt loam, 1 to 3 percent slopes	66.3	9.5%		
Mzc	Montgomery silty clay	316.3	45.2%		
MzdB	Morley silt loam, 2 to 6 percent slopes	9.1	1.3%		
MzdB2	Morley silt loam, 2 to 6 percent slopes, eroded	11.4	1.6%		
MzdD2	Morley silt loam, 12 to 20 percent slopes, eroded	1.0	0.1%		
Oc	Ogden muck	40.0	5.7%		
Sm	Sebewa silt loam	6.3	0.9%		
VaB	Varna silt loam, 2 to 6 percent slopes	9.0	1.3%		
W	Water	21.1	3.0%		
WeB	Warsaw loam, 2 to 6 percent slopes	13.7	2.0%		
Totals for Area of Interes	st	700.6	100.0%		

Appendix B

HEC-HMS Input and Output

Time of Concentration Determination:

\bigcirc							
GEI							
	•						
CLIENT: PROJECT:	We Energies	Floodplain Laura Cart		Project:	~~~~~	Page:	1 -61
SUBJECT:	Time of Concentrations	-loodplain Levee Cert		Date:	5 <i>01/2</i> 013	By:	
	Thine of Concentrations			Checked:	5/21/2015	By:	
				Approved:		By:	
_							
Purpose:	Determine time of concentr	ration for Pleasant Prairie Ash	Landfill Floo	dplain Levee	watershed.		
Procedure:	As listed in Technical Relea	ase 55 Urban Hydrology for Sn	nall Watershe	eds			
Deferences:	Technical Deleace 55 Lirbs	n Hydrology for Small Wateret	node 1086				
References.	rechinical Release 55 Orba	in Hydrology for Small watersi	ieus, 1900.				
Conditions	Present						
	Developed						
Sheet flow							
		Segment ID	AB				
1. Suface desc	ription (table 3-1)	2.4)	fallow				
2. Manning's ro	bugnness coeπicient, n (table	3-1)	0.050				
3. Flow length, 4. Two yoar 24	L (IOIAI L \leq 300 TI)		100				
4. Two-year 24	-nourrannan, F2		2.8				
5. Lanu siope,	5	IVIL	0.008				
6. $T = \frac{0.00}{0.00}$	$0.7(nL)^{0.8}$	Compute T _t hr					
F	2 S 0.4		0.11				
Shallow Concer	trated Flow						
		Segment ID	BC				
7. Suface desc	ription (paved or unpaved) ,	~	Unpaved				
8. Flow length,	L	π 	1230				
9. vvalercourse	e siope, s		0.0140				
TU. Average ve	r τ	5 see App F equations)	1.91				
11. $T_t = -\frac{1}{3}$	<u></u>	Compute T _t hr	0.40				
5	000 /	I	0.18				
Channel Flow							
		Sogmont ID	00	<u> </u>			I
12 Cross Soct	ional Flow Aroa	Segment ID	20.0				
12. Cluss Sect 13. Watted Par	ional Flow Alea , a imeter . Pw	IL ft	30.0				
14 Hydraulic E	adius r = a/Dw Computor		19.0				
15 Channol St	adius, r – an w, computer	ft /ft	0.0005				
16 Manning's	ope, s roudhness coefficient in		0.0000				
10. Manning 31	2/3_1/2		0.022				
17. $V = \frac{1.49}{1.49}$	21 D	Compute Vft/s	2.05				
		÷	2.05	╎			
ro, mow cengu	т, ш	IL	5110				
19. $T_t = \frac{1}{2}$		Compute T _t hr	0.40				
1	000 /	I	0.43				I
20 Watershed	or cubarea To or Tt (add Tt in	stope 6 11 and 10) br	0.70	- 13 mine			
and a sublet	or subared in or it (add if it	rauopsio, it, anu t⊎}tif	0.72	- 40 mms			
20. 100							
21. Watershed	or subarea Lag Time (0.60* ⁻	Γ _t)hr	0.43	= 26 mins			

Model Setup:

HEC-HMS Basin Model Setup

Paired Data - (Elevation - Storage Function):

Control Specifications: (Used for all three scenarios)

Control Specifications		
Name:	Control 1	
Description:		æ
*Start Date (ddMMMYYYY)	21Apr2013	
*Start Time (HH:mm)	00:00	
*End Date (ddMMMYYYY)	23Apr2013	
*End Time (HH:mm)	00:00	
Time Interval:	3 Minutes 🗸	

Meterologic Model: (Used for all three scenarios)

Reteorolog	y Mode	el Basins	
Met Na	ame: 1	100-yr 24-hr	
Descrip	otion:		Æ
Precipita	ation: [SCS Storm 🗸	
Evapotranspira	ation: [None	
Snow	melt:	None	
Unit Sys	stem: [U.S. Customary	
Precipitation			
Met Name: 1	00-yr	24-hr	
Method: T	Type 2		-
*Depth (IN) 5	.7		

Basin Model: (Used for all three scenarios)

Subbasin – Watershed

🖦 Subbasin 🛛 Loss	Transform Options
Basin Name:	TW - 681 ft
Element Name:	Watershed
Description:	Watershed area behind the Pleasant Prairie Ash Landfill Floodplain Levee
Downstream:	Landfill Basin 👻
*Area (MI2)	0.1564006
Canopy Method:	None
Surface Method:	None
Loss Method:	SCS Curve Number 🗸
Transform Method:	SCS Unit Hydrograph
Baseflow Method:	None
Subbasin Loss	Transform Options
Basin Nan	ne: TW - 681 ft
Element Nam	e: Watershed
Initial Abstraction (I	IN) 0.532
*Curve Numb	er: 79
*Impervious (%) 0.0
🤹 Subbasin Loss	Transform Options
Basin Name: T	W - 681 ft
Element Name: V	Vatershed
Graph Type:	Standard 🗸
*Lag Time (MIN)	26

Reservoir – Landfill Basin

Reservoir Options						
Racin Name	TW - 691 ft					
Element Name:	Landfill Basin					
Description:				æ		
Downstream:	-None					
Method:	Outflow Structures		_	_		
Storage Method:	Elevation-Storage		•			
*Elev-Stor Function:	Elevation-Storage		▼]	\simeq		
Initial Condition:	Storage		▼]			
*Initial Storage (AC-FT)	0					
Main Tailwater:	Fixed Stage		ب			
*Stage (FT)	681	Stage Elevation Changed for Each Scenario				
Auxiliary:	None		- -			
Time Step Method:	Automatic Adaption		▼]			
Outlets:			4 🛫			
Spillways:			0 🚖			
Dam Tops:			0 🚔			
Pumps:			0 🌩			
Dam Break:	No		•			
Dam Seepage:	No		~]			
Release:	No		▼			
Evaporation:	No		▼			

Outlets:

Reservoir Outlet	Options
Basin Name:	TW - 681 ft
Element Name:	Landfill Basin
Method:	Culvert Outlet
Direction:	Main
Number Barrels:	1
Solution Method:	Automatic
Chart:	2: Corrugated Metal Pipe
Scale:	1: Headwall
*Length (FT)	61.5
*Diameter (FT)	1
*Inlet Elevation (FT)	679.84
*Entrance Coefficient:	0.5
*Outlet Elevation (FT)	679.85
*Exit Coefficient:	1
*Mannings n:	0.01
	-
Reservoir Outlet 2	Options
Pacin Namo	TW _ 601 0
Element Name:	Landfill Basin
Method:	Culvert Outlet
Direction:	Main
Number Barrels:	1
Solution Method:	Automatic -
Shape:	Circular 🗸
Chart:	2: Corrugated Metal Pipe
*Length (FT)	
*Diameter (FT)	1
*Inlet Elevation (ET)	- 670 04
*Entrance Coefficient:	0.5
*Outlet Elevation (ET)	679 66
*Exit Coefficient:	1
*Mannings n:	•
Reservoir Outlet 3	Options
Basin Name:	Options TW - 681 ft
Basin Name: Element Name:	Options TW - 681 ft Landfill Basin
Basin Name: Element Name: Method:	Options TW - 681 ft Landfill Basin Culvert Outlet
Basin Name: Element Name: Method: Direction:	Options TW - 681 ft Landfill Basin Culvert Outlet Main
Basin Name: Element Name: Direction: Number Barrels:	Options TW - 681 ft Landfill Basin Culvert Outlet Main I discussion
Basin Name: Element Name: Number Barrels: Solution Method:	Options TW - 681 ft Landfill Basin Culvert Outlet Main I divert
Basin Name: Element Name: Number Barrels: Solution Method: Shape: Chart:	Options TW - 681 ft Landfill Basin Culvert Outlet Main 1 (a) 1 (a) Culvanto Circular 2: Corrupated Metal Pipe Image: Circular
Basin Name: Element Name: Number Barrels: Solution Method: Shape: Chart: Scale:	Options TW - 681 ft Landfill Basin Culvert Outlet Main Culvert Outlet Automatic Circular 2: Corrugated Metal Pipe 2: Mitered to conform to slope
Description Basin Name: Element Name: Method: Direction: Number Barrels: Solution Method: Shape: Chart: Scale: "Length (FT)	Options TW - 681 ft Landfill Basin Culvert Outlet Main 1 Automatic Crcular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3
Basin Name: Basin Name: Element Name: Method: Direction: Number Barrels: Solution Method: Shape: Chart: Scale: "Length (FT) "Diameter (FT)	Options TW - 681 ft Landfill Basin Culvert Outlet Main Main Main Culvert Outlet Culvert Outlet Culvert Outlet Automatic Circular Corrugated Metal Pipe Mittered to conform to slope 1
Constant Service Cons	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Automatic • Crcular • 2: Corrugated Metal Pipe • 2: Mitered to conform to slope • 61.3 1 680.09 •
Charts	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • 1 m • Automatic • Circular • 2: Kittered to conform to slope • 61.3 • 1 • 680.09 • 0.5 •
Charter Construction Construction Charter Ch	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • 1 ** • Automatic • Circular • 2: Kittered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 •
Construction C	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • 1 *** • Automatic • Circular • 2: Corrugated Metal Pipe • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 •
Charter State Control	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • Automatic • Crocular • 2: Corrugated Metal Pipe • 2: Mitered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • 0.01 •
Control Contro Control Control Control Control Control Control Control Control Co	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • Automatic • Crocular • 2: Corrugated Metal Pipe • 2: Mitered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • 0.01 •
Construction C	Options TW - 681 ft Landfill Basin Culvert Outlet Main Main 1 Automatic Crcular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01
Construction C	Options TW - 681 ft Landfill Basin Culvert Outlet Main Main 1 Automatic Crocular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options TW - 681 ft
Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 4	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • 1 ** • Automatic • Curular • 2: Corrugated Metal Pipe • 2: Mitered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • 0.01 • Options • TW - 681 ft • Call the durit •
Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 3 Content of the servoir Outlet 4	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • Automatic • Croular • 2: Corrugated Metal Pipe • 2: Corrugated Metal Pipe • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • Options • Vr - 681 ft • Landfill Basin • Culvert Outlet •
Construction C	Options TW - 681 ft Landfill Basin Culvert Outlet • Main • Main • Automatic • Circular • 2: Corrugated Metal Pipe • 2: Mitered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • Options • V - 681 ft • Culvert Outlet • Main •
Charter Scale Content of the second	Options TW - 681 ft Landfill Basin Culvert Outlet Main Automatic Circular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 679.89 1 Options TW - 681 ft Landfill Basin Culvert Outlet Main Automatic
Charter Content of the servoir Content of th	Options TW - 681 ft Landfill Basin Culver Outlet Min Image: Constraint of the state
Chart: Charter Solution Method: Chart: Chart: Chart: Solution Method: Solution Method: Solution Method: Solution Method: Solution Method: Shape: Chart: Solution Method: Chart: Solution Method: Chart:	Options TW - 681 ft Landfill Basin Culver Outlet Main 1 Automatic Circular 2: Corrugated Metal Pipe 2: Automatic on form to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options TW - 681 ft Landfill Basin Culvert Outlet Main 1 Automatic Culvert Outlet
Chart: Context 3: Context 3:	Options TW - 681 ft Landfill Basin Culvert Outlet Main 1 Automatic Circular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options TW - 681 ft Landfill Basin Culvert Outlet 4utomatic Culvert Outlet I Culvert Outlet View - 681 ft Landfill Basin Culvert Outlet I Culvert Outlet I 1 Culvert Outlet I 1 Culvert Outlet I I Concrete Pipe Culvert 1: Square edge entrance with headwall
Chart: Context 3: Context 3:	Options TW - 681 ft Culvert Outlet • Main • Automatic • Crcular • 2: Corrugated Metal Pipe • 2: Mittered to conform to slope • 61.3 • 1 • 680.09 • 0.5 • 679.89 • 1 • Options • V - 681 ft • Landfill Basin • Culvert Outlet • Main • 1 • 1 • 1 • 1 • 1 • • • • • • • • • • • • • • • • • • • • • • • • • •<
Chart: Context Solution Method: Chart: Chart: Context Coefficient: Context Coeffici	Options TW - 681 ft Landfill Basin Culvert Outlet Main Automatic Crecular 2: Corrugated Metal Pipe 2: Mtered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options Culvert Outlet Wath Conform to slope 0.5 679.89 1 0.01 Options Culvert Outlet Main Culvert Outlet Main Culvert Outlet Main I 1.5 Culvert Outlet Main Culvert Outlet Main I Culvert Outlet Main I Source elpe Culvert 1: Source elpe Culvert 1: Source elpe Culvert 1: Source elpe culvert 1: Source elpe culvert 1: Source e
Chart: Could Select the selection of th	Options TW - 681 ft Landfill Basin Culver t Outlet Main 1 Automatic Crcular 2: Corrugated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options TW - 681 ft Landfill Basin Culver t Outlet V Automatic Curver Cutlet Curver Cutlet V 681 ft Landfill Basin Culvert Outlet V 681 ft Landfill Basin Culvert Outlet V 681 ft Landfill Basin Culvert Outlet V Solar 1: Concrete Pipe Culvert 1: Square edge entrance with headwall 50.6 3 679.20
Chart: Context Solution Method: Chart: Chart: Chart: Chart: Chart: Chart: Chart: Solution Method: Solution Method: Chart:	Options TW - 681 ft Landfill Basin Colvert Outlet Main 1 Automatic Crcular 2: Corrugated Metal Pipe 2: Corrugated Metal Pipe 2: Corrugated Metal Pipe 2: Mittered to conform to slope 61.3 1 680.09 0.5 679.89 1 0.01 Options TW - 681 ft Landfill Basin Culvert Outlet Main Quitoration Culvert Outlet Main 1 Concrete Pipe Culvert 1: Source dege entrance with headwall 9.6 3 67.20.0
Current Name: Element Name: Number Barrels: Solution Method: Solution Method: Solution Method: Solution Method: Solution Method: Solution Method: "Length (FT) "Inlet Elevation (FT) "Entrance Coefficient: "Outlet Elevation (FT) "Exit Coefficient: "Mannings n: Method: Direction: Number Barrels: Solution Method: Solution Method: Method	Options TW - 681 ft Landfill Basin Colvert Outlet Main 1 Automatic Crcular 2: Corruspated Metal Pipe 2: Corruspated Metal Pipe 2: Mitered to conform to slope 61.3 1 680.09 0.5 579.89 1 0.01 Deptions TW - 681 ft Landfill Basin Culvert Outlet Wain Quivert Outlet Circular 1: Source edge entrance with headwall 3 679.20 3 60.01
Context Con	Options TW - 681 ft Landfill Basin Automatic Crcular Crcular 2: Corrugated Metal Pipe 2: Mittered to conform to slope 3:3 1 680.09 0.5 679.89 1 0.01 Dptions TW - 681 ft Landfill Basin Culvert Outlet Win Quiter Guiter 1 1.1 0.01 Dptions TW - 681 ft Landfill Basin Culvert Outlet Wain Quiter Guiter 1 0.01 Dptions TW - 681 ft Landfill Basin Culver Toutlet Wain Quiter Guiter 1 60.09 0.01 1 1 Culver toutet So 3 679.20 0.5 679.49

RESULTS:

TW – Free-Discharge

Global Summary Result	s for Run "TW -	Free Discharge"				
Project: Pleasant Prairie Ash Landfi Simulation Run: TW - Free Discharge						
Start of Run: 21Apr2013, 00:00 Basin Model: TW - Free Discharge End of Run: 23Apr2013, 00:00 Meteorologic Model: 100-yr 24-hr Compute Time: 22May2013, 07:50:50 Control Specifications: Control 1 Show Elements: All Elements Volume Units: IN AC-FT Sorting: Hydrologic						
Hydrologic Element	Drainage Area	Peak Discharge	Time of Peak	Volume (TN)		
Watershed	0.1564006	239.7	21Apr2013, 12:18	3.41		

Summary Results	for Subbasin "W	/atershed"				
Simu	Project: Ple lation Run: TW - F	easant Prairie Ash Landfi iree Discharge Subbasin: V	Vatershed			
Start of Run:21Apr2013, 00:00Basin Model:TW - Free DischargeEnd of Run:23Apr2013, 00:00Meteorologic Model:100-yr 24-hrCompute Time:22May2013, 07:50:50Control Specifications: Control 1						
	Volume U	Inits: 🔘 IN 🔘 AC-FT				
Computed Results						
Peak Discharge : Total Precipitatior Total Loss : Total Excess :	239.7 (CFS) 1 : 5.70 (IN) 2.29 (IN) 3.41 (IN)	Date/Time of Peak Dischar Total Direct Runoff : Total Baseflow : Discharge :	rge : 21Apr2013, 12:18 3.41 (IN) 0.00 (IN) 3.41 (IN)			

Summary Results for Reservoir	r "Landfill Basin" 📃 🖃 🗾					
Project: Pleasant Prairie Ash Landfi Simulation Run: TW - Free Discharge Reservoir: Landfill Basin						
Start of Run:21Apr2013, 00:00Basin Model:TW - Free DischargeEnd of Run:23Apr2013, 00:00Meteorologic Model:100-yr 24-hrCompute Time:22May2013, 07:50:50Control Specifications:Control 1						
Volume Units: () IN () AC-FT Computed Results						
Peak Inflow : 239.7 (CFS) Peak Outflow : 17.4 (CFS) Total Inflow : 3.41 (IN) Total Outflow : 3.18 (IN)	Date/Time of Peak Inflow : 21Apr2013, 12:18 Date/Time of Peak Outflow : 21Apr2013, 14:48 Peak Storage : 17.8 (AC-FT) Peak Elevation : 681.1 (FT)					

Global Summary Result	s for Run "TW - 6	581 ft"		
Projec	t: Pleasant Prairie	Ash Landfi S	imulation Run: TW	- 681 ft
Start of Ru End of Run Compute Ti	n Model: eorologic Model: trol Specifications:	TW - 681 ft 100-yr 24-hr Control 1		
Show Elements: All Ele	ments 🚽 🛛 Va	olume Units: 🍥 I	N 🔘 AC-FT	Sorting: Hydrologic 🗸
				2 . 2
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Hydrologic Element Watershed	Drainage Area (MI2) 0.1564006	Peak Discharge (CFS) 239.7	Time of Peak 21Apr2013, 12:18	Volume (IN) 3.41

Summary Results	for Subbasin "W	/atershed	"				
s	Project: Ple imulation Run: T\	easant Pra N - 681 ft	iirie Ash Landfi Subbasin: Water	shed			
Start of Run: End of Run: Compute Time	Start of Run:21Apr2013, 00:00Basin Model:TW - 681 ftEnd of Run:23Apr2013, 00:00Meteorologic Model:100-yr 24-hrCompute Time:22May2013, 07:50:38Control Specifications: Control 1						
Computed Regults	Volume U	Inits: 🔘	IN 🔘 AC-FT				
Peak Discharge : Total Precipitation	239.7 (CFS) : 5.70 (IN)	Date/Ti Total Di	me of Peak Discharg rect Runoff :	ge : 21Apr2013, 12:18 3.41 (IN)			
Total Loss : Total Excess :	2.29 (IN) 3.41 (IN)	Total Ba Dischar	aseflow : ge :	0.00 (IN) 3.41 (IN)			

Summary Results for Reservoir "Land	ffill Basin" 💼 💼 🗾
Project: Pleasant Simulation Run: TW - 681	Prairie Ash Landfi ft Reservoir: Landfill Basin
Start of Run: 21Apr2013, 00:00 End of Run: 23Apr2013, 00:00 Compute Time: 22May2013, 07:50:38	Basin Model: TW - 681 ft Meteorologic Model: 100-yr 24-hr Control Specifications: Control 1
Volume Units: Computed Results	ín ⊚ ac-ft
Peak Inflow :239.7 (CFS)DatePeak Outflow :12.5 (CFS)DateTotal Inflow :3.41 (IN)PeakTotal Outflow :1.79 (IN)Peak	/Time of Peak Inflow : 21Apr2013, 12:18 /Time of Peak Outflow : 21Apr2013, 16:12 Storage : 19.8 (AC-FT) Elevation : 681.2 (FT)

Global Summary Result	s for Run "TW - (590"				
Proje	ct: Pleasant Prairi	e Ash Landfi	Simulation Run: TW - 6	90		
Start of Run: 21Apr 2013, 00:00 Basin Model: TW - 690 ft End of Run: 23Apr 2013, 00:00 Meteorologic Model: 100-yr 24-hr Compute Time: 22May 2013, 07:50:40 Control Specifications: Control 1 Show Elements: All Elements Volume Units: IN AC-FT Sorting: Hydrologic						
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)		
Watershed	0.1564006	239.7	21Apr2013, 12:18	3.41		
Landfill Basin	0.1564006	0.0	21Apr2013, 00:00	0.00		

Summary Results	for Subbasin "W	/atershed	"	
	Project: Ple Simulation Run: 1	easant Pra TW - 690	airie Ash Landfi Subbasin: Watershee	ł
Start of Run: End of Run: Compute Time	21Apr2013, 00: 23Apr2013, 00: 22May2013, 07	00 00 :50:40	Basin Model: Meteorologic Model: Control Specification	TW - 690 ft 100-yr 24-hr s: Control 1
Computed Results	Volume U	Jnits: 🍥	IN 🔘 AC-FT	
Peak Discharge : Total Precipitation Total Loss : Total Excess :	239.7 (CFS) n : 5.70 (IN) 2.29 (IN) 3.41 (IN)	Date/Ti Total Di Total Ba Dischar	me of Peak Discharge irect Runoff : aseflow : ge :	: 21Apr2013, 12:18 3.41 (IN) 0.00 (IN) 3.41 (IN)

Summary Result	s for Reservoir "Land	fill Basin"	
Si	Project: Pleasant mulation Run: TW - 690	Prairie Ash Landfi) Reservoir: Landfill Basin	
Start of Run: End of Run: Compute Time:	21Apr2013, 00:00 23Apr2013, 00:00 22May2013, 07:50:40	Basin Model: Meteorologic Model: Control Specifications:	TW - 690 ft 100-yr 24-hr : Control 1
Computed Result	Volume Units:	IN 🔘 AC-FT	
Peak Inflow : Peak Outflow : Total Inflow : Total Outflow :	239.7 (CFS) Date/ 0.0 (CFS) Date/ 3.41 (IN) Peak 0.00 (IN) Peak	Time of Peak Inflow: 214 Time of Peak Outflow:214 Storage: 28. Elevation: 681	Apr2013, 12:18 Apr2013, 00:00 5 (AC-FT) I.4 (FT)

Appendix C

Excerpts from Kenosha County FIS

KENOSHA COUNTY, WISCONSIN, AND INCORPORATED AREAS

Community Name	Community Number
Bristol, Village of	550595
*Genoa City, Village of	550465
Kenosha, City of	550209
Kenosha County, Unincorporated Areas	550523
Paddock Lake, Village of	550073
Pleasant Prairie, Village of	550613
Silver Lake, Village of	550210
Twin Lakes, Village of	550211

*No Special Flood Hazard Areas Identified

EFFECTIVE: June 19, 2012

FLOOD INSURANCE STUDY NUMBER 55059CV001A

TABLE 6 - SUMMARY OF DISCHARGES

PEAK DISCHARGES (cfs)

		10-			
FLOODING SOURCE AND LOCATION	DRAINAGE AREA <u>(sq. miles)</u>	PERCENT ANNUAL <u>CHANCE</u>	2-PERCENT ANNUAL <u>CHANCE</u>	1-PERCENT ANNUAL <u>CHANCE</u>	0.2-PERCENT ANNUAL <u>CHANCE</u>
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER					
At Confluence with Des Plaines River UNNAMED TRIBUTARY	0.6	149	229	268	*
NO. 2 TO JEROME CREEK At Confluence with Jerome					
Creek UNNAMED TRIBUTARY	0.3	36	41	43	*
BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY	0.8	69	97	110	*
At Confluence with Dutch Gap Canal	3.5	63	106	129	*
UNNAMED TRIBUTARY NO. 3 TO JEROME					
CREEK At Confluence with Jerome Creek Just upstream of divergence	0.7	19	23	25	*
with Unnamed Tributary No. 2 to Jerome Creek UNNAMED TRIBUTARY	*	35	39	41	*
NO. 3 TO SALEM BRANCH BRIGHTON CREEK					
At Confluence with Salem Branch Brighton Creek UNNAMED TRIBUTARY TO NO. 4 TO DUTCH	0.7	34	48	55	*
GAP CANAL At Confluence with Dutch Gap Canal	1.6	35	62	77	*

FLOODING SO	FLOODING SOURCE FLOODWAY			DWAY		1-PE WATER	RCENT-ANNU	AL-CHANCE FLO VATION (FEET N	DOD IAVD 88)
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
UNNAMED TRIBUTARY NO. 2 TO DES PLAINES RIVER (CONTINUED) K	8,380 ¹	31	53	1.8	0	704.1	704.1	704.1	0.0
UNNAMED TRIBUTARY NO. 2 TO JEROME CREEK						588.9			
A	1.961 ²	33	107	0.4	0	680.8	680.8	680.8	0.0
В	2.109 ²	29	92	0.6	0	680.8	680.8	680.8	0.0
С	2,468 ²	93	260	0.3	0	680.9	680.9	680.9	0.0
D	2.780 ²	162	262	0.3	0	680.9	680.9	680.9	0.0
E	3,440 ²	172	217	0.3	0	680.9	680.9	680.9	0.0
F	4,000 ²	142	178	0.2	0	681.0	681.0	681.0	0.0
UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BRIGHTON CREEK									
А	100 ³	*	*	*	*	752.1	*	*	*
В	950 ³	*	*	*	*	763.1	*	*	*
С	1,352 ³	*	*	*	*	768.3	*	*	*
D	1,621 ³	*	*	*	*	768.6	*	*	*
E	1,874 ³	*	*	*	*	772.7	*	*	*
F	2,767 ³	*	*	*	*	780.6	*	*	*
G	3,216 ³	*	*	*	*	789.1	*	*	*
¹ FEET ABOVE CONFLUENCE WIT CREEK, *DATA NOT AVAILABLE	H UNNAMED TRIBUTA	ARY NO. 1E TO DE	ES PLAINES RIVER	, ² FEET ABOVE CC	ONFLUENCE WITH JI	EROME CREEK, ³ FEE ⁻	T ABOVE CONFLUEN	CE WITH SALEM BRA	NCH BRIGHTON
FEDERAL EMERG	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOC	DWAY D	ATA		
KENOSH AND INCOF	IA COUNTY RPORATED A	, WI AREAS		UNNAMED TRIBUTARY 2 TO DES PLAINES RIVER - UNNAMED TRIBU JEROME CREEK - UNNAMED TRIBUTARY NO. 2 TO SALEM BRANCH BI			RIBUTARY NO. 2 CH BRIGHTON C		

FLOODING SOURCE FLOODWAY					1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	WIDTH REDUCED FROM PRIOR STUDY (FEET)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
TRIBUTARY NO. 3 TO JEROME CREEK										
А	1,950 ¹	5	11	2.3	0	680.5	680.5	680.5	0.0	
В	2,200 ¹	40	98	0.3	0	680.5	680.5	680.5	0.0	
С	2,395 ¹	4	12	2.1	0	680.5	680.5	680.5	0.0	
D	2,515 ¹	4	17	1.4	0	680.5	680.5	680.5	0.0	
E	2,556 ¹	4	15	1.6	0	588.9	680.6	680.6	0.0	
F	2,946 ¹	20	40	0.8	0	680.7	680.7	680.7	0.0	
G	4,429 ¹	3	9	4.8	0	681.0	681.0	681.0	0.0	
Н	4,504 ¹	3	10	4.3	0	681.9	681.9	681.9	0.0	
I	4,984 ¹	472	302	0.2	0	682.3	682.3	682.3	0.0	
J	6,879 ¹	37	33	1.7	0	683.4	683.4	683.4	0.0	
К	7,059 ¹	122	38	1.8	0	684.0	684.0	684.0	0.0	
L	7,185 ¹	130	56	1.0	0	684.3	684.3	684.3	0.0	
М	7,755 ¹	8	19	2.2	0	687.7	687.7	687.7	0.0	
UNNAMED TRIBUTARY NO. 3 TO SALEM BRANCH BRIGHTON CREEK										
A	201 ²	*	*	*	*	756.8	*	*	*	
В	623 ²	*	*	*	*	762.8	*	*	*	
Ċ	898 ²	*	*	*	*	769.2	*	*	*	
D	1,119 ²	*	*	*	*	771.0	*	*	*	
E	1,463 ²	*	*	*	*	775.4	*	*	*	
F	2,656 ²	*	*	*	*	789.9	*	*	*	
¹ FEET ABOVE CONFLUENCE V	VITH JEROME CRE	EK, ² FEET ABO\	/E CONFLUENCE	WITH SALEM B	RANCH BRIGHTO	N CREEK, *DATA NO	OT AVAILABLE			
FEDERAL EMERGE		ENT AGENCY				FLOO	FLOODWAY DATA			
KENOSH AND INCOR	A COUNTY PORATED A	, WI REAS		UNNAMED TRIBUTARY NO. 3 TO JEROME CREEK - UNNAMED TRIBUTAR SALEM BRANCH BRIGHTON CREEK			RIBUTARY NO.			