Appendix P

Sampling Plan

# **Environmental Sampling Plan**

Dane County Landfill Site No. 3 4402 Brandt Road Madison, Wisconsin

Prepared for:

Dane County Department of Waste & Renewables 1919 Alliant Energy Center Way Madison, Wisconsin 53713

# SCS ENGINEERS

25222268.00 | February 2024

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

#### Table of Contents

| Sect | ion                                                 | Pa                                                                            | ge  |  |  |  |
|------|-----------------------------------------------------|-------------------------------------------------------------------------------|-----|--|--|--|
| 1.0  | Over                                                | /iew                                                                          | 1   |  |  |  |
| 2.0  | NR 5                                                | 07.16 (1)(a) and (b) – Site Map and Sampling Schedule                         | 1   |  |  |  |
| 3.0  | NR 5                                                | 07.16 (c) – Field Measurements                                                | 1   |  |  |  |
|      | 3.1                                                 | Static Water Level Measurements                                               | 1   |  |  |  |
|      | 3.2                                                 | Monitoring Well Sampling                                                      | 2   |  |  |  |
|      | 3.3                                                 | Conductivity, pH, and Temperature                                             | 2   |  |  |  |
|      | 3.4                                                 | Turbidity, Odor, and Color                                                    | 3   |  |  |  |
| 4.0  | NR 5                                                | 07.16 (d) – Groundwater Purging Procedures                                    | 3   |  |  |  |
|      | 4.1                                                 | Traditional Purging Methods                                                   | 3   |  |  |  |
|      | 4.2                                                 | Very Low Yield Sampling Methods                                               | 4   |  |  |  |
|      | 4.3                                                 | Decontamination Procedures for Non-Dedicated, Down-Hole Purging Equipment     | 5   |  |  |  |
|      | 4.4                                                 | Time Between Purging/Sampling                                                 | 6   |  |  |  |
| 5.0  | NR 5                                                | 07.16 (e) – Groundwater Sample Collection                                     | 6   |  |  |  |
|      | 5.1                                                 | Obtaining Groundwater Samples                                                 | 6   |  |  |  |
|      | 5.2                                                 | Sample Volume                                                                 | 6   |  |  |  |
|      | 5.3                                                 | Sample Filtration                                                             | 6   |  |  |  |
|      | 5.4                                                 | Sample Preservation                                                           | 7   |  |  |  |
|      | 5.5                                                 | Decontamination Procedures for Non-Dedicated, Down-Hole Sampling Equipment    | 8   |  |  |  |
| 6.0  | NR 5                                                | 07.16 (f) – Quality Assurance - Trip, Field, Equipment Blanks, and Duplicates | 8   |  |  |  |
|      | 6.1                                                 | Trip Blanks                                                                   | 8   |  |  |  |
|      | 6.2                                                 | Field Blanks                                                                  | 9   |  |  |  |
|      | 6.3                                                 | Equipment Blanks                                                              | 9   |  |  |  |
|      | 6.4                                                 | Duplicates and Split Samples                                                  | 10  |  |  |  |
| 7.0  | NR 5                                                | 07.16 (g) – Private Well Sampling                                             | .10 |  |  |  |
| 8.0  | 0 NR 507.16 (h) – Surface Water Sample Collection11 |                                                                               |     |  |  |  |
| 9.0  | NR 5                                                | 07.16 (h) – Leachate Sample Collection                                        | .12 |  |  |  |
| 10.0 | NR 5                                                | 07.16 (h) – Gas Monitoring at Gas Probes                                      | .13 |  |  |  |
| 11.0 | NR 5                                                | 07.16 (i) – Sample Chain of Custody Record                                    | .14 |  |  |  |

#### Attachments

| Attachment A | Site Maps [To be updated for all proposed locations as part of Plan of Operation] |
|--------------|-----------------------------------------------------------------------------------|
| Attachment B | Sampling Schedule and Parameter List                                              |

- Attachment C Sampling Containers, Preservation, and Holding Time Requirements
- Attachment D Chain of Custody Form and Field Information Forms

I:\25222268.00\Deliverables\Feasibility Report\Appendices\P\_Sampling Plan\240208\_Sampling Plan\_Final.docx

[This page left blank intentionally]

# 1.0 OVERVIEW

This Environmental Sampling Plan (Plan) for Dane County Landfill Site No. 3 (DCLF No. 3) has been prepared to comply with Wisconsin Administrative Code, NR 507.16.

This version of the Environmental Sampling Plan is preliminary, pending completion of the landfill Plan of Operation and approval by the Wisconsin Department of Natural Resources (WDNR). The complete proposed environmental monitoring program will be submitted as part of the Plan of Operation in accordance with NR 514.06(7)(a). The Environmental Sampling Plan will be updated to reflect the final monitoring program in the WDNR Plan of Operation approval after the approval is issued.

- Prior to initiation of routine or special groundwater sampling events at DCLF No. 3, the Plan should be reviewed by all sampling team members.
- Site conditions or site-specific regulatory requirements may necessitate a deviation from the Plan as described herein.
- Any such deviation from this Plan must be documented by the sampling team leader in coordination with the designated Dane County representative. Possible reasons for variation from this Plan include, but are not limited to:
  - Unusual site hydrogeologic conditions, such as low permeability formations resulting in long recharge times;
  - Damaged monitoring points awaiting repair; or
  - Circumstances preventing sampling, such as a tar-like substance in a leachate headwell.

# 2.0 NR 507.16 (1)(a) AND (b) – SITE MAP AND SAMPLING SCHEDULE

**Attachment A** shows the site and the locations of inactive and active sampling points and devices adherent to Wisconsin Department of Natural Resources Groundwater Environmental Monitoring System (GEMS). This map will be updated as part of the Plan of Operation to show proposed monitoring locations.

Attachment B includes the sampling schedule, outlining the sampling frequency, and the list of analytical parameters for each monitoring point.

#### **3.0** NR 507.16 (c) – FIELD MEASUREMENTS

#### **3.1** STATIC WATER LEVEL MEASUREMENTS

- Collect water levels on the same day prior to purging to produce a representative static groundwater elevation contour map and minimize interference due to drawdown or barometric pressure effects.
- Remove the compression cap on the PVC well casing and allow the potential built-up pressure in the PVC casing to equalize with atmospheric pressure.

- To alleviate the potential for errors, previous water level data can be used for comparison purposes during field activities.
- Measure water levels using a Solinst Water Level Meter Model 101 or equivalent meter.
- Lower the decontaminated probe into the well until the instrument indicates that the water column has been encountered.
- Slowly raise the probe and lower in and out of the water column until the sampler is satisfied that the instrument is providing a reliable water level reading.
- Record the depth to water and elevation of the water level (mean sea level [MSL]) to the nearest hundredth of a foot (i.e., 0.01 foot).

#### **3.2** MONITORING WELL SAMPLING

Sample monitoring wells in the order of least likely to be impacted to most likely to be impacted.

- Sample monitoring wells upgradient of the landfill first, followed by sidegradient, and then downgradient monitoring wells.
  - Prior to purging a well, measure water levels to best represent static ground water (see Section 3.1).
  - Then purge stagnant water from the monitoring well. This will allow time for an adequate sampling volume to recharge in the well if it purges dry and to gather a sample that represents the groundwater within the soil formation at the well location as opposed to stagnant water in the well casing and filter pack.

#### **3.3** CONDUCTIVITY, PH, AND TEMPERATURE

The proper measurement and documentation of field water quality parameters are a critical part of the monitoring program.

- Before going to the field, clean and check all equipment for any malfunctions.
- Calibrate meters each morning before using them in the field following manufacturer's calibration procedures.
- Conduct equipment calibration daily at a minimum.
- Freshly prepare or bottle calibration solutions from non-expired stock.
- In the absence of manufacturer guidance, calibrate field equipment to within +/- 5 percent of the standard (or 0.1 standard unit for pH meters).
- Verify calibration of field-specific conductance against a chilled standard to verify temperature compensation.
- Repair or replace equipment that fails calibration prior to sampling and recalibrate.

- Conduct calibration checks periodically (e.g., mid-day and at end-of-day) to document any instrument drift. If there is significant instrument drift (e.g., >10 percent or 0.2 standard unit for pH), recalibrate the meters.
- Measure conductivity, pH, and temperature using a YSI Professional Plus Quick Start or equivalent meter.
- Record conductivity, pH, and temperature field measurements at the same time the groundwater sample is collected.

#### **3.4** TURBIDITY, ODOR, AND COLOR

Document the physical descriptions of turbidity, odor and color as outlined below.

- Odor: Waft samples as opposed to sniffing. Classify odor as rotten eggs, earthy, strong, moderate, or slight. Do not speculate as to the cause of an odor.
- Color: Hold the sample up to the light and describe the true color in as much detail as possible (color charts are acceptable descriptive methods). "True" color is the color after turbidity has been removed if samples are filtered. True color may be caused by metallic ions, humus, peat, or industrial chemicals. If samples are not filtered, then color may be a function of turbidity.
- **Turbidity:** Fill one 5-gallon bucket with purge water from the monitoring well immediately after the stagnant water is removed (**Section 3.2**). Classify turbidity observed in the 5-gallon bucket as described below and record the reading on the field sheet:
  - None: Sample is clear (you can clearly see the bottom of the bucket).
  - Slight: Sediment slightly clouds or colors the sample (you can slightly see the bottom of the bucket); sediment does not accumulate in the bottom of the bucket.
  - Moderate: Definite cloudiness, sediment accumulates at the bottom of the bucket.
  - High: Muddy/dark brown appearance (cannot see the bottom of the bucket).

Turbidity results reported to the Wisconsin Department of Natural Resources should be reported as either "yes" or "no." If the well has slight, moderate, or high turbidity, the result shall be reported as "yes." If the well has no turbidity (you can clearly see the bottom of the bucket) the result shall be reported as "no."

# 4.0 NR 507.16 (d) – GROUNDWATER PURGING PROCEDURES

#### 4.1 TRADITIONAL PURGING METHODS

Use the following purging methods:

- When minimal drawdown techniques are not utilized, pump or bail monitoring wells prior to sample withdrawal to prevent collection of non-representative stagnant water in a sample and to increase the likelihood that the water collected is representative of the groundwater within the formation around the well. As a general rule:
  - For moderate-to high-yield formations (those with fast recharge), pump or bail a minimum of four times the volume of water standing in the well casing, if possible.
  - For low-yield formations (those with slow recharge), pump or bail at least one borehole volume (includes water within the PVC casing plus the filter pack volume, assuming 30 percent effective porosity, if applicable), if possible.
- Use dedicated bailers (installed in the individual monitoring wells) and portable pumps to purge the monitoring wells. Dedicated bailers are used for sample collection at the DCLF No. 3.
- Collect equipment blanks in accordance with Section 6.3 of this Plan.
- Fasten the bailer cord (consists of nylon roping) securely to the bailer. Make sure the cord is clean and in good condition.
- Take care to not excessively disturb the column of water in the well casing.
- Gently lower the bailer into the well with each cycle.
- Lower the bailer into the water only to the extent necessary to fill or nearly fill the chamber. Avoid submerging the top of the bailer.
- For discarding purged water:
  - If results from previous sampling events do not suggest groundwater is impacted, discard purged water to the ground far enough away from the well footing to prevent the possibility of affecting shallow soils or groundwater near the well.
  - If results from previous sampling events suggests groundwater is impacted at a location, do not dispose of purge water to the ground. It may be necessary to collect all purge water in drums (preferably lined) to dispose of the water within the site leachate collection system or other approved manner as defined by the Dane County representative.

#### **4.2** VERY LOW YIELD SAMPLING METHODS

Some wells at the DCLF No. 3 may bail dry due to the low conductivity glacial till with varying amounts of silty sand, silt, and clay.

• In cases where a well bails dry prior to removal of 4 well volumes (water column within the PVC well casing) of purge water, bail or pump the volume of water standing in the well and allow the well to recharge for up to 24 hours or as stipulated by local or state regulation.

- If there is not sufficient water for sampling any parameter, then the well is considered dry for the purpose of sampling.
- If water is available to partially complete sampling requirements, obtain samples in the order specified in the approved monitoring plan or as specified by the Dane County representative.
  - Collect volatile organic analytes (VOAs) first, followed by the remaining parameters.
     Attachment C outlines minimum testing volumes for each analyte, or contact the laboratory.
- If a sample cannot be obtained from a given well which normally provides adequate water for a sample, notify the Dane County representative immediately and note on field forms.

#### **4.3** DECONTAMINATION PROCEDURES FOR NON-DEDICATED, DOWN-HOLE PURGING EQUIPMENT

Follow the decontamination procedures described below.

- Thoroughly decontaminate all non-dedicated, sample-contacting, and down-hole equipment prior to its use in sample collection activities. This includes non-dedicated pumps, non-dedicated bailers, groundwater level measurement devices, field parameter measurement devices, and non-dedicated filtering apparatuses.
- Use a dedicated water level probe for groundwater monitoring wells.
  - Under no circumstances shall the groundwater level probe be used to measure other liquid levels (such as leachate or grossly contaminated wells).
- Decontamination procedures:
  - For down-hole equipment, at a minimum, wash with a non-phosphate detergent solution, followed by two or three rinses (i.e., 2 to 3) with control water (i.e., water of a known chemistry), and one rinse with deionized (DI) water.
  - For non-dedicated pumps, at a minimum, circulate with clean water for three pump and tubing volumes and all associated discharge tubing. A series of three precleaned liquid storage containers will aid in this effort: 1) non-phosphate detergent solution, 2) control water, and 3) control water.
  - For other non-dedicated equipment (e.g., field meters and water level indicators), triple-rinse with DI water before and after each use.
- At a minimum, collect one Equipment Blank from non-dedicated purging/sampling equipment following decontamination for each day of sample collection (Section 6.3). Analyze Equipment Blanks for all sample matrices, analytical tests, and equipment configurations.

# **4.4** TIME BETWEEN PURGING/SAMPLING

Follow the purging time procedures described below:

- Collect groundwater samples in the shortest possible time following the well purge to gather a sample that is representative of the formation and not stagnant water in the well casing or filter pack.
  - Exceptions can be made to allow sediment to settle out in turbid wells. However, such wells may need to be redeveloped prior to the next sampling event.
     Redevelopment refers to spending some additional time with the purging process using well development techniques such as "surge and purge" in an effort to reduce the well's turbidity. The method of sample collection is usually the same as purging, unless otherwise specified by site conditions or regulation.

# 5.0 NR 507.16 (e) – GROUNDWATER SAMPLE COLLECTION

#### **5.1** OBTAINING GROUNDWATER SAMPLES

Follow the sample collection procedures described below:

- After purging has been completed at those wells with a dedicated, low-flow pump, reduce the pumping rate as low as possible to deliver a slow and steady discharge. Do not use a valve to reduce the flow rate.
- If the well has been purged with a bailer, collect the sample from a bailer using a bottom discharge device.
- Fill sample containers with a preservative first and fill non-preserved containers last.

#### **5.2** SAMPLE VOLUME

Attachment C summarizes the volume of sample required for the various analyses.

#### **5.3** SAMPLE FILTRATION

Follow the sample filtration procedures described below:

- Determine if sample filtration is required.
  - Typically, only samples for dissolved metals analysis require filtration.
  - Parameters requiring filtration are specified in the approved monitoring plan and regulatory requirements.
  - Private water supply well, surface water, and leachate samples are not filtered, unless specifically required by approved monitoring plan.
  - Where applicable, the laboratory will note which samples require filtering on the individual sample bottle labels and bottle schematics.

- Never filter preserved samples.
- Filter the samples in the field, during sample collection.
- Document that the sample has been filtered on the field chain of custody records.
- Filter through a 0.45-micron membrane pressure filter dedicated for groundwater only.
  - It is recommended that filtration be performed using an in-line filtration system or an approved alternative.
  - A small amount of water must be allowed to pass through the filter and tubing before obtaining a sample.
  - Use a new filter for each monitoring point, in addition to each sampling event. Under no circumstances are filters to be re-used.
- If samples are collected utilizing bailers, pressure filters are an acceptable method of filtering.
- Where in-line filtration is not possible, pre-filtration bottles may be used to transfer the samples to the field filtration device.
  - Obtain pre-filtration bottles from an approved supplier and identify at the time of sampling. Notify the supplier ahead of time to arrange for a sufficient number of bottles.
  - Do not use any filtering apparatus that is used for other procedures.

#### **5.4** SAMPLE PRESERVATION

Follow the sample preservation procedures described below:

- In general, perform sample preservation in the field (except for pre-preserved VOA vials).
  - Only with explicit approval from the Dane County representative can the sample preservation functions be performed by the laboratory upon receipt.
- Preserve samples immediately after filtration or collection (if samples are not filtered).
  - VOAs, which are allowed no headspace or no air bubbles trapped in the sample, will have proper preservatives included in the sample bottle.
  - Samples must be placed on ice immediately after collection.
- The laboratory will provide bottles that are pre-preserved and packed in separate plastic bags and labeled as such.
  - If not pre-preserved, then add the preservatives to the sample bottle after it has been filled with the sample. Fill the sample bottle to within 1/2 inch of the top of the sample container.

- Once the preservative has been added and the sample container capped, invert the sample container to ensure complete mixing with the sample. Do not shake the sample container.
- Check preservation of the samples in the field periodically to ensure that the sample is properly preserved.
- Cool the sample container to 4 degrees Celsius from the time the sample is collected through the time of analysis.
- Maintain samples in temperature-regulated refrigerators or in coolers containing ice or commercial frozen wet ice packs.
  - Ensure that provisions have been made in advance for facilities that do not have accommodations to freeze the wet ice packs. In such cases, it is recommended to bring pre-chilled coolers and extra ice to the site. Ensure the ice is frozen solid prior to use.
  - Do not use blue ice or chemical ice packs.
- Ensure that the samples are properly cooled during shipment to the laboratory. Samples must be shipped daily to the laboratory to ensure proper temperature control and holding time requirements are met.

#### 5.5 DECONTAMINATION PROCEDURES FOR NON-DEDICATED, DOWN-HOLE SAMPLING EQUIPMENT

Procedures for cleaning non-dedicated, down-hole sampling equipment will be similar to procedures used for non-dedicated, down-hole purging equipment. Procedures are outlined in **Section 4.3**.

### 6.0 NR 507.16 (f) – QUALITY ASSURANCE - TRIP, FIELD, EQUIPMENT BLANKS, AND DUPLICATES

#### 6.1 TRIP BLANKS

Trip Blanks are used to detect constituents that may be introduced in the field (either from the atmosphere or from sampling equipment), in transit to or from the sampling site, in bottle preparation, or sample storage at the laboratory (Quality Assurance). The laboratory reports Trip Blanks as separate samples, using "TB-(#)" as their sample point designation.

- Laboratories prepare the Trip Blanks, which are samples of volatile organic-free, laboratory quality water (e.g., Type II Reagent grade).
- Keep the Trip Blanks with the sample bottles while in transit to the site, during sampling, and during the return trip to the laboratory.
- Do not open Trip Blank sample bottles at any time during this process.

- If Trip Blank sample bottles are accidentally opened, note this fact on the field chain of custody record.
- Generally, include one Trip Blank bottle per cooler (that contains at least one VOA field sample).

### 6.2 FIELD BLANKS

Field Blanks are used to detect constituents that may be introduced in the field from the atmosphere. Laboratories report Field Blank results as separate samples; using "FB-(#)" as their sample designation.

- Prepare Field Blanks in the field, using laboratory-supplied bottles and the DI or laboratory reagent quality water.
- Prepare Field Blank by pouring the DI water into the sample bottles at the location of one of the wells in the sampling program.
- Identify the well at which the Field Blank is prepared on the Field Information Form, along with any information/observations that may explain any anomalous results (e.g., prevailing winds, upwind sources of potential degradation, etc.).
- Once a Field Blank is collected, handle and ship in the same manner as the rest of the samples.
- Prepare a minimum of one Field Blank for every 10 sampled wells or one Field Blank per day (if less than 10 wells are sampled).

#### 6.3 EQUIPMENT BLANKS

Equipment Blanks are used to detect constituents that may be introduced in the field from sampling equipment. The laboratory will report Equipment Blank results as separate samples; using "EB-(#) or RB-#" as their sample designation point.

- Prepare Equipment (or rinsate) Blanks for all sampling events where non-dedicated down-hole (i.e., portable pumps or bailers) equipment may contact the sample.
- Follow the decontamination procedures for non-dedicated equipment outlined in **Section 4.3** of this document.
- For non-dedicated equipment, prepare the Equipment Blank by pouring the DI or laboratory reagent quality water into or over the sampling device (e.g., the bailer) after it has been properly decontaminated, then pour the sample into the Equipment Blank bottles.
- Identify the equipment at which the Equipment Blank was collected from on the Field Information Form along with any information or observations that may explain any anomalous results (e.g., equipment type, prevailing winds, upwind sources of potential degradation, etc.).

• Prepare a minimum of one Equipment Blank for each day that monitoring wells are sampled.

#### **6.4** DUPLICATES AND SPLIT SAMPLES

Duplicate Samples are used to confirm analytical results from a given sample point (Quality Control). The laboratory will report the Duplicate results as separate samples; using "DUP-(#)" as their sample designation point. Duplicate Samples will be analyzed by request only.

- Collect Duplicate Samples in the field using a matching set of laboratory-supplied bottles and sampling from the selected well, as-requested.
- Prepare each Duplicate Sample by alternating between the regular sample bottles and the duplicate sample bottles, in the designated sampling order (i.e., VOAs first).
- Duplicate Samples should not be physically different in color, turbidity, or other physical parameters.
- Identify the well at which the Duplicate Sample is collected on the Field Information Form, along with any information or observations that may explain any anomalous results (e.g., physical differences between samples, prevailing winds, upwind sources of potential degradation, etc.).
- Do not list the well designation on the chain of custody (i.e., all duplicates shall be blind).
- Once collected, handle and ship the Duplicate Sample in the same manner as the rest of the samples.

Split Samples are collected when co-sampling of a well is conducted with a third party (i.e., Regulatory Agency or External Consultant).

- Collect Split Samples using the same method as a Duplicate, alternating between regular sample bottle and split sample bottle in the designated sampling order.
- Identify the well at which the Split Sample(s) is collected on the Field Information Form.
- When samples are split with regulatory agencies, document the condition of the bottles or preservatives, sample collection methods, and the selected agency laboratory on the Field Information Form.

# 7.0 NR 507.16 (g) – PRIVATE WELL SAMPLING

Private well sampling is usually performed in response to requests by local or state regulatory agencies. Private wells are usually installed with minimal documentation of subsurface geologic conditions, and water is usually obtained through high volume submersible pumps.

• The procedures for private well sampling are similar to those used for groundwater sampling. Refer to **Section 3.0** for procedures for measuring pH, specific conductance, and temperature.

- Take samples from private wells from water that does not run through a water softener. Collect samples from as close to the well source as possible, so basement faucets or outside faucets are preferable, and document where the samples were taken from on the Field Information Form.
- Ask the well owner about any treatment equipment installed in the system for softening, iron removal, pH adjustment, or other pre-treatment measures and document their response on the Field Information Form.
- Purge the plumbing and storage tanks prior to taking a sample to ensure the sample is representative of the aquifer.
  - To purge the plumbing, open faucets, flush the toilet, etc. to remove stagnant water in the pipes.
  - To ensure the plumbing is being purged, listen for the well pump.
  - Perform the purge for a minimum of 15 minutes or two to three pump cycles before sample collection.
- If the faucet includes an aeration screen, remove the screen before sampling (especially for organics), since the screen tends to agitate the water, and some organics could be lost.
  - If it cannot be removed, note this on the Field Information Form.
- Do not filter private well samples.
- Take field measurements as required by the approved monitoring plan.
- Document field measurements and all sampling information on the Field Information Form.

# 8.0 NR 507.16 (h) – SURFACE WATER SAMPLE COLLECTION

Surface water sampling occurs from sources such as discharge points, rivers, streams, ponds, and lakes.

- Prior to commencing the surface water sampling activities, note any areas of dead or distressed vegetation, odors, discolored water, oily sheen, weather conditions, wind direction, nearby activities, etc. on Field Information Forms for each sample location.
- Prior to sampling, collect field measurements for pH, electrical conductivity, and temperature at each sample point, unless otherwise specified in the approved monitoring plan or on the laboratory information sheets. Record results on the Field Information Form.

- Select the location of the sample point with care to ensure that a representative sample of water is obtained for testing.
  - Select the sample point to avoid intrusion of bottom sediments into the sample container.
- Samples collected from shallow depths can readily be obtained by submerging the sample container below the water surface.
  - Position the container mouth or opening so that the mouth faces in the upstream direction if flowing water is encountered.
  - Lower the sample container into the water while still capped, uncap under water to allow the sample bottle to fill, and re-cap before removal from the water.
  - Do not fill pre-preserved bottles using the aforementioned dipping method.
- When necessary, stand downstream to prevent any sources of cross-contamination and sediment disturbance.
- When sampling consecutive points in streams of flowing water, begin at the farthest downstream location and proceed upstream.
- In separate channels or water bodies, sample the locations expected to exhibit the greatest impacts last.
- To ensure that the surface water samples are representative, collect samples from the center of the stream or body of water (when possible) and at mid-depth.
- Do not field-filter surface water samples, unless specified under local and/or state regulations or as otherwise stated in the approved monitoring plan.
- Follow the sample preservation, storage, and shipment procedures described in **Section 5.4**.

# 9.0 NR 507.16 (h) – LEACHATE SAMPLE COLLECTION

This section of the Plan is applicable to sampling fluids from leachate wells, leachate manholes, or leachate retention basins.

- Upon arrival at the sample location, record the general condition of the sample location and its surroundings on the Field Information Form.
- Note any obvious odors in the vicinity of the sample point, foaming, discolored surface fluids, weather conditions, wind direction, nearby activities, leachate color, etc.
- Use dedicated leachate sampling equipment at each monitoring point.
- Never use fluid level measuring equipment used at leachate monitoring points at groundwater monitoring points.

- Measure leachate fluid levels prior to sample collection.
- Collect field measurements for pH, electrical conductivity, and temperature at each sample point prior to sampling, unless otherwise specified in the approved monitoring plan or on the laboratory information sheets.
- Record all results on the Field Information Form, noting units to three significant figures. Leachate risers and manholes do not require purging prior to sample collection.
- Collect samples using dedicated pumping equipment or by gently lowering a dedicated or disposable bailer into the sampling location and transferring the collected liquid into the sample bottles.
- Do not field-filter leachate samples, unless specified in the approved monitoring plan.
- Take special care when preserving leachate samples with acid, since a violent reaction may occur. Add acid slowly and carefully to the leachate samples to avoid this violent reaction.
- Check the pH of the leachate sample prior to shipment, and add acid to counter the buffering capacity of leachate when appropriate.
- Follow sample preservation, storage, and shipment procedures described in Section 5.4.
- Do not place leachate samples in the same coolers used for shipping groundwater, water supply, or other typically non-degraded samples.

**Note:** It is the sampler's responsibility to follow all appropriate health and safety procedures when collecting leachate samples. Landfill gas may be present in leachate risers. Never enter a manhole without proper gas detection and oxygen monitoring equipment, confined space training, and breathing apparatus. Avoid breathing gases emanating from a riser or manhole while collecting samples.

# 10.0 NR 507.16 (h) – GAS MONITORING AT GAS PROBES

Gas probe monitoring wells are installed around the perimeter of waste facility to monitor the potential movement of methane gas outside the limits of waste.

- Prior to gas monitoring, note any areas of dead or distressed vegetation, odors, weather conditions, wind direction, nearby activities, etc. and document them on the Field Information Forms for each sample location.
- Record barometric pressure, any observations of barometric pressure (trending up, down, or remaining steady), or any other pertinent observations on the Field Information Form.
- Each gas probe should have a cap with a petcock or valve with a piece of tubing and clip as a means of sealing the probe from the atmosphere. Attach the tubing on the probe to the meter and open to measure gas pressure using an Elkins Envision meter, or equivalent.

- Record the reading on the Field Information Form or downloaded electronically.
- Seal the tubing, remove the meter, and attach the gas testing meter (MSA Gasport, Landtec GEM2000, or equivalent).
- Open the tubing while attached to the gas meter.
- Run the pump on the meter approximately 2 minutes to purge and obtain stabilized percent methane and percent oxygen readings.
- Record these readings on Field Information Forms or electronic equivalent.

# **11.0** NR 507.16 (i) – SAMPLE CHAIN OF CUSTODY RECORD

To help maintain the integrity of the samples, strict chain of custody procedures are necessary. These procedures help to ensure that sample tampering does not occur.

- From the time the sample bottles leave the laboratory until the issuance of the analytical laboratory results, the samples or sample containers must be in the custody of an assigned Dane County representative, consultant, contractor, or laboratory.
- In order to maintain the chain of custody, the samples must be in sight of the assigned custodian or locked in a tamper-proof location.
- A written record of sample bottle possession and any transfers of samples must be maintained and documented on the field chain of custody record.

The sample chain of custody must contain, at a minimum, the following information:

- Site name
- Station numbers (Line No. on chain of custody, ascending order)
- Date samples are collected (by sample)
- Time sample collected (by sample)
- Type of sample (composite, grab, groundwater, leachate, or surface water)
- Number of containers per sample point
- Filtering requirements
- Preservatives
- Analysis required
- Special remarks (i.e., remittance of sealed coolers via courier)

The field chain of custody record must further be signed with the date and time for the following activities:

- Receipt of the sample cooler(s).
- Each time the sample cooler is transferred to the custody of another person.
- Immediately before sealing the sample cooler for transport to the laboratory. Form must be signed and enclosed within the cooler in a watertight bag.

Samples from the same monitoring point that are placed in more than one sample cooler require a field chain of custody record in each sample cooler. Any problems with the sample cooler's contents must also be noted on the form. Upon receipt of the sample cooler by the lab, the condition of the samples, temperature, date, and time are recorded on the field chain of custody record by the log-in personnel receiving the sample coolers. The field chain of custody record indicates by bottle and analysis group whether samples are preserved. The sampling team must record the field filtration, preservative, and any deviations from normal preservation requirements on the chain of custody record (the sampling team should initial the forms if this information is preprinted on forms provided by the lab). Failure to complete the field chain of custody record will render the resulting data useless. An example of the DCLF No. 3 field chain of custody form is provided in **Attachment D**.

Samples must be shipped to the laboratory as soon as possible, so that there is no exceedance of holding times. Due to the extremely short hold and extraction times involved with many of the methods used at DCLF No. 3, <u>all samples with short holding times (e.g., nitrates, coliform) shall be shipped on the same day that the samples are collected</u>. It is the sampler's sole responsibility to ensure expedient delivery of samples to the laboratory, so that the samples arrive at the proper temperature and within the range of specified holding times.

A member of the sampling team must be appointed to arrange sample pickup or transportation to the laboratory. Delivery requested on Saturday must be noted on the shipping or packing air bill for the courier. The laboratory must be notified at least 48 hours preceding the anticipated delivery. In the event of a holiday, contact the laboratory in advance for shipping instructions.

[This page left blank intentionally]

# Attachment A

# Site Maps

# [To be updated for all proposed locations as part of Plan of Operation]



NOTES: BASE MAP MODIFIED FRO MONITORING WELL LOCAT TOPOGRAPHY FOR USH 1 WISDOT DESIGN DRAWING 3080-01-75, AND 3080 CONTOUR DATA DOWNLO SITE. CONTOURS DEVEL OF DANE COUNTY. HORIZONTAL DATUM IS F COORDINATE SYSTEM, SC (NAD 83), US SURVEY F VERTICAL DATUM IS NOR CONTOUR INTERVAL IS T 5. WETLANDS AS SHOWN AR DATED 12/08/2021. WISC RESOURCES DETERMINED REVIEW FILE NO. EXE-SC ALSO ARTIFICIAL IN NATU AUTHORITY REGARDING CI WATER BODY OR WETLAN 5. WETLAND BOUNDARIES (SEE NOTE 5) TAKEN F RESOURCES, BUREAU O SECTION, DATED JULY 3 LAKES, PONDS, RIVERS, HTTPS: //GIS-COUNTYOF 8. SOIL BORING AND MONIT MW-4 AND B-1 THROUG AND FEBRUARY 2022 B 9. BORING OR WELL NUMBER BORING INFORMATION MA THAN ONE BORING AT A B-223 AND SEPARATE F TABLE 5-2 FOR COMPLE

HORIZONTAL AND 
 CP101
 380,751.36

 CP102
 378,650.01

 CP103
 377,337.14

600

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                               | FIGURE        | -<br>-                               | .—                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------|--------------------------------------|-----------------------|
| соссоссоссоссоссоссоссоссоссоссоссоссос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEGEND  PROJECT PROPERTY LNE  PROPORETY PARCEL LNE  PROPORET LANE  PROPOSED LINITS OF WASTE LASE LNE  PROPOSED LINITS OF WASTE LASE LNE  LINITS OF PROPOSED LINITS OF WASTE LNE  LINITS OF PROPOSED LINITE COLF COURSE  ENSITING GRADE (2' CONTOUR)  ENSITING GRADE (2' CONTOUR)  PAVED ROAD  UNGATION  ENSITING GRADE (2' CONTOUR)  ENSITING G                                                                                                                                                                | SAMPLING PLAN AND DEVICE                                                                        | CCC ENCINEEDE | 320 DAIDY PRIVE MADISON WI 5278-6751 | PHONE: (608) 224-2830 |
| NOTES:     NOTES | STORM SERVE NELT WATER SUPPLY NELL (APPROXIMATE LOCATION) WATER SUPPLY NELL (ASSUMD LOCATION) ARANOMERU WATER SUPPLY NELL (ASSUMD LOCATION) ARANOMERU WATER SUPPLY NELL (ASSUMD LOCATION) ARANOMERU WATER SUPPLY NELL (ASSUMD LOCATION) SUSTO FOUNDERNO NELL SOL BORNOM WONTDRING NELL PEZOMETER STAT GAUGE CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE AND CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM TETRA TECH PROPOSED BORNE CMD CONTROL POINT ED FROM SERVES TO JULION FLUOTT MIS REFERENCED TO WESONEND STATE PLANE US TECHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FEASIBILITY REPORT<br>DANE COUNTY LANDFILL SITE NO. 3<br>4402 BRANDT ROAD<br>MADISON, WISCONSIN | ЧР            | JR/MRH                               | BLP 02/09/2024 Z      |
| REVEW KILE NO.<br>ALSO ARTIFICAL IN<br>ALSO ARTIFICAL IN<br>ALSO ARTIFICAL IN<br>ALSO ARTIFICAL IN<br>ALSO ARTIFICAL IN<br>ALSO ARTIFICAL IN<br>RESOURCES, BURG<br>SECTION, DATED S<br>SOLI BORING AND<br>MW-4 AND B-11<br>AND FEBRUARY 2<br>BORING OR WELL<br>BORING OR WELL<br>BORING OR WELL<br>BORING OR WELL<br>AND SEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEC SUS-202-13-DERE AND THE PORD WAS<br>DEC SUS-202-13-DERE AND THE PORD WAS<br>NALMEL THEREFORE ON REQULATORY<br>MELLANDS<br>EXEMPTION DEC SUSTEMENT OF NATURAL<br>JULY OF WATERSHOLD WARACHWAT - WALLANDS<br>VERS, MADO STREAM DATA FROM<br>NOTIONAL CHECADINA ARGOSE ON-1 THRUGON<br>MONTONING KELL LOCATIONS MA-1 THRUGON<br>MONTONING KELL LOCATIONS MA-1 THRUGON<br>MONTONING KELL LOCATIONS MA-1 THRUGON<br>MONTONING KELL LOCATIONS MA-1 THRUGON<br>MONTONING KELL DOCATIONS MA-1 THRUGON<br>MONTONING KELL DOCATIONS MA-1 THRUGON<br>MONTONING KELL BOOK STREAM DETA AT SUST<br>MADO STREAM DETA TECH<br>MADO STREAM | SITE                                                                                            | DRAWN BY:     | СНЕСКЕД ВҮ:                          | APPROVED BY:          |
| HORIZONTAL           FORT IA.           (CP101)           CP103)           CP103)           CP103)           S77,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COMPLETE LIST OF BORINGS AND WELLS.           AND VERTICAL CONTROL POINT LOCATIONS           Name         Elevation           51.36         2.166.580.51           50.01         2.166.272.3           37.14         2.167.000.91           933.580         SCAMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of waste<br>er way                                                                              | 2522268.00    | 11/22/2023                           | 02/07/2024            |
| 00<br><b>1997</b><br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 600<br>CALE: 1" = 600'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DANE COUNTY DEPARTMENT<br>AND RENEWABLES<br>1919 ALLIANT ENERCY CENT<br>MADISON, W 53713        | PROJECT NO.   | DRAWN:                               | REVISED:              |

Attachment B

Sampling Schedule and Parameter List

| Table 1e                       |                  |                                   |              |                                                     |  |  |  |
|--------------------------------|------------------|-----------------------------------|--------------|-----------------------------------------------------|--|--|--|
|                                | Detect           | ion Groundwater Monitori          | ng NR 507 We | ells                                                |  |  |  |
|                                |                  | Sampling & Reporting <sup>1</sup> | Parameter    |                                                     |  |  |  |
| Wells                          | Comment          | Frequency                         | Codes        | Parameters                                          |  |  |  |
|                                |                  | Non-Subtitle D Wel                | ls           |                                                     |  |  |  |
| N 01 A / 1                     |                  | Annual VOCs                       |              |                                                     |  |  |  |
| IVIVV-1<br>M/W/ 105 A          |                  | Samplo                            | 04189        | Elevation Groundwater                               |  |  |  |
| MW-106                         |                  | Semiannually                      | 01107        | (feet above mean sea level )                        |  |  |  |
| MW-108                         |                  |                                   | 00001        | Odor                                                |  |  |  |
| MW-113                         |                  |                                   | 00002        | Color                                               |  |  |  |
| MW-113A                        |                  |                                   | 00003        | Turbidity                                           |  |  |  |
| MW-116                         |                  |                                   | 00010        | Temperature, of water taken in field °C             |  |  |  |
| MW-116A                        |                  |                                   | 00094        | Field Conductivity @ 25 C(umno/cm)                  |  |  |  |
| MW-122                         |                  |                                   | 00400        | Chloride, filtered (ma/L)                           |  |  |  |
| MW-123                         |                  |                                   | 22413        | Total Hardness, filtered (mg/L)                     |  |  |  |
| MW-123A                        |                  |                                   | 39036        | Alkalinity, filtered (mg/L)                         |  |  |  |
| MW-123B                        |                  |                                   |              |                                                     |  |  |  |
| MW-124A                        |                  |                                   |              |                                                     |  |  |  |
| MW-125                         |                  |                                   |              |                                                     |  |  |  |
| MW-125A                        |                  |                                   |              |                                                     |  |  |  |
| Einal groundwater monitoring u | program to bo    | Sample                            | VOCs (ch     | n. NR 507, Appendix III, including acetone, carbon  |  |  |  |
| determined as part of the Plan | n of Operation   | Annually                          | disulti      | using EPA SW-846 Method 8260                        |  |  |  |
|                                |                  |                                   |              |                                                     |  |  |  |
|                                | Subtitle D Wells |                                   |              |                                                     |  |  |  |
|                                |                  | Semiannual VOCs                   | 5            |                                                     |  |  |  |
| MW-105                         |                  |                                   |              |                                                     |  |  |  |
| MW-107                         |                  | Sample                            | 04189        | Elevation, Groundwater                              |  |  |  |
| MW-111                         |                  | Semiannually                      | 00004        | (feet above mean sea level )                        |  |  |  |
| MW-119                         |                  |                                   | 00001        | Odor                                                |  |  |  |
| MW-120                         |                  |                                   | 00002        |                                                     |  |  |  |
| Einal groundwater monitoring ( | program to be    |                                   | 00003        | Temperature, of water taken in field <sup>o</sup> C |  |  |  |
| determined as part of the Plan | n of Operation   |                                   | 00094        | Field Conductivity @ 25 <sup>0</sup> C(umho/cm)     |  |  |  |
|                                |                  |                                   | 00400        | Field pH (standard units)                           |  |  |  |
|                                |                  |                                   | 00941        | Chloride, filtered (mg/L)                           |  |  |  |
|                                |                  |                                   | 22413        | Total Hardness, filtered (mg/L)                     |  |  |  |
|                                |                  |                                   | 39036        | Alkalinity, filtered (mg/L)                         |  |  |  |
|                                |                  |                                   |              |                                                     |  |  |  |
|                                |                  |                                   | VOCs (ch     | n. NR 507, Appendix III, including acetone, carbon  |  |  |  |
|                                |                  |                                   | disulfi      | de, methyl ethyl ketone and tetrahydrofuran),       |  |  |  |
|                                |                  |                                   |              | using EPA SW-846 Method 8260                        |  |  |  |
|                                |                  | Water Level Only Monitori         | ng Wells     |                                                     |  |  |  |
| MW-2 N                         | /W-115           |                                   |              |                                                     |  |  |  |
| MW-3 N                         | /W-117           | Sample                            | 04189        | Elevation, Groundwater                              |  |  |  |
| MW-4 M                         | W-117A           | Semiannually                      |              | (feet above mean sea level )                        |  |  |  |
| MW-109 N                       | /W-118           |                                   |              |                                                     |  |  |  |
| MW-109A M                      | W-118A           |                                   |              |                                                     |  |  |  |
| MW-110 N                       | /IW-121          |                                   |              |                                                     |  |  |  |
| MW-110A                        |                  |                                   |              |                                                     |  |  |  |
| IVIW-112                       |                  |                                   |              |                                                     |  |  |  |
| MW-114                         |                  |                                   |              |                                                     |  |  |  |
| IVIVV-114A                     |                  |                                   |              |                                                     |  |  |  |
| Final groupdwater monitoring - | program to bo    |                                   |              |                                                     |  |  |  |
| determined as part of the Plan | program to be    |                                   |              |                                                     |  |  |  |
| actornined as part of the Flah |                  |                                   |              |                                                     |  |  |  |

# Dane County Landfill Site No. 3 (Proposed) Environmental Monitoring Tables - Preliminary for Feasibility Report

Unless specifically stated, reporting is as per code typically within 60 days after the end of the specified monitoring period.
 Trip Blank (999) and/or Field Blank (997) data must also be submitted electronically.
 Water level monitoring wells within the landfill footprint will be abandoned in advance of liner phase construction.

#### Dane County Landfill Site No. 3 (Proposed) Environmental Monitoring Tables - Preliminary for Feasibility Report

|                                                                                                                                                 | Table 1b<br>Water Supply Wells |      |       |                  |                                                 |                                                                               |                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|-------|------------------|-------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well                                                                                                                                            | DNR ID#                        | WUWN | OWNER | Comment          | Sampling & Reporting <sup>1.</sup><br>Frequency | Parameter<br>Codes                                                            | Parameters                                                                                                                                                                                                                                         |
| Well DNR ID# WUWN OWNER Comment<br>Water supply wells included in the monitoring program will be determined as part of<br>the Plan of Operation |                                |      |       | mined as part of | Sample<br><u>Semiannually</u>                   | 00001<br>00002<br>00003<br>00010<br>00094<br>00400<br>00410<br>00900<br>00940 | Odor<br>Color<br>Turbidity<br>Temperature, of Water taken in field <sup>0</sup> C<br>Field Conductivity @ 25 <sup>0</sup> C (umho/cm)<br>Field pH (standard units)<br>Alkalinity, total (mg/L)<br>Hardness, total (mg/L)<br>Chloride, total (mg/L) |
|                                                                                                                                                 |                                |      |       |                  | Sample<br><u>Annually</u>                       | VOCs (ch<br>disulfic                                                          | <ul> <li>NR 507, Appendix III, including acetone, carbon<br/>de, methyl ethyl ketone and tetrahydrofuran),<br/>using EPA SW-846 Method 8260</li> </ul>                                                                                             |
|                                                                                                                                                 |                                |      |       |                  |                                                 |                                                                               | using EPA SW-846 Method 8260                                                                                                                                                                                                                       |

1. To be reported as per code within 10 days of landfill owner's or operator's receipt of results.

2. Trip Blank (999) and/or Field Blank (997) data must also be submitted electronically.

Dane County Landfill Site No. 3 (Proposed) Environmental Monitoring Tables - Preliminary for Feasibility Report

|                                                                                                                                            |         |         | Table 2a                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                            |         |         | Leachate Characteristic Moni                                                                                       | itoring                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                            |         |         | Sampling & Reporting <sup>1.</sup>                                                                                 | Parameter                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Monitoring Pt.                                                                                                                             | DNR ID# | Comment | Frequency                                                                                                          | Codes                                                                                                                                                                                                | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Leachate monitoring points and the final leachate<br>monitoring program parameters will be determined<br>as part of the Plan of Operation. |         |         | Sample/Record Total Volumes<br><u>Monthly</u><br>Report Semiannually                                               | 00032                                                                                                                                                                                                | Leachate Volume Pumped (1000s of gallons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                            |         |         | Sample<br><u>Quarterly</u><br>If leachate is recirculated or<br>liquids are applied under<br>an approved RD&D Plan | 00094<br>00310<br>00340<br>00400<br>00410<br>00610<br>00900                                                                                                                                          | Field Conductivity @ 25oC (umho/cm)<br>BOD (5 day @ 20oC (mg/L)<br>COD, unfiltered (mg/L)<br>Field pH, (standard units)<br>Alkalinity, total as CaCO3 (mg/L)<br>Nitrogen, Ammonia, total (mg/L as N)<br>Hardness, total (mg/L as CaCO3)                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                            |         |         | Sample<br>Semiannually                                                                                             | 00001<br>00002<br>00003<br>00010<br>00094<br>00400<br>00150<br>00310<br>00340<br>00410<br>00610<br>00900<br>01027<br>00940<br>74010<br>01051<br>01055<br>00126<br>00625<br>00929<br>00945<br>VOCs (d | Odor<br>Color<br>Turbidity<br>Field Temperature<br>Field Conductivity @ 25oC (umho/cm)<br>Field pH, (standard units)<br>Suspended Solids, total (mg/L)<br>BOD (5 day @ 20°C (mg/L)<br>COD, unfiltered (mg/L)<br>Alkalinity, total as CaCO3 (mg/L)<br>Nitrogen, Ammonia, total (mg/L as N)<br>Hardness, total (mg/L)<br>Nitrogen, Ammonia, total (mg/L as N)<br>Hardness, total (mg/L)<br>Cadmium, total (ug/l)<br>Chloride, total (mg/L)<br>Iron, total (mg/L)<br>Lead, total (mg/L)<br>Manganese, total (mg/L)<br>Manganese, total (mg/L)<br>Marcury, total, (ug/L)<br>Total Kjeldahi Nitrogen, total (mg/L)<br>Sodium, total (mg/L)<br>Sulfate, total (mg/L) |  |
|                                                                                                                                            |         |         | Sample<br><u>Annually</u>                                                                                          | Semivolatile organic compounds (ch. NR 507, Appendix IV)<br>using EPA SW-846 Method 8270                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

1. Unless specifically stated, reporting is as per code typically within 60 days after the end of the specified monitoring period. For items indicated as "Report Semiannually", the reporting is due within 60 days after the end of the last monitoring period in the semiannual period. The semiannual periods will run January-June and July-December unless an alternative period is proposed and the Department concurs.

Dane County Landfill Site No. 3 (Proposed) Environmental Monitoring Tables - Preliminary for Feasibility Report

| Table 2b                                                                                      |                                                                                                                                                                               |                    |                                                                                                                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Le                                                                                            | Leachate Head Level and Volume Monitoring                                                                                                                                     |                    |                                                                                                                          |  |  |  |  |  |
| Monitoring Pt. DNR ID# Comment                                                                | Sampling & Reporting <sup>1.</sup><br>Frequency                                                                                                                               | Parameter<br>Codes | Parameters                                                                                                               |  |  |  |  |  |
| Leachate headwell monitoring points will be<br>determined as part of the Plan of Operation    | Sample<br><u>Quarterly</u><br>Report Semiannually<br>Increase frequency to<br>monthly if leachate is<br>recirculated or liquids are<br>applied under an<br>approved RD&D Plan | 00031<br>99423     | Depth of Leachate<br>from top of liquid level to bottom in feet<br>Elevation, Leachate Head<br>feet above mean sea level |  |  |  |  |  |
| Points to evaluate leachate recirculation will be determined as part of the Plan of Operation | Sample<br><u>Monthly</u><br>Report Annually<br>(not required unless/until<br>leachate recirculation<br>begins)                                                                | 00032<br>99723     | Leachate Volume Pumped<br>Leachate volume recirculated                                                                   |  |  |  |  |  |

1. Unless specifically stated, reporting is as per code typically within 60 days after the end of the specified monitoring period. For items indicated as "Report Semiannually", the reporting is due within 60 days after the end of the last monitoring period in the semiannual period. The semiannual periods will run January-June and July-December unless an alternative period is proposed and the Department concurs.

#### Dane County Landfill Site No. 3 (Proposed) Environmental Monitoring Tables - Preliminary for Feasibility Report

|                                             | Ta<br>Landfill G                   | ible 3<br>as Extraction |                                                           |
|---------------------------------------------|------------------------------------|-------------------------|-----------------------------------------------------------|
|                                             | Sampling & Reporting <sup>1.</sup> | Parameter               |                                                           |
| Monitoring Pt DNR ID# Comment               | Frequency                          | Codes                   | Parameters                                                |
|                                             | Monthly                            | 46382                   | Header Pressure (inches of water column)                  |
| Gas extraction well monitoring points to be | Report Semiannually                | 46385                   | Well Head Pressure (inches of water column)               |
| determined as part of the Plan of Operation |                                    | 99098                   | Gas Flow Rate (scfm)                                      |
|                                             |                                    | 46388                   | Gas Temperature ( <sup>0</sup> F)                         |
|                                             |                                    | 46387                   | Valve Opening (% open)                                    |
|                                             |                                    | 85544                   | Percent Carbon Dioxide, by volume                         |
|                                             |                                    | 85547                   | Percent Methane, by volume                                |
|                                             |                                    | 85550                   | Percent Oxygen, by volume                                 |
|                                             |                                    | 99848                   | Percent Balance Gas, by volume                            |
|                                             | Annually                           | 00023                   | Elevation, Leachate Head                                  |
|                                             |                                    | 00031                   | Depth of Leachate                                         |
|                                             | Gas                                | Blower                  |                                                           |
|                                             | Sample                             | 46382                   | Header Pressure (inches of water column)                  |
| Gas blower monitoring points to be          | <u>Monthly</u>                     | 98927                   | Gas Extracted, Total Monthly Volume (1000 cu. Ft. /month) |
| determined as part of the Plan of Operation | Report Semiannually                | 99098                   | Gas Flow Rate (scfm)                                      |
|                                             |                                    | 46388                   | Gas Temperature (° F)                                     |
|                                             |                                    | 85544                   | Percent Carbon Dioxide, by volume                         |
|                                             |                                    | 85547                   | Percent Methane, by volume                                |
|                                             |                                    | 85550                   | Percent Oxygen, by volume                                 |
|                                             |                                    | 99848                   | Percent Balance Gas, by volume                            |
|                                             | Sample                             |                         | VOCs using USEPA Method TO-15                             |
|                                             | Annually                           |                         | Total reduced sulfur using USEPA Method 16, ASTM D5504,   |
|                                             |                                    |                         | or D6228                                                  |
|                                             | Landfill Gas M                     | Applitoring Probes      |                                                           |
|                                             | Sample                             | 16389                   | Soil Gas Pressure (inches)                                |
| Gas probe monitoring points to be           | Quarterly                          | 85547                   | Porcont Mothane, by volume                                |
| das probe monitoring points to be           | Quarteny                           | 05547                   |                                                           |
| determined as part of the Plan of Operation |                                    | 85550                   | Percent Oxygen, by volume                                 |
|                                             |                                    | 00021                   | Ambient Air Temperature (1+)                              |
|                                             |                                    | 00025                   | Barometric Pressure (mm or Hg)                            |
|                                             |                                    | 46381                   | Irend in Barometric Pressure                              |
|                                             |                                    | 00007                   | Ground Conditions                                         |
|                                             |                                    |                         | I=Trozen, 2=wet, 3=ary                                    |
|                                             | Site C                             | onditions               |                                                           |
|                                             | Sample                             | 46389                   | Soil Gas Pressure (inches)                                |
| Site conditions                             | Quarterly                          | 85547                   | Percent Methane, by volume                                |
|                                             | when gas probes are                | 85550                   | Percent Oxygen, by volume                                 |
|                                             | monitored, per NR 507.22(1)(a)     | 00021                   | Ambient Air Temperature (° F)                             |
|                                             |                                    | 00025                   | Barometric Pressure (mm of Hg)                            |

1. Unless specifically stated, reporting is as per code typically within 60 days after the end of the specified monitoring period. For items indicated as "Report Semiannually", the reporting is due within 60 days after the end of the last monitoring period in the semiannual period. The semiannual periods will run January-June and July-December unless an alternative period is proposed and the Department concurs.

# Attachment C

Sampling Containers, Preservation, and Holding Time Requirements

Prepared by Campbell, Donna L Date **Expiration Date** Est. Start Date 4/16/2018

#### Project: Rodefeld LF - 25218021.21

#### Quote Number: 50014474 - No Version

#### Analytical Sample Information

| Analysis                         |                |              | Client Sub List Desc                   |                 |              |
|----------------------------------|----------------|--------------|----------------------------------------|-----------------|--------------|
| Method                           | Matrix         | Preservative | Container                              | Volume Required | Holding Time |
| Ammonia                          |                |              | Ammonia                                |                 |              |
| SM4500NH3_G                      | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 28 Days      |
| Anions, Ion Chromatography       |                |              | Chloride/Fluoride/Sulfate              |                 |              |
| 300                              | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 10 g            | 48 Hours     |
| Chlorine, Total                  |                |              | Chlorine, Total                        |                 |              |
| 9251_Total_Cl                    | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 0 g             | 28 Days      |
| Chromium, Hexavalent             |                |              | Chromium, Hexavalent                   |                 |              |
| 7196A                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 30 Days      |
| Cyanide                          |                | ~            | Cyanide                                |                 |              |
| 9014                             | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 14 Days      |
| Cyanide, Total andor Amenable    | e              |              | Cyanide, Total                         |                 |              |
| 9012B                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 0 g             | 14 Days      |
| Ignitability, Pensky-Martens Clo | osed-Cup Metho | d            | Ignitability                           |                 |              |
| 1010A                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 150 g           |              |
| Mercury (CVAA)                   |                |              | Mercury (CVAA)                         |                 |              |
| 7470A                            | Solid          | None         | Clear Glass 16oz Wide -<br>unpreserved | 150 g           | 14 Days      |
| Mercury (CVAA)                   |                |              | Mercury (CVAA)                         |                 |              |
| 7471B                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 28 Days      |
| Metals (ICP)                     |                |              | Metals (18)                            |                 |              |
| 6010C                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 180 Days     |
| Metals (ICP)                     |                |              | Metals - Hg                            |                 |              |
| 6010B                            | Solid          | None         | Clear Glass 16oz Wide -<br>unpreserved | 150 g           | 14 Days      |
| Metals (ICP)                     |                |              | Sulfur                                 |                 |              |
| 6010C                            | Solid          | None         | Clear Glass 4oz Wide -<br>unpreserved  | 5 g             | 180 Days     |
| Nitrogen, Nitrate-Nitrite        |                |              | N+N                                    |                 |              |
| 353.2                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 10 g            | 28 Days      |
| Nitrogen, Total Kjeldahl         |                |              | TKN                                    |                 |              |
| SM4500_TKN_H                     | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 5 g             | 28 Days      |
| Paint Filter                     |                |              | Paint Filter                           |                 |              |
| 9095B                            | Solid          | None         | Clear Glass 8oz Wide -<br>unpreserved  | 125 g           |              |
| Percent Moisture                 |                |              | Percent Moisture                       |                 |              |

Prepared for: Zana Bajalan SCS Engineers 2830 Dairy Drive Madison, WI 53718-6751 ZBajalan@scsengineers.com

Prepared by Campbell, Donna L Date Expiration Date Est. Start Date 4/16/2018

| Project: Rodefeld Ll                | <u>- 252180</u> 2 | 21.21         | Quote Numbe                                 | e <u>r: 500144</u> 74 | - No Version |
|-------------------------------------|-------------------|---------------|---------------------------------------------|-----------------------|--------------|
| Moisture                            | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 20 g                  | 14 Days      |
| 9045C                               | Solid             | None          | pH<br>Clear Glass 8oz Wide -                | 30 g                  | IMMEDIATELY  |
|                                     |                   |               | unpreserved                                 |                       |              |
| 9045D                               | Solid             | None          | p⊓<br>Clear Glass 8oz Wide -<br>unpreserved | 30 g                  | IMMEDIATELY  |
| hosphorus                           |                   |               | Phosphorus                                  |                       |              |
| 4500_P_E                            | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 5 g                   | 28 Days      |
| olychlorinated Biphenyls (PCBs)     | by Gas Chroma     | tography      | PCB                                         |                       |              |
| 8082A                               | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 20 g                  | 14 Days      |
| emivolatile Organic Compounds       | (GC/MS)           |               | SVOC                                        |                       |              |
| 8270D                               | Solid             | None          | Clear Glass 16oz Wide -<br>unpreserved      | 150 g                 | 14 Days      |
| Semivolatile Organic Compounds      | (GC/MS)           |               | SVOC                                        |                       |              |
| 8270D                               | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 20 g                  | 14 Days      |
| Specific Gravity, Density           |                   |               | Specific Gravity                            |                       |              |
| 2710F                               | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 30 g                  | 28 Days      |
| ulfide, Acid soluble and Insoluble  | (Titrimetric)     |               | Sulfide                                     |                       |              |
| 9034_Calc                           | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 5 g                   | 7 Days       |
| Sulfide, Acid soluble and Insoluble | (Titrimetric)     |               | Sulfide, Acid soluble and Insoluble         | (Titrimetric)         |              |
| 9034_Calc                           | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 5 g                   | 7 Days       |
| Sulfide, Reactive                   |                   |               | Sulfide, Reactive                           |                       |              |
| 9034_Reactive                       | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 5 g                   | 14 Days      |
| otal, Fixed, and Volatile Solids    |                   |               | Total Solids                                |                       |              |
| 2540G                               | Solid             | None          | Clear Glass 8oz Wide -<br>unpreserved       | 15 g                  | 7 Days       |
| /olatile Organic Compounds (GC/     | MS)               |               | VOC                                         |                       |              |
| 8260B                               | Solid             | None          | Clear Glass 4oz Wide -<br>unpreserved       | 100 g                 | 14 Days      |
| olatile Organic Compounds (GC/      | MS)               |               | VOC                                         |                       |              |
| 8260B                               | Solid             | None          | VOA Terracore Kit Pre-pkg<br>MeOH Only      | 1 NONE                | 14 Days      |
| Ikalinity                           |                   |               | Alkalinity                                  |                       |              |
| 2320B                               | Water             | None          | Plastic 1 liter - unpreserved               | 100 mL                | 14 Days      |
| mmonia                              |                   |               | Ammonia                                     |                       |              |
| SM4500NH3_G                         | Water             | Sulfuric Acid | Plastic 500ml - with Sulfuric<br>Acid       | 175 mL                | 28 Days      |
| nions, Ion Chromatography           |                   |               | 3 Anions - Cl, SO4, F                       |                       |              |
| 300                                 | Water             | None          | Plastic 250ml - unpreserved                 | 75 mL                 | 48 Hours     |
| Anions, Ion Chromatography          |                   |               | Anions by IC - Cl                           |                       |              |
| 300                                 | Water             | None          | Plastic 250ml - unpreserved                 | 75 mL                 | 48 Hours     |
| Issued on: 8/23/2021                |                   |               |                                             |                       | Page 14 of 1 |

#### Prepared for:

Zana Bajalan SCS Engineers 2830 Dairy Drive Madison, WI 53718-6751 ZBajalan@scsengineers.com

Campbell, Donna L Prepared by Date **Expiration Date** Est. Start Date 4/16/2018

#### Project: Rodefeld LF - 25218021.21 Quote Number: 50014474 - No Version

| Anions, Ion Chromatography |       |                   | Anions by IC - CI, SO4                   |        |          |
|----------------------------|-------|-------------------|------------------------------------------|--------|----------|
| 300                        | Water | None              | Plastic 250ml - unpreserved              | 75 mL  | 48 Hours |
| Anions, Ion Chromatography |       |                   | Anions by IC - SO4                       |        |          |
| 300                        | Water | None              | Plastic 250ml - unpreserved              | 75 mL  | 48 Hours |
| Anions, Ion Chromatography |       |                   | Chloride/Fluoride/Sulfate - Diss         |        |          |
| 300                        | Water | None              | Plastic 250ml - unpreserved              | 75 mL  | 48 Hours |
| Anions, Ion Chromatography |       |                   | Chloride/Sulfate                         |        |          |
| 300                        | Water | None              | Plastic 250ml - unpreserved              | 75 mL  | 48 Hours |
| Anions, Ion Chromatography |       |                   | Sulfate, Dissolved                       |        |          |
| 300                        | Water | None              | Plastic 250ml - unpreserved              | 75 mL  | 48 Hours |
| BOD, 5-Day                 |       |                   | BOD, 5-Day                               |        |          |
| 5210B                      | Water | None              | Plastic 1 liter - unpreserved            | 500 mL | 48 Hours |
| BOD, 5-Day                 |       |                   | CBOD, 5-Day                              |        |          |
| 5210B                      | Water | None              | Plastic 1 liter - unpreserved            | 500 mL | 48 Hours |
| Chromium, Hexavalent       |       |                   | Chromium, Hexavalent                     |        |          |
| 3500_CR_B                  | Water | None              | Plastic 500ml - unpreserved              | 175 mL | 24 Hours |
| COD                        |       |                   | COD                                      |        |          |
| 5220C                      | Water | Sulfuric Acid     | Plastic 500ml - with Sulfuric<br>Acid    | 50 mL  | 28 Days  |
| Cyanide, Total             |       |                   | Cyanide                                  |        |          |
| 4500_CN_E                  | Water | Sodium Hydroxide  | Plastic 250ml - with Sodium<br>Hydroxide | 75 mL  | 14 Days  |
| Cyanide, Total             |       |                   | Cyanide, Total                           |        |          |
| 335.4                      | Water | Sodium Hydroxide  | Plastic 250ml - with Sodium<br>Hydroxide | 75 mL  | 14 Days  |
| Cyanide, Total             |       |                   | Cyanide, Total                           |        |          |
| 4500_CN_E                  | Water | Sodium Hydroxide  | Plastic 250ml - with Sodium<br>Hydroxide | 75 mL  | 14 Days  |
| Dissolved Gases (GC)       |       |                   | Dissolved Gases (GC) Methane             |        |          |
| RSK_175                    | Water | Hydrochloric Acid | Voa Vial 40ml - Hydrochloric<br>Acid     | 120 mL | 14 Days  |
| Dissolved Gases (GC)       |       |                   | Methane                                  |        |          |
| RSK_175                    | Water | Hydrochloric Acid | Voa Vial 40ml - Hydrochloric<br>Acid     | 120 mL | 14 Days  |
| Field Sampling             |       |                   | Field Data Entry                         |        |          |
| FieldSampling              | Water | None              | Field Container                          | 0 NONE |          |
| Mercury (CVAA)             |       |                   | Mercury                                  |        |          |
| 7470A                      | Water | Nitric Acid       | Plastic 250ml - with Nitric<br>Acid      | 50 mL  | 28 Days  |
| Mercury (CVAA)             |       |                   | Mercury (CVAA)                           |        |          |
| 245.1                      | Water | Nitric Acid       | Plastic 250ml - with Nitric<br>Acid      | 50 mL  | 28 Days  |
| Mercury (CVAA)             |       |                   | Mercury (CVAA)                           |        |          |
| 7470A                      | Water | Nitric Acid       | Plastic 250ml - with Nitric<br>Acid      | 50 mL  | 28 Days  |
| Metals (ICP)               |       |                   | Metals (9)                               |        |          |

Prepared for: Zana Bajalan SCS Engineers 2830 Dairy Drive Madison, WI 53718-6751 ZBajalan@scsengineers.com

| Prepared by     | Campbell, Donna L |
|-----------------|-------------------|
| Date            |                   |
| Expiration Date |                   |
| Est. Start Date | 4/16/2018         |

| Project: Rodefel           | d LF - 252180 | 021.21        | Quote Number: 50014474 - No Version   |         |          |  |  |  |  |  |  |
|----------------------------|---------------|---------------|---------------------------------------|---------|----------|--|--|--|--|--|--|
| 200.7                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| Metals (ICP)               |               |               | Metals (9)                            |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| letals (ICP)               |               |               | Metals (ICP) (10)                     |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| /letals (ICP)              |               |               | Metals (ICP) - 11 elements            |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| Aetals (ICP)               |               |               | Metals (ICP) - 18 elements            |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| /letals (ICP)              |               |               | Metals (ICP) - 19 elements            |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| Vetals (ICP)               |               |               | Metals (ICP) - 3 elements             |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| Metals (ICP)               |               |               | Metals (ICP) - 9 elements             |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| letals (ICP)               |               |               | Metals (ICP) - Iron only              |         |          |  |  |  |  |  |  |
| 6010B                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 75 mL   | 180 Days |  |  |  |  |  |  |
| /letals (ICP)              |               |               | Metals (ICP) - Sulfur only            |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | Nitric Acid   | Plastic 250ml - w/nitric - dis        | 50 mL   | 180 Days |  |  |  |  |  |  |
| letals (ICP)               |               |               | Metals (ICP) - Sulfur only            |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 50 mL   | 180 Days |  |  |  |  |  |  |
| Vetals (ICP)               |               |               | Sulfur                                |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | Nitric Acid   | Plastic 250ml - w/nitric - dis        | 50 mL   | 180 Days |  |  |  |  |  |  |
| Metals (ICP)               |               |               | Sulfur                                |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | Nitric Acid   | Plastic 250ml - with Nitric<br>Acid   | 50 mL   | 180 Days |  |  |  |  |  |  |
| letals (ICP)               |               |               | Sulfur                                |         |          |  |  |  |  |  |  |
| 6010C                      | Water         | None          | Plastic 250ml - unpreserved           | 50 mL   | 180 Days |  |  |  |  |  |  |
| litrogen, Nitrate-Nitrite  |               |               | Nitrogen, Nitrate-Nitrite             |         |          |  |  |  |  |  |  |
| 353.2                      | Water         | Sulfuric Acid | Plastic 500ml - with Sulfuric<br>Acid | 75 mL   | 28 Days  |  |  |  |  |  |  |
| litrogen, Total Kjeldahl   |               |               | Nitrogen, Total Kjeldahl              |         |          |  |  |  |  |  |  |
| SM4500_TKN_H               | Water         | Sulfuric Acid | Plastic 500ml - with Sulfuric<br>Acid | 175 mL  | 28 Days  |  |  |  |  |  |  |
| hosphorus                  |               |               | Phosphorus                            |         |          |  |  |  |  |  |  |
| 4500_P_E                   | Water         | Sulfuric Acid | Plastic 500ml - with Sulfuric<br>Acid | 100 mL  | 28 Days  |  |  |  |  |  |  |
| Semivolatile Organic Compo | unds (GC/MS)  |               | Semivolatile Organic Compounds        | (GC/MS) |          |  |  |  |  |  |  |
| 8270D                      | Water         | None          | Amber Glass 1 liter -                 | 2000 mL | 7 Days   |  |  |  |  |  |  |

#### Prepared for:

Zana Bajalan SCS Engineers 2830 Dairy Drive Madison, WI 53718-6751 ZBajalan@scsengineers.com

Project: Rodefeld LF - 25218021.21

| Prepared by     | Campbell, Donna L |
|-----------------|-------------------|
| Date            |                   |
| Expiration Date |                   |
| Est. Start Date | 4/16/2018         |

#### Quote Number: 50014474 - No Version

| Semivolatile Organic Compoun     | ds (GC/MS)  | S                                    | emivolatile Organic Compounds               | (GC/MS)  |          |
|----------------------------------|-------------|--------------------------------------|---------------------------------------------|----------|----------|
| 8270D                            | Water       | None                                 | Amber Glass 250ml -<br>unpreserved          | 500 mL   | 7 Days   |
| Semivolatile Organic Compound    | ds (GC/MS)  | S                                    | VOC                                         |          |          |
| 625                              | Water       | None                                 | Amber Glass 250ml -<br>unpreserved          | 500 mL   | 7 Days   |
| Solids, Total Suspended (TSS)    |             | S                                    | olids, Total Suspended (TSS)                |          |          |
| 2540D                            | Water       | None                                 | Plastic 1 liter - unpreserved               | 300 mL   | 7 Days   |
| Sulfide, Total                   |             | S                                    | Sulfide                                     |          |          |
| SM4500_S2_F                      | Water       | Zinc Acetate and Sodium<br>Hydroxide | Plastic 1 liter - Zn Acetate<br>and NaOH    | 400 mL   | 7 Days   |
| Sulfide, Total                   |             | S                                    | ulfide, Total                               |          |          |
| SM4500_S2_D                      | Water       | Zinc Acetate and Sodium<br>Hydroxide | Plastic 250ml - with Zinc<br>Acetate & NaOH | 250 mL   | 7 Days   |
| Sulfide, Total                   |             | S                                    | ulfide, Total                               |          |          |
| SM4500_S2_F                      | Water       | Zinc Acetate and Sodium<br>Hydroxide | Plastic 1 liter - Zn Acetate and NaOH       | 400 mL   | 7 Days   |
| Sulfide, Total                   |             | S                                    | sulfide, Total                              |          |          |
| SM4500_S2_F                      | Water       | Zinc Acetate and Sodium<br>Hydroxide | Plastic 250ml - with Zinc<br>Acetate & NaOH | 50 mL    | 7 Days   |
| Total Hardness (as CaCO3) by     | calculation | T                                    | otal Hardness (as CaCO3) by cal             | culation |          |
| SM2340B                          | Water       | Nitric Acid                          | Plastic 250ml - with Nitric<br>Acid         | 75 mL    | 180 Days |
| Volatile Fatty Acids, Ion Chroma | atography   | V                                    | olatile Fatty Acids                         |          |          |
| VFA_IC                           | Water       | None                                 | Voa Vial 40ml Amber -<br>unpreserved        | 120 mL   | 28 Days  |
| Volatile Fatty Acids, Ion Chroma | atography   | V                                    | olatile Fatty Acids, Ion Chromato           | graphy   |          |
| VFA_IC                           | Water       | None                                 | Voa Vial 40ml Amber -<br>unpreserved        | 120 mL   | 28 Days  |
| Volatile Organic Compounds (G    | GC/MS)      | V                                    | 00                                          |          |          |
| 624_5ml                          | Water       | Hydrochloric Acid                    | Voa Vial 40ml - Hydrochloric<br>Acid        | 120 mL   | 14 Days  |
| Volatile Organic Compounds (G    | GC/MS)      | V                                    | olatile Organic Compounds (GC/I             | MS)      |          |
| 524.2_Preserved                  | Water       | Hydrochloric Acid                    | Voa Vial 40ml - Hydrochloric<br>Acid        | 120 mL   | 14 Days  |
| Volatile Organic Compounds (G    | GC/MS)      | V                                    | olatile Organic Compounds (GC/I             | MS)      |          |
| 8260B                            | Water       | Hydrochloric Acid                    | Voa Vial 40ml - Hydrochloric<br>Acid        | 120 mL   | 14 Days  |
|                                  |             |                                      |                                             |          |          |

Hold Times listed above represent the minimum allotted time between sampling and lab extraction, prep or analysis.

Multiple analyses may be consolidated into fewer containers. Please contact your Project Manager for clarification when requesting sample containers.

Except for some special tests, all samples should be kept cold at 6 degrees C.

Attachment D

Chain of Custody Form and Field Information Forms



# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section              |                                                                                                                      | Section P                      | ay const                   | itutes ack | nowiedg    | ment and | accepta            | ance          | Sooti         | e Pac       | eren  | ns a  |       | onait   |                   | Junu     | atm    | ups./         | /1110.           | pace                      | laps.                    | COM   | mub    | is/pa | 15-512 | anua | Iu-lein        | is.pui.  |            |          |   |
|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|------------|------------|----------|--------------------|---------------|---------------|-------------|-------|-------|-------|---------|-------------------|----------|--------|---------------|------------------|---------------------------|--------------------------|-------|--------|-------|--------|------|----------------|----------|------------|----------|---|
| Require              | n<br>d Client Information:                                                                                           | Required P                     | roject Inf                 | formation. |            |          |                    |               | Invoi         | ion c       | ormat | ion·  |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        | Б    |                | 1        |            | of       | 1 |
| Compan               | v:                                                                                                                   | Report To:                     | ojeot ini                  | ormation.  |            |          |                    | 1             | Atten         | tion:       | orma  |       |       |         |                   |          |        |               |                  | _                         |                          |       |        |       |        |      | age .          |          |            |          | I |
| Address:             | ,                                                                                                                    | Copy To:                       |                            |            |            |          |                    |               | Com           | pany l      | Name: |       |       |         |                   |          |        |               |                  | _                         |                          |       | -      |       |        |      |                |          |            |          |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               | Addre         | ess:        |       |       |       |         |                   |          | _      |               | _                |                           |                          |       |        |       |        |      | Requ           | atory A  | aencv      | ,        |   |
| Email:               |                                                                                                                      | Purchase O                     | rder #:                    |            |            |          |                    |               | Pace          | Quot        | e:    |       |       |         |                   |          | 7      | -             |                  |                           |                          |       |        |       | -      |      |                | ,        | <u>j</u> , |          |   |
| Phone:               | Fax:                                                                                                                 | Project Nam                    | e:                         |            |            |          |                    |               | Pace          | Proje       | ct Ma | nager | :     |         |                   | -        |        |               |                  |                           |                          |       |        |       |        |      | Stat           | e / Loc  | ation      |          |   |
| Requeste             | ed Due Date:                                                                                                         | Project #:                     |                            |            |            |          |                    |               | Pace          | Profi       | le #: |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                | WI       |            |          |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        | R             | eques            | sted A                    | naly                     | sis F | iltere | ed (Y | /N)    |      |                |          |            |          |   |
|                      | MATRIX<br>Drinking                                                                                                   | CODE<br>Vater DW               | des to left)<br>C=COMP)    |            | COLL       | ECTED    |                    | NOI.          | -             |             | Pr    | eser  | vativ | /es     |                   | N/Υ      |        |               |                  |                           |                          |       |        |       |        |      | 1              |          |            |          |   |
|                      | SAMPLE ID<br>OI                                                                                                      | wi<br>ater WW<br>P<br>SL<br>OL | (see valid co<br>(G=GRAB   | ST         | ART        | E        | ND                 | AT COLLECT    | RS            |             |       |       |       |         |                   | Test     |        |               |                  |                           |                          |       |        |       |        |      | ine (Y/N)      | A        |            |          |   |
| ITEM #               | One Character per box.     Wipe       (A-Z, 0-9 /, -)     Air       Sample Ids must be unique     Other       Tissue | WP<br>AR<br>OT<br>TS           | MATRIX CODE<br>SAMPLE TYPE | DATE       | TIME       | DATE     | TIME               | SAMPLE TEMP / | # OF CONTAINE | Unpreserved | HNO3  | HCI   | NaOH  | Na2S2O3 | Methanol<br>Other | Analyses |        |               |                  |                           |                          |       |        |       |        |      | Residual Chlor |          |            |          |   |
| 1                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 2                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 3                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 4                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 5                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 6                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 7                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 8                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 9                    |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 10                   |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 11                   |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
| 12                   |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          |            |          |   |
|                      | ADDITIONAL COMMENTS                                                                                                  |                                | RELINQUI                   | SHED BY /  | AFFILIATIO | DN       | DAT                | E             | т             | IME         |       |       | 4     | ACCEI   | PTED E            | BY / AF  | FILIA  |               |                  |                           |                          | DAT   | ГЕ     |       | TIME   |      |                | SAM      | 'LE CO     | NDITIONS |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                |          | $\square$  |          |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                | $\perp$  | $\perp$    |          |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      |                | <u> </u> | $\perp$    |          |   |
|                      |                                                                                                                      |                                |                            |            |            |          |                    |               |               |             |       |       |       | _       |                   | _        |        |               | <u> </u>         | $\rightarrow$             |                          |       |        |       |        |      |                |          |            |          |   |
|                      |                                                                                                                      |                                |                            |            | SAMPLE     | ER NAME  | of SAMP            | INAT          | URE           |             |       |       |       |         |                   |          |        |               |                  |                           |                          |       |        |       |        |      | с<br>ч         | uo pe    |            |          | S |
| SIGNATURE of SAMPLER |                                                                                                                      |                                |                            |            |            |          | PLER: DATE Signed: |               |               |             |       |       |       |         |                   |          | TEMP i | Receive<br>ce | (Y/N)<br>Custody | Sealed<br>Cooler<br>(Y/N) | Sample<br>ntact<br>(Y/N) |       |        |       |        |      |                |          |            |          |   |

#### DANE COUNTY LANDFILL SITE #3 LIQUID LEVEL MONITORING IN GAS EXTRACTION WELLS

Personnel:

| DNR ID | Monit. |      | Depth       | Measured         | Existing Total | Measured From Gas Well, |          |
|--------|--------|------|-------------|------------------|----------------|-------------------------|----------|
|        | Point  | Date | to Leachate | Total Depth (ft) | Depth (ft)     | Standpipe, or Gauge     | Comments |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |
|        |        |      |             |                  |                |                         |          |

NOTES:

1. Leachate depth is measured from the top of the gas well head (WH), the top of the standpipe (SP) or from the inches of water column gauge (GAUGE).

#### DANE COUNTY LANDFILL SITE #3 GAS EXTRACTION WELL MONITORING

| Personnel:         |           |
|--------------------|-----------|
| Date of Sampling:  |           |
| Weather:           |           |
| Meter:             |           |
| Calibration Check: |           |
| On-site:           | Off-site: |

Instructions: Fill in if the well was monitored (Yes/No) and comments for each well when monitoring (Examples: Out of Reach, Inaccessible, Off)

Place NA's in cells where a particular reading could not be obtained (Example: NA, for flow, if well is out of reach.)

| DNR | Monit. | Monitored | Well Hp   | Header    | Flow   | Gas Temp | Valve Opening | Methane     | Oxygen      | PLEASE FILL IN COMMENTS IF ANY |
|-----|--------|-----------|-----------|-----------|--------|----------|---------------|-------------|-------------|--------------------------------|
| ID  | Point  | Yes/No    | (in. H20) | (in. H20) | (SCFM) | (deg.F)  | % open        | % by volume | % by volume | Comments                       |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               | ~           |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |
|     |        |           |           |           |        |          |               |             |             |                                |

#### DANE COUNTY LANDFILL SITE #3 LEACHATE HEAD MONITORING

Personnel:

| DNR ID     | Monit. Point    | Date | Type of Measurement                                 | Measurement |
|------------|-----------------|------|-----------------------------------------------------|-------------|
| Horizontal | Leachate Head W | ells |                                                     |             |
|            |                 |      | Depth of leachate (inches) =                        |             |
|            |                 |      | Elevation of Landfill Liner (ft) =                  |             |
|            |                 |      | Leachate Elevation (ft) (Depth + Liner Elevation) = |             |
|            |                 |      | Depth of leachate (inches) =                        |             |
|            |                 |      | Elevation of Landfill Liner (ft) =                  |             |
|            |                 |      | Leachate Elevation (ft) (Depth + Liner Elevation) = |             |
|            |                 |      | Depth of leachate (inches) =                        |             |
|            |                 |      | Elevation of Landfill Liner (ft) =                  |             |
|            |                 |      | Leachate Elevation (ft) (Depth + Liner Elevation) = |             |
|            |                 |      | Depth of leachate (inches) =                        |             |
|            |                 |      | Elevation of Landfill Liner (ft) =                  |             |
|            |                 |      | Leachate Elevation (ft) (Depth + Liner Elevation) = |             |

#### DANE COUNTY LANDFILL SITE #3 GAS PROBE MONITORING

| Personnel:                                      |                                   |                  |  |
|-------------------------------------------------|-----------------------------------|------------------|--|
| Meter:                                          |                                   |                  |  |
| Date:                                           |                                   |                  |  |
| Calibration Check:                              |                                   |                  |  |
| Weather Conditions:                             |                                   |                  |  |
| Barometric Pressure:                            | Start:                            | End:             |  |
| Wind Speed/Direction:                           |                                   |                  |  |
| Air Temperature:                                |                                   |                  |  |
| Ground Conditions:                              |                                   |                  |  |
| ons: Fill in if the probe was monitored (Yes/No | ) and comments for probe when mon | itoring (If any) |  |

Instructions: Fill in if the probe was monitored (Yes/No) and comments for probe when monitoring (If any)

| DNR ID | Monit.<br>Point | Monitored<br>(Y/N) | (initial)<br>% CH4 | (stabilized)<br>% CH4                        | % 02  | soil gas press.<br>(in, H20) | Comments |
|--------|-----------------|--------------------|--------------------|----------------------------------------------|-------|------------------------------|----------|
|        |                 | (1/1-7             | ,0 e               | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | /0 01 | (                            |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    | -                                            |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |
|        |                 |                    |                    |                                              |       |                              |          |

l:\25222268.00\Deliverables\Feasibility Report\Appendices\P\_Sampling Plan\D\[DCLF #3 Gas Extraction Wells and Gas Probe Fieldsheets.xls]Qtrtly Leach on GWs\_Inst Pumps

#### DANE COUNTY LANDFILL SITE #3 GAS BLOWER MONITORING



Instructions: Fill in if the point was monitored (Yes/No) and comments for each point when monitoring (Examples: Out of Reach, Inaccessible, Off)

Place NA's in cells where a particular reading could not be obtained

| DNR | Monit. | Monitored | Header    | Flow   | Gas Temp | Gas Extracted      | Methane     | Oxygen      | PLEASE FILL IN COMMENTS IF ANY |
|-----|--------|-----------|-----------|--------|----------|--------------------|-------------|-------------|--------------------------------|
| ID  | Point  | Yes/No    | (in. H20) | (SCFM) | (deg. F) | 1000 cu. Ft./month | % by volume | % by volume | Comments                       |
|     |        |           |           |        |          |                    |             |             |                                |
|     |        |           |           |        |          |                    |             |             |                                |
|     |        |           |           |        |          |                    |             |             |                                |
|     |        |           |           |        |          |                    |             |             |                                |
|     |        |           |           |        |          |                    |             |             |                                |

#### Groundwater, Surface Water, and Leachate Monitoring Field Sheets

Facility / Project Name: Dane County Landfill Site #3 - SCS ENGINEERS # 25222268.00

| Weather Conditions   | :          |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   | *** ^         | llwat          | ar laval (         | alevations  |                                      |  |
|----------------------|------------|--------------------------|--------------------|----------------------------------------|-----------------------------------|-------------------------|----------------------------------|----------------------|-------------------------------|------------------------------------|--------------------------------|-------------------|---------------|----------------|--------------------|-------------|--------------------------------------|--|
| Multi Meter (pH, Ter | mp. Cond.) | Model:                   | <br>:              |                                        |                                   |                         | Serial Num                       | oer:                 |                               |                                    |                                |                   | need          | to be          | collected          | d on the sa | me dav***                            |  |
| Multi Meter Calibrat | ion        | pH Standard              | d: 4               |                                        |                                   | Instrument R            | eadina:                          |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            | pH Standard              | d: 7               |                                        |                                   | Instrument R            | eadina:                          |                      |                               |                                    |                                | * Subtitle D Well |               |                |                    |             |                                      |  |
|                      |            | Conductivity             | v Standard 1       | 413 115                                |                                   | Instrument Reading:     |                                  |                      |                               |                                    |                                |                   | h = bailer    |                |                    |             |                                      |  |
| Water Level Tape     | Serial Nu  | mber:                    | ,                  |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      | ••••••     |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                | p pomp            |               |                |                    |             |                                      |  |
| Well ID              | Date       | Depth to Water<br>(feet) | Total Depth (feet) | Top of Casing<br>Elevation<br>(ft/msl) | Groundwater Elevation<br>(ff/msl) | 4 Well Volumes<br>(gal) | Actual Purged<br>Volume<br>(gal) | Purged Dry?<br>(Y/N) | Purging<br>Device<br>(b or p) | Field Conductivity<br>(uMhos / cm) | Field Temperature<br>(Celsius) | Field pH          | Odor<br>(Y/N) | Color<br>(Y/N) | Turbidity<br>(Y/N) | Sample Time | Comments                             |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
|                      |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |
| DUP-1                |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             | Collect one DUP for every 10 samples |  |
| DUP-2                |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             | Collect one DUP for every 10 samples |  |
| Trip Blank           |            |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |                   |               |                |                    |             |                                      |  |

| Well ID                     | Date | Depth to Water<br>(feet) | Total Depth (feet) | Top of Casing<br>Elevation<br>(ft/msl) | Groundwater Elevation<br>(ft/msl) | 4 Well Volumes<br>(gal) | Actual Purged<br>Volume<br>(gal) | Purged Dry?<br>(Y/N) | Purging<br>Device<br>(b or p) | Field Conductivity<br>(uMhos / cm) | Field Temperature<br>(Celsius) | Field pH | Odor<br>(Y/N) | Color<br>(Y/N) | Turbidity<br>(Y/N) | Sample Time | Comments |
|-----------------------------|------|--------------------------|--------------------|----------------------------------------|-----------------------------------|-------------------------|----------------------------------|----------------------|-------------------------------|------------------------------------|--------------------------------|----------|---------------|----------------|--------------------|-------------|----------|
| Water Level Elevations Only |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
| Surface Water Readings      |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
| Water Supply Wells          |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
| Leachate                    |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    | 1                              |          |               | <u> </u>       |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |
|                             |      |                          |                    |                                        |                                   |                         |                                  |                      |                               |                                    |                                |          |               |                |                    |             |          |

I:\25222268.00\Deliverables\Feasibility Report\Appendices\P\_Sampling Plan\D\[DCLF #3 Groundwater Monitoring and Leachate Fieldsheet.xls]Rodefeld GW Fieldsheet\_Dec