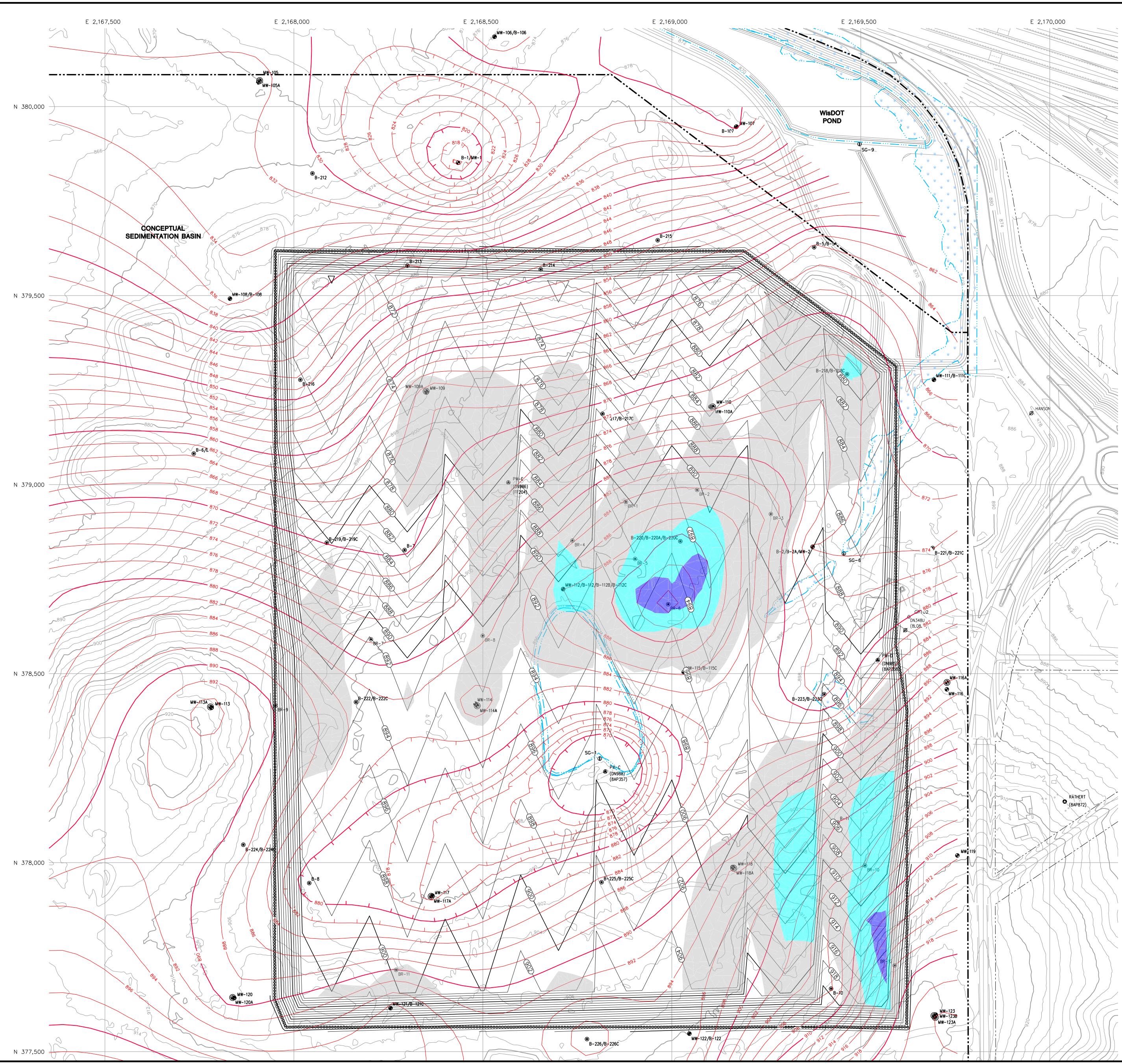
Attachment G

Information for Separation to Bedrock and Separation to Water Table and Revised Underdrain Calculations and Surface Comparison Maps


Attachment G1 – Drawings

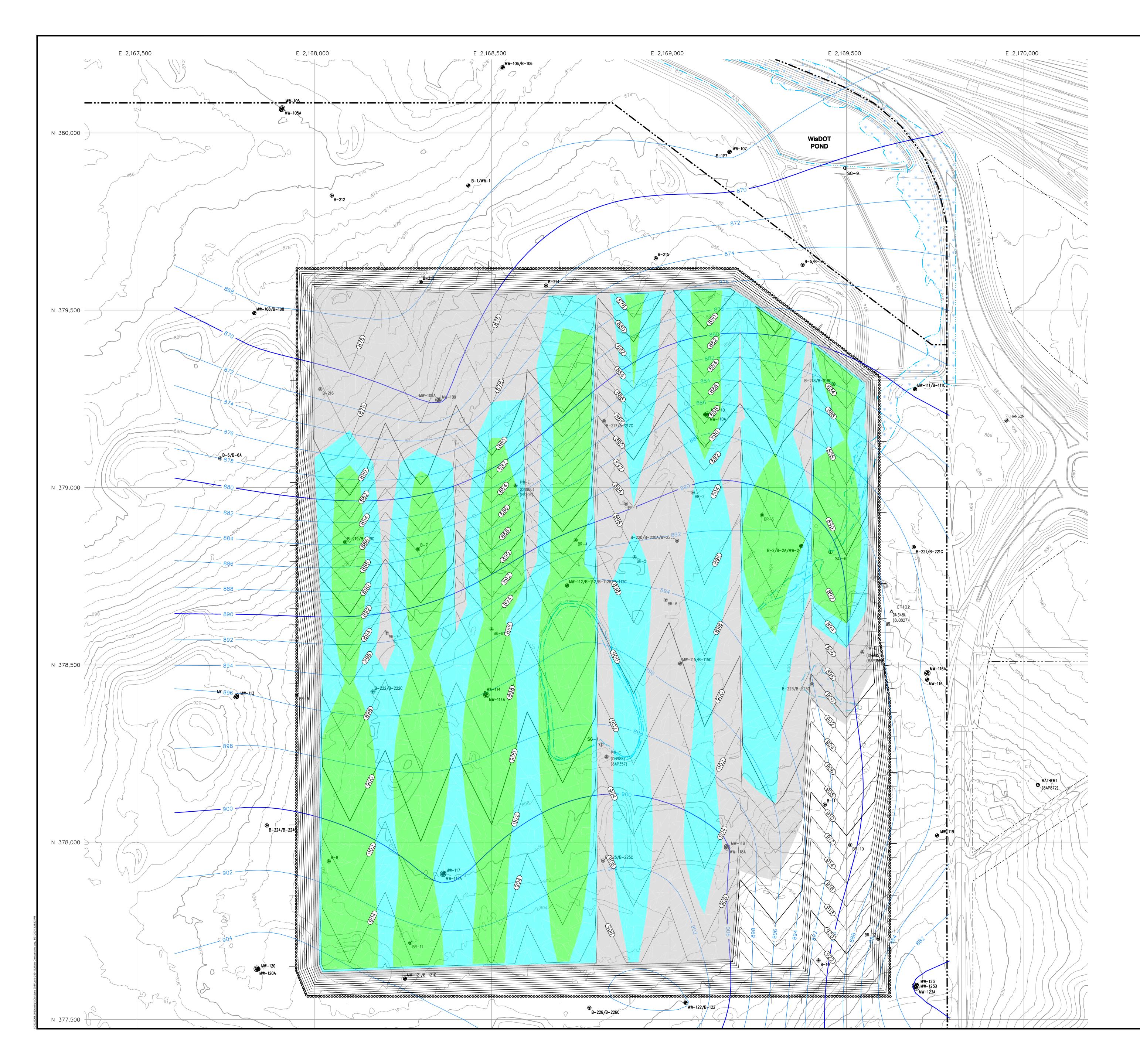
Surface Comparison Map – Subbase Grades to Bedrock

Surface Comparison Map – Base Grades to Seasonal High Water Table

Surface Comparison Map – Base Grades to Seasonal Low Water Table

Engineering Cross Section with Underdrain

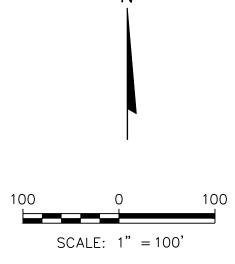
	LEGEND
	PROJECT PROPERTY LINE
	PROPERTY PARCEL LINE
.00000000000000000000000000000000000000	PROPOSED LIMITS OF WASTE
	EXISTING GRADE (2' CONTOUR)
	EXISTING GRADE (10' CONTOUR)
	DOT BASIN CONSTRUCTION GRADE (2' CONTOUR)
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
	EXISTING STREAM/EDGE OF WATER
÷ ÷ ÷	EXISTING WETLAND
عللد	EXISTING SMALL WETLAND AREA
۲	EXISTING SOIL BORING
\bullet	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Φ	EXISTING STAFF GAUGE
	TOP OF BEDROCK (2' CONTOUR)
	TOP OF BEDROCK (10' CONTOUR)
	SUBBASE GRADE (2' CONTOUR)
	SUBBASE GRADE (10' CONTOUR)


- NOTES:
- 1. SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES.
- PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT BOTTOM OF CLAY LINER (SUBBASE GRADES). UNDERCUTS ARE NOT SHOWN.
- BEDROCK SURFACE AND SUBBASE GRADES FROM FEASIBILITY REPORT ADDENDUM NO. 1, PLAN SHEETS 6 AND 23. SEE SHEETS 5 AND 23 FOR ADDITIONAL NOTES.

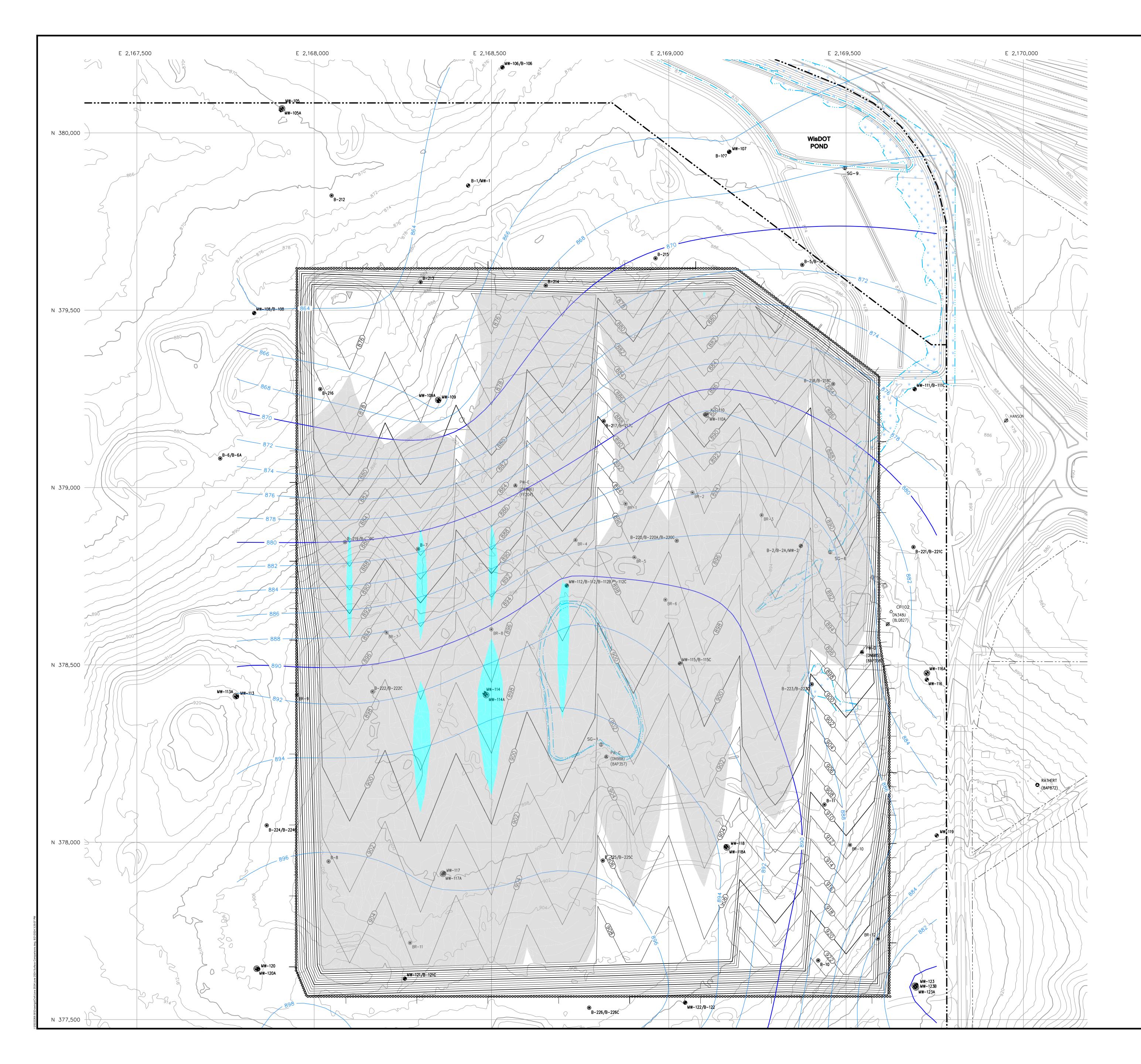
	Separatio	on to Bedrock	
Number	Minimum Separation	Maximum Separation	Color
1		<0.0	
2	0.0	1.500	
3	1.500	4.0	
4	4.0	10.0	
5	>10.0		

AVERAGE SEPARATION TO BEDROCK = 14.4' AREA WITH LESS THAN 10 FEET OF SEPARATION = 25.8 ACRES

	Ļ			PROJECT NO.	2522268.00	DRAWN BY:	КР
JES (JULY 2024)	DANE COUNTY LANDFILL SITE NO. 3	GIN E E KO	P: DANE COUNIY DEPARIMENI OF WASIE AND RENEWABLES P: 1919 ALLIANT FNFRGY CFNTFR WAY	DRAWN:	11/16/2023	СНЕСКЕД ВУ:	MRH/BLP
E	US HWY 12/18	표 [2830 DAIRY DRIVE MADISON, W 53718-6751					~
	NIO		HAUISUN, WI 33/13	REVISED:	08/13/2024	APPROVED BY:	SCC 08/23/2024


	LEGEND
	PROJECT PROPERTY LINE
	PROPERTY PARCEL LINE
000000000000000000000000000000000000000	PROPOSED LIMITS OF WASTE
	EXISTING GRADE (2' CONTOUR)
	EXISTING GRADE (10' CONTOUR)
	DOT BASIN CONSTRUCTION GRADE (2' CONTOUR)
	EXISTING PAVED ROAD
=========	EXISTING UNPAVED ROAD
	EXISTING STREAM/EDGE OF WATER
* * *	EXISTING WETLAND
عللد	EXISTING SMALL WETLAND AREA
۲	EXISTING SOIL BORING
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Ф	EXISTING STAFF GAUGE
	BASE GRADE (2' CONTOUR)
	BASE GRADE (10' CONTOUR)
	SEASONAL HIGH WATER TABLE (2' CONTOUR)
	SEASONAL HIGH WATER TABLE (10' CONTOUR)

NOTES:

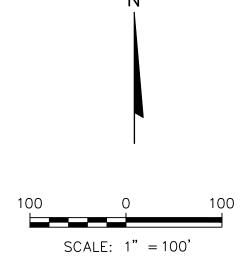

- SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES.
- PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT TOP OF CLAY LINER (BASE GRADES). UNDERCUTS ARE NOT SHOWN.
- 3. WATER LEVELS MEASURED MARCH 29, 2023.
- 4. WATER TABLE SURFACE AND BASE GRADES FROM FEASIBILITY REPORT ADDENDUM NO. 1, PLAN SHEETS 3 AND 24.

	SEPARATION TO N	WATER TABLE (FEET)	
Number	Minimum Separation	Maximum Separation	Color
1	0.0	2.0	
2	2.0	4.0	
3	4.0	10.0	
4		>10.0	

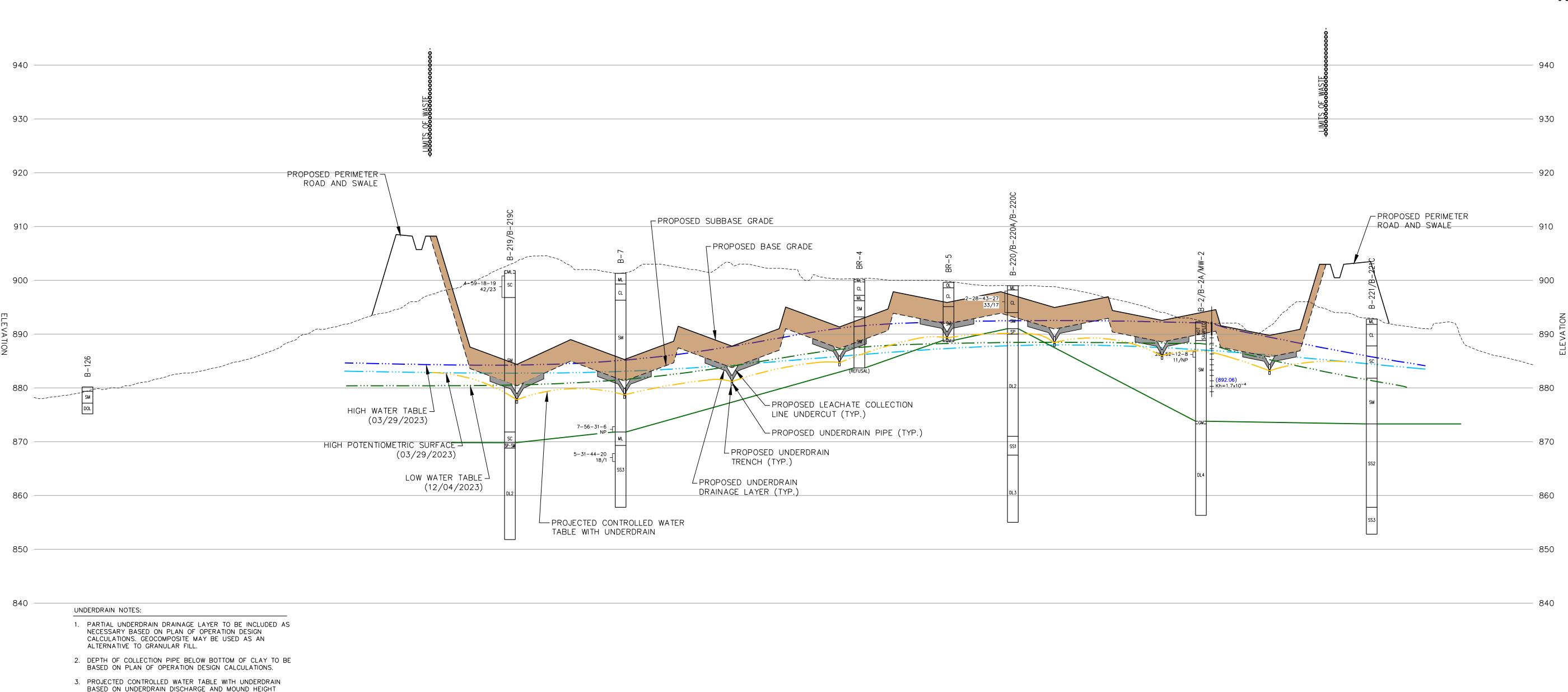
BASE GRADES ARE ABOVE SEASONAL HIGH WATER TABLE. FUTURE CONTROLLED WATER TABLE WILL BE BELOW SUBBASE GRADES WITH CONSTRUCTION OF UNDERDRAIN.

			PROJECT NO.	2522268.00	DRAWN BY:	КР
☐ ☐ BASE GRADES (JULY 2024) / SEASONAL HIGH WATER TABLE	연 DANE COUNTY LANDFILL SITE NO. 3 데이어 12 HWY 12 /18	円 DANE COUNTY DEPARIMENT OF WASTE AND KENEWABLES	DRAWN:	04/05/2024	CHECKED BY:	MRH/BLP
	MA	1 MADISON, WI 53713	REVISED:	08/13/2024	APPROVED BY:	SCC 08/23/2024

	LEGEND
	PROJECT PROPERTY LINE
	PROPERTY PARCEL LINE
000000000000000000000000000000000000000	PROPOSED LIMITS OF WASTE
	EXISTING GRADE (2' CONTOUR)
	EXISTING GRADE (10' CONTOUR)
	DOT BASIN CONSTRUCTION GRADE (2' CONTOUR)
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
	EXISTING STREAM/EDGE OF WATER
* * *	EXISTING WETLAND
عللد	EXISTING SMALL WETLAND AREA
۲	EXISTING SOIL BORING
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Ф	EXISTING STAFF GAUGE
	BASE GRADE (2' CONTOUR)
	BASE GRADE (10' CONTOUR)
	SEASONAL LOW WATER TABLE (2' CONTOUR)
	SEASONAL LOW WATER TABLE (10' CONTOUR)


NOTES:

- 1. SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES.
- PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT TOP OF CLAY LINER (BASE GRADES). UNDERCUTS ARE NOT SHOWN.
- 3. WATER LEVELS MEASURED DECEMBER 4, 2023.


4. WATER TABLE SURFACE AND BASE GRADES FROM FEASIBILITY REPORT ADDENDUM NO. 1, PLAN SHEETS 4 AND 24.

	SEPARATION TO N	WATER TABLE (FEET)		
Number	Minimum Separation	Maximum Separation	Color	
1	3.0	4.0		
2 4.0 10.0				
3		>10.0		
BASE GRA	DES ARE ABOVE SE	ASONAL LOW WATER	TABLE.	

FUTURE CONTROLLED WATER TABLE WILL BE BELOW SUBBASE GRADES WITH CONSTRUCTION OF UNDERDRAIN.

S	-		PROJECT NO.	2522268.00	DRAWN BY:	КР
BASE GRADES (JULY 2024) / SEASONAL LOW WATER TABLE	DANE COUNTY LANDFILL SITE NO. 3	E IDANE COUNTY DEPARIMENT OF WASIE AND KENEWABLES [1919 ALLIANT ENERGY CENTER WAY	DRAWN:	04/05/2024	CHECKED BY:	MRH/BLP
<u>-</u>	SIN	A MADISON, WI 53713	REVISED:	08/13/2024	APPROVED BY:	SCC 08/23/2024

CALCULATIONS IN FR ADDENDUM 1, ATTACHMENT G. 4. FOR CLARITY, GEOLOGIC UNIT NAMES AND CONTACTS ARE NOT SHOWN. SEE GEOLOGIC CROSS SECTION E-E' (FEASIBILITY REPORT ADDENDUM NO. 1 PLAN SHEET 10) FOR GEOLOGIC UNITS AND CONTACTS.

	SYMBOLS AND TEST RESULTS
40.7/22.6	LIQUID LIMIT/PLASTICITY INDEX
NP	NON-PLASTIC
Kv	LABORATORY VERTICAL HYDRAULIC CONDUCTIVITY (cm/sec)
Kh	FIELD HORIZONTAL HYDRAULIC CONDUCTIVITY (cm/sec)
0-30-42-28	PERCENT GRAVEL, SAND, SILT, AND CLAY
0-87-13	PERCENT GRAVEL, SAND, AND SILT PLUS CLAY
72-5	PERCENT GRAVEL AND SAND
NS	NOT SAMPLED
(1,036.67)	GROUNDWATER ELEVATION ON 03/29/2024 (FEET ABOVE MEAN SEA LEVEL)
(NM)	NOT MEASURED
	WATER TABLE (SEE NOTE 8)
	POTENTIOMETRIC SURFACE (SEE NOTE 9)
	EXISTING GROUND (SPRING 2017)
	GEOLOGIC CONTACT
	UNCERTAIN GEOLOGIC CONTACT
<u> </u>	INFERRED GRADATIONAL GEOLOGIC CONTACT

	USCS CLASSES
CL	LEAN CLAY
CL-ML	SILTY CLAY
СН	FAT CLAY
GP	POORLY-GRADED GRAVEL
GP-GM	POORLY-GRADED GRAVEL WITH SILT
GM	SILTY GRAVEL
GW	WELL-GRADED GRAVEL
GW-GM	WELL-GRADED GRAVEL WITH SILT
ML	SILT
SC	CLAYEY SAND
SM	SILTY SAND
SP	POORLY-GRADED SAND
SP-SM	POORLY-GRADED SAND WITH SILT

Χ

SINNIPEE GROUP DL1 – GALENA FORMATION SH – DECORAH FORMATION DL2 - PLATTEVILLE FORMATION DL6 – SINNIPEE GROUP, UNDIFFERENTIATED ANCELL GROUP SS1 - GLENWOOD FORMATION SS2 - ST. PETER FORMATION, TONTI MEMBER SS3 - ST. PETER FORMATION, READSTOWN MEMBER SS4 – ANCELL GROUP, UNDIFFERENTIATED PRAIRIE DU CHIEN GROUP DL3 – SHAKOPEE FORMATION DL4 – ONEOTA FORMATION DL5 – PRAIRIE DU CHIEN GROUP UNDIFFERENTIATED UNDIFFERENTIATED

BEDROCK STRATIGRAPHIC UNITS

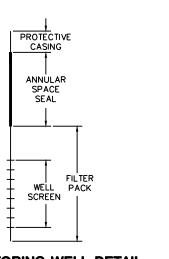
DOL – DOLOMITE

SS – SANDSTONE

------ TOP OF BEDROCK (SEE NOTE 10)

PROPOSED COMPOSITE LINER SYSTEM

GENERAL DESCRIPTION OF MAJOR GEOLOGIC UNITS PLEISTOCENE SEDIMENTS GLENWOOD FORMATION - SANDSTONE, DOLOMITIC (CARBONATE-CEMENTED), SILTY, AND/OR SHALY, POORLY SORTED, YELLOW-BROWN TO GREEN, WITH LOESS - GRAYISH BROWN, OR YELLOWISH BROWN, MOSTLY SILT WITH SOME BLUE-GREEN SHALE OR SANDY DOLOMITE. REWORKED SHALLOW WATER OR CLAY AND FINE SAND, LEAN CLAY (CL), UNIFORM, MASSIVE. DEPOSITED PRIMARILY BY WIND DURING DEGLACIATION. CONTAINS THE MODERN SOIL LAGOONAL DEPOSITS. ST. PETER FORMATION, TONTI MEMBER - SANDSTONE, LIGHT BROWNISH YELLOW, PROFILE WHITE, RED, GRAY, ORANGE, OR BROWN (IF CEMENTED BY IRON OXIDES), TILL - <u>Horicon Member of the Holy Hill Formation -</u> Brown, Or MEDIUM TO COARSE GRAINED, WELL ROUNDED AND WELL SORTED, POORLY YELLOWISH RED, MOSTLY FINE SAND WITH MEDIUM AND COARSE SAND, AND CEMENTED, LOW TO HIGH ANGLED CROSS-BEDDING OR MASSIVE, POORLY GRAVEL. SILTY SAND (SM) MATRIX, UNIFORM, WITH SOME COBBLES AND CEMENTED BY DOLOMITE, LOCALIZED SULFIDE MINERALIZATION DISSEMINATED BOULDERS. DEPOSITED BY OR FROM GLACIAL ICE. THROUGH THE MATRIX AND CONCENTRATED ALONG BEDDING PLANES AND **OUTWASH** – <u>HORICON MEMBER OF THE HOLY HILL FORMATION</u> – BROWN OR YELLOWISH BROWN, FINE TO COARSE SAND AND SOME GRAVEL, GENERALLY FRACTURES, LOCALIZED THIN LAYERS OF PALE GREEN SHALE/SILT. MARINE AND AEOLIAN QUARTZ SANDSTONE. POORLY-GRADED SAND WITH SILT (SP-SM), OR SILTY SAND (SM), MASSIVE TO ST. PETER FORMATION, READSTOWN MEMBER - SANDSTONE, SILTY SANDSTONE, STRATIFIED, DEPOSITED BY FLUVIAL PROCESSES NEAR GLACIAL ICE. CLAYEY SANDSTONE, GRAY, RED, PURPLE, GREEN SHALY LAYERS, DRIFT (NOT A MAJOR GEOLOGIC UNIT)- UNDIFFERENTIATED PLEISTOCENE INTERBEDDED WITH CLAY AND OR SILT, CONTAINS CLASTS OF CHERT OR SEDIMENTS, LOESS, TILL, AND/OR OUTWASH. DOLOMITE. PARTIALLY REWORKED RESIDUUM ON THE PRAIRIE DU CHIEN EROSIONAL SURFACE PRAIRIE DU CHIEN GROUP - DOLOMITE AND SANDY DOLOMITE, YELLOW, LIGHT ORDOVICIAN BEDROCK UNITS BROWN, AND GRAY. MASSIVE TO MEDIUM BEDDED, SANDY, CHERTY, VUGGY, AND SINNIPEE GROUP - DOLOMITE AND SHALY DOLOMITE, YELLOW BROWN TO LIGHT OOLITHIC. BROWNISH YELLOW AND GRAY; MASSIVE OR MEDIUM TO THICK BEDDED, BEDDING SHAKOPEE FORMATION - DOLOMITE AND SANDY DOLOMITE, GRAY, BEIGE, AND IS WAVY OR MOTTLED WITH SHALY LAYERS, MINOR WHITE CHERT, FOSSILIFEROUS. RED (SANDY DOLOMITE IS PREDOMINANTLY RED), INTERBEDDED WITH COARSE GALENA FORMATION - DOLOMITE TO CHERTY DOLOMITE, GRAY TO BEIGE, AND GRAINED WELL ROUNDED SANDSTONE, AND/OR GREEN TO GRAY SILTSTONE OR YELLOW BROWN TO LIGHT BROWNISH YELLOW, MASSIVE TO MEDIUM-BEDDED CLAY. MASSIVE, PLANAR, OR LOW-ANGEL CROSS-BEDDING; OOLITHIC, VUGGY, WITH DISTINCTIVE MOTTLED WEATHERING PATTERN, BASE IS LIGHT GRAY AND CHERTY, AND GLAUCONITIC. BIOGENIC CARBONATES. SHALY, FOSSILIFEROUS. BIOGENIC CARBONATES. WILLOW RIVER MEMBER - SANDY, GLAUCONITIC DOLOMITE, GRAY, LIGHT DECORAH FORMATION - SHALY AND SILTY DOLOMITE. DARK GRAY, THIN GRAY. BIOGENIC CARBONATES. BEDDED, MINOR CHERT AND PYRITE. REWORKED SHALLOW WATER OR <u>NEW RICHMOND MEMBER</u> – SANDSTONE, DOLOMITIC SANDSTONE. YELLOW AND LIGHT GRAY, FINE TO COARSE SAND, MASSIVE TO BEDDED, CHERT AND LAGOONAL DEPOSITS. PLATTEVILLE FORMATION - DOLOMITE TO SHALY DOLOMITE, YELLOW, BEIGE, GLAUCONITE. REWORKED SHALLOW WATER OR LAGOONAL DEPOSITS. AND GRAY TO LIGHT BROWNISH YELLOW. GRAY WEATHERING IS TYPICAL OF SHALY INTERVALS. MASSIVE, PLANAR-LAMINATED, OR MEDIUM TO THICK


ONEOTA FORMATION - DOLOMITE AND SANDY DOLOMITE, GRAY TO BEIGE, MASSIVE, PLANAR, AND WAVY-LAMINATED BEDDING, OOLITHIC, VUGGY, CHERTY, BEDDED, INTERBEDDED WITH THIN, WAVY BEDDED SHALE/SILT LAMINATIONS, AND GLAUCONITIC. BIOGENIC CARBONATES. DOLOMITE - UNDIFFERENTIATED CARBONATE ROCK. LITTLE OR NO SAMPLE ANCELL GROUP - MARINE AND AEOLIAN SANDSTONES, SHALES, RESIDUUM. RECOVERED. LIKELY WEATHERED AND/OR POORLY INDURATED. HIGH-RELIEF UNCONFORMABLE CONTACT WITH THE UNDERLYING PRAIRIE DU SANDSTONE - UNDIFFERENTIATED SILICLASTIC ROCK. LITTLE OR NO SAMPLE

RECOVERED. LIKELY POORLY INDURATED.

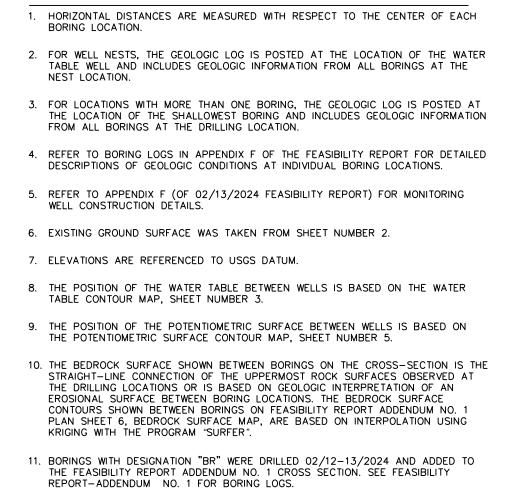
NOTE: FILL IS UNCONSOLIDATED SEDIMENT, INCLUDING MIXTURES OF SAND, SILT, CLAY, GRAVEL, AND POSSIBLY BEDROCK FRAGMENTS OF VARIOUS SIZES, THAT HAS BEEN RELOCATED ON THE SITE OR HAS BEEN BROUGHT TO THE SITE FROM OFFSITE SOURCES. FILL IS NOT A GEOLOGIC UNIT.

MINOR CHERT, FOSSILIFEROUS. BIOGENIC CARBONATES.

CHIEN GROUP.

STEEL CASING

HOLF


SUPPLY WELL DETAIL

T TO SCALE

MONITORING WELL DETAIL OT TO SCALE

> HORIZONTAL SCALE: 1" = 100' VERTICAL SCALE: 1" = 10' VERTICAL EXAGGERATION = 10X

100

NOTES

- 12. REFER TO THE RESPONSE TO WDNR INCOMPLETENESS COMMENT #4 IN THE FR ADDENDUM NO. 1 TEXT FOR EXEMPTION REQUESTS FOR SEPARATION TO WATER TABLE AND BEDROCK AND THE BASIS OF DESIGN IN RELATION TO THOSE.
- 13. SOIL BORINGS AND WELLS ARE PROJECTED VARIOUS DISTANCES ONTO THE CROSS SECTION. REFER TO THE CROSS-SECTION LOCATION MAP FOR ACTUAL LOCATIONS.

X

	KP	MRH/BLP	SCC 08/23/2024
	DRAWN BY:	СНЕСКЕД ВУ:	APPROVED BY:
	2522268.00	07/16/2024	08/13/2024
	PROJECT NO.	DRAWN:	REVISED:
		庁 IDANE COUNTY DEPARIMENT OF WASIE AND RENEWABLES [項] 1919 ALLIANT ENERGY CENTER WAY	
	S C E N E N E E B C		PHONE: (608) 224–2830
B ₆ 5/B−5A			MADISON, WISCONSIN
228/B-228C B-229/B-229C			
AP	S	HEE	T

Attachment G2 – Previous Approval Examples with Less than 10-foot Separation to Water Table

Table G-1 Previous Approval Examples with Less than 10-foot Separation to Water Table (coarse-grained environment, not considered zone-of-saturation)

-

			(Zone-of-Satu	Base Grades vs Water Table (Zone-of-Saturation Definition, NR 500.03(263), NR 504.06(4))		rades vs Water Table ration Distance, 504.06(2)(b))	
Site	POO Approval	Exemption to 10 ft separation from water table	Pre-development seasonal high water table below proposed base grades?	Post-development controlled water table below proposed base grades under gravity- drained conditions?	Pre-developmentPost-development controlledseasonal high waterwater table below proposedtable below proposedsubbase grades under gravity-subbase grades?drained conditions?		Comments
Approved Landfills or Exp	ansions						
Glacier Ridge LF Expansion (now closed North Landfill)	1997	Yes	No	Yes (no control needed)	No	Yes (no control needed)	Water table was above base grades but expected to drop due to landfill construction. Approval required documentation of separation before liner construction.
Cranberry Creek LF (Phases 4 and 5)	2002	Yes	Yes, except at leachate undercuts and sumps	Yes	No	Yes, except at leachate undercuts and sumps	Design similar to Cranberry Creek LF Phases 1-3 (approved 1986). Monitoring indicates gradient control system has maintained water table below bottom of clay iner.
Glacier Ridge LF South Expansion	2005	Yes	Yes, except at leachate undercuts and sumps	Yes	No	Yes, except at leachate undercuts and sumps	FR approval conditions based on controlled WT. POO drawings only show controlled WT. Monitoring indicates gradient control system has maintained water table below bottom of clay iner.
Hickory Meadows LF (East Side)	2012	Yes	Yes, except at leachate undercuts and sumps	Yes	No	Yes, except at leachate undercuts and sumps	Design includes a full underdrain drainage blanket due to low permeability of soils.
Glacier Ridge LF Southeast Expansion	2013	Yes	No	Yes	No	Yes, except at leachate undercuts and sumps	Water table was above base grades but expected to drop due to landfill construction and operation of underdrain. FR approval conditions were based on controlled water table. POO shows controlled water table. Monitoring indicates gradient control system has maintained water table below bottom of clay iner.
Proposed Landfill	T	1	1		1		
Dane County Landfill No. 3	Proposed	Requested	Yes, except at leachate undercuts and sumps	Yes	No	Yes, except at leachate undercuts and sumps	

FR = Feasibility Report POO = Plan of Operation

LF = Landfill

Attachment G3 – Preliminary Underdrain Calculations

Preliminary Underdrain Discharge Calculations (Replaces calculations in Appendix 02 in the original FR)

Preliminary Underdrain Mound Height Calculations

Supporting Information

Hydraulic Conductivity Data (FR Table 5-6, FR Addendum 1 Tables 10-3b and 10-4)

Surface Comparison Map – Subbase Grades to Seasonal High Water Table

Surface Comparison Map – Subbase Grades to Seasonal Low Water Table

Figure - Assumed Underdrain Conditions for Preliminary Underdrain Discharge and Mound Height Calculations

Underdrain Area Map – Seasonal High Water Table

Underdrain Area Map – Seasonal Low Water Table

ENCIMEEDC SCS

SCS ENG	SCS ENGINEERS		Sheet NO. TOTO				
		Calc. No.					
		Rev. No.					
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024				
Client: Dane County	Subject: Underdrain Discharge	Chk'd: EO	Date: 7/22/2024				

Sheet No. 1 of 6

Preliminary Underdrain Groundwater Discharge Estimates

To develop a preliminary estimate of the flow rate for groundwater that will be collected by and Purpose: discharged from the underdrain system at Landfill Site No. 3.

- Approach: Estimate the flow to the underdrain using the equation for water table flow to a well in an unconfined aquifer, assuming the entire system acts as a single well with a large radius.
- References: Construction Dewatering, J. Patrick Powers, 1992, Table 6.1, Section 6.5, Section 6.6, and Table 4.2. SCS Engineers, Feasibility Report, Dane County Landfill Site No. 3, February 2024, Table 5-6 (Hydraulic Conductivity Test Results).

SCS Engineers, Feasibility Report Addendum 1, Dane County Landfill Site No. 3, June 2024, Sheet 3 (High Water Table Map - March 29, 2023), Sheet 4 (Low Water Table Map -December 4, 2023), and Sheet 23 (Proposed Subbase Grades).

Assumptions:

- The underdrain system can be represented approximately by a well with the same enclosed area.
- Flow in the water table aquifer is horizontal, and the well is assumed to fully penetrate the aquifer. (Actual flow would be significantly reduced due to partial penetration.)
- The water table aguifer includes the glacial deposits (primarily till) and underlying Ordovician dolomite and sandstone, based on similar slug test results in these materials and similar head levels in the monitoring wells and piezometers at well nests.
- The hydraulic conductivity (K) of the water table aquifer can be estimated as the geometric mean of the slug test results for the monitoring wells and piezometers. For sensitivity analysis, discharge estimates were also calculated for a low K scenario (geometric mean slug test result for till) and a high K scenario (geometric mean slug test for highest K bedrock unit).
- The base of the water table aquifer is 50 to 200 feet below the current water table. The 50-foot depth is based on the approximate depth to which the piezometers were installed. The 200-foot depth is based on the approximate depth to a layer of shale or shaly dolomite observed in logs for the golf course water supply wells.
- Results: The preliminary estimate of the long term average discharge rate from the underdrain system is approximately 60 gallons per minute (gpm) based on current average water table conditions. For low and high hydraulic conductivity scenarios, the average discharge ranges from approximately 40 to 120 gpm

Preliminary estimates of the discharge rate from the underdrain system range from approximately 50 to 110 gpm for the peak flow shortly after construction of the final phase, for the base scenario (geometric mean hydraulic conductivity) and the seasonal low and high water table conditions. Taking into account the low and high hydraulic conductivity scenarios, the short-term post-construction peak discharge ranges from approximately 40 to 220 gpm.

Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024
Client: Dane County	Subject: Underdrain Discharge	Chk'd: EO	Date: 7/22/2024

Calculations Approach

Total flow from the underdrain is estimated as:

 $Q = \pi K (H^2 - h_w^2) / \ln (R_o/r_w)$

(Reference: Powers, Table 6.1)

where,

Q = Discharge (cubic feet/day)

- K = Hydraulic conductivity (feet/day) = K (cm/sec) x (86,400 sec/day / 30.48 cm/foot)
- H = Original saturated thickness (feet)
- h_w = Head at the well (feet)
- R_o = Radial distance to source of water, or to pseudo-steady state conditions (feet)
- r_w = Radius of well (feet)

Assumed values are:

- K = 6.0E-04 cm/sec = 0.52 meters/day
- H = 50 to 200 feet
- $\label{eq:hw} \begin{array}{l} h_w = H \mbox{-} s, \mbox{ where } s = \mbox{ drawdown. S is estimated based on the average difference} \\ \mbox{ between the current seasonal high water table and the projected controlled water} \\ \mbox{ table in the area where the underdrain collection pipe is below the water table.} \end{array}$
- s = 6 feet maximum, assuming drawdown at underdrain trench = 4 ft clay thickness +
 1.5 ft undercut + 1 ft to pipe flow depth 0.5 x (1 foot groundwater mound height between underdrain pipes). For low water table, subtract 3 ft (typical difference).
 See Figure Assumed Underdrain Conditions for Preliminary Underdrain Discharge and Mound Height Calculations
- r_w = radius of the underdrain system acting as a well, calculated as the square root of the area of the subbase where the underdrain collection pipe is below the water table, divided by π .

Based on comparison of the water table surface to the subbase grade surface using AutoCAD Civil 3D:

	Subbase Below Water Table (acres)	Equivalent Radius, r _w (ft)	Average Drawdown, s (ft)
Seasonal high water table (March 29, 2023)	59.4	908	6
Seasonal low water table	37.4	720	3
(December 4, 2023)			

 R_{o} varies with time as the zone of influence for the underdrain expands, as:

 $R_o = r_w + ((T t)/(640 x C_s))^{0.5}$

(Reference: Powers, Section 6.6 and Table 4.2)

where,

 C_s = Storage coefficient, assumed = 0.2 for unconfined aquifer

T = Transmissivity (square meters/day) = K x b

- b = Aquifer thickness (meters) = H for unconfined aquifer
- K = Hydraulic conductivity (meters/day)

t = Time since pumping began (minutes)

R_o = Radial distance to source of water, or to pseudo-steady state conditions (meters)

r_w = Radius of well (meters)

		Calc. No.
		Rev. No.
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC Date: 7/14/2024
Client: Dane County	Subject: Underdrain Discharge	Chk'd: EO Date: 7/22/2024

Sheet No. 3 of 6

Calculations

ESTIMATE R_o BASED ON DURATION OF DRAINAGE

Base Scenario, K = 6.0 x 10-4 cm/sec, Rw based on subbase grades and seasonal high water table, aquifer thickness 200 ft

					rw-high	rw-high				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
6.00E-04	5.18E-01	200	60.96	3.16E+01	908	277	30	43,200	380	1247
6.00E-04	5.18E-01	200	60.96	3.16E+01	908	277	90	129,600	456	1495
6.00E-04	5.18E-01	200	60.96	3.16E+01	908	277	365	525,600	637	2090
6.00E-04	5.18E-01	200	60.96	3.16E+01	908	277	1825	2,628,000	1082	3550

Base Scenario, K = 6.0 x 10-4 cm/sec, Rw based on subbase grades and seasonal low water table, aquifer thickness 200 ft

					rw-low	rw-low				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
6.00E-04	5.18E-01	200	60.96	3.16E+01	720	220	30	43,200	323	1059
6.00E-04	5.18E-01	200	60.96	3.16E+01	720	220	90	129,600	398	1307
6.00E-04	5.18E-01	200	60.96	3.16E+01	720	220	365	525,600	580	1902
6.00E-04	5.18E-01	200	60.96	3.16E+01	720	220	1825	2,628,000	1025	3363

ESTIMATE UNDERDRAIN DISCHARGE

High water table scenarios, K = 6.0 x 10-4 cm/sec, Rw and s based on subbase grades and seasonal high water table

K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	rw-high (ft)	Time from Startup	Approximate Ro (ft)	Q (gpm)	Q (cfs)
6.00E-04	1.70	200	6	194	908	30 days	1247	207	0.46
6.00E-04	1.70	200	6	194	908	90 days	1495	132	0.29
6.00E-04	1.70	200	6	194	908	1 year	2090	79	0.18
6.00E-04	1.70	200	6	194	908	5 years	3550	48	0.11

					rw-high	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
6.00E-04	1.70	50	6	44	908	30 days	1247	49	0.11
6.00E-04	1.70	50	6	44	908	90 days	1495	31	0.07
6.00E-04	1.70	50	6	44	908	1 year	2090	19	0.04
6.00E-04	1.70	50	6	44	908	5 years	3550	11	0.03

Low water table scenarios, $K = 6.0 \times 10-4 \text{ cm/sec}$, Rw and s based on subbase grades and seasonal low water table. Assumed aquifer thickness reduced by 5 feet based on average change in water table from March to December 2023.

K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	rw-low (ft)	Time from Startup	Approximate Ro (ft)	Q (gpm)	Q (cfs)
6.00E-04	1.70	195	3	192	720	30 days	1059	84	0.186
6.00E-04	1.70	195	3	192	720	90 days	1307	54	0.120
6.00E-04	1.70	195	3	192	720	1 year	1902	33	0.074
6.00E-04	1.70	195	3	192	720	5 years	3363	21	0.047

					rw-low	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
6.00E-04	1.70	45	3	42	720	30 days	1059	19	0.042
6.00E-04	1.70	45	3	42	720	90 days	1307	12.1	0.027
6.00E-04	1.70	45	3	42	720	1 year	1902	7.5	0.017
6.00E-04	1.70	45	3	42	720	5 years	3363	4.7	0.0105

	Calc. No.
	Rev. No.
Job: Landfill Site No. 3	By: SCC Date: 7/14/2024
Subject: Underdrain Discharge	Chk'd: EO Date: 7/22/2024

Sheet No. 4 of 6

Sensitivity Analysis - Low Hydraulic Conductivity Scenarios

ESTIMATE Ro BASED ON DURATION OF DRAINAGE

Low K Scenario, K = $3.9 \times 10.4 \text{ cm/sec}$, based on geometric mean for slug tests in till Rw based on subbase grades and seasonal high water table, aquifer thickness 200 ft

					rw-high	rw-high				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
3.90E-04	3.37E-01	200	61.0	2.05E+01	908	277	30	43,200	360	1181
3.90E-04	3.37E-01	200	61.0	2.05E+01	908	277	90	129,600	421	1381
3.90E-04	3.37E-01	200	61.0	2.05E+01	908	277	365	525,600	567	1861
3.90E-04	3.37E-01	200	61.0	2.05E+01	908	277	1825	2,628,000	926	3038

Low K Scenario, $K = 3.9 \times 10.4 \text{ cm/sec}$, based on geometric mean for slug tests in till Rw based on subbase grades and seasonal low water table, aquifer thickness 200 ft

					rw-low	rw-low				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
3.90E-04	3.37E-01	200	61.0	2.05E+01	720	220	30	43,200	303	993
3.90E-04	3.37E-01	200	61.0	2.05E+01	720	220	90	129,600	364	1193
3.90E-04	3.37E-01	200	61.0	2.05E+01	720	220	365	525,600	510	1673
3.90E-04	3.37E-01	200	61.0	2.05E+01	720	220	1825	2,628,000	869	2851

ESTIMATE UNDERDRAIN DISCHARGE

High water table scenarios, K = 3.9 x 10-4 cm/sec, Rw and s based on subbase grades and seasonal high water table

					ny biab	Time from	Approvimente		
					rw-high	Time from			
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
3.90E-04	1.11	200	6	194	908	30 days	1181	162	0.36
3.90E-04	1.11	200	6	194	908	90 days	1381	102	0.23
3.90E-04	1.11	200	6	194	908	1 year	1861	59	0.13
3.90E-04	1.11	200	6	194	908	5 years	3038	35	0.08

					rw-high	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
3.90E-04	1.11	50	6	44	908	30 days	1181	39	0.09
3.90E-04	1.11	50	6	44	908	90 days	1381	24	0.05
3.90E-04	1.11	50	6	44	908	1 year	1861	14	0.03
3.90E-04	1.11	50	6	44	908	5 years	3038	8	0.02

Low water table scenarios, $K = 3.9 \times 10-4 \text{ cm/sec}$, Rw and s based on subbase grades and seasonal low water table. Assumed aquifer thickness reduced by 5 feet based on average change in water table from March to December 2023.

					rw-low	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
3.90E-04	1.11	195	3	192	720	30 days	993	65	0.145
3.90E-04	1.11	195	3	192	720	90 days	1193	41	0.092
3.90E-04	1.11	195	3	192	720	1 year	1673	25	0.055
3.90E-04	1.11	195	3	192	720	5 years	2851	15	0.034

K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	rw-low (ft)	Time from Startup	Approximate Ro (ft)	Q (gpm)	Q (cfs)
3.90E-04	1.11	45	3	42	720	30 days	993	15	0.033
3.90E-04	1.11	45	3	42	720	90 days	1193	9.3	0.021
3.90E-04	1.11	45	3	42	720	1 year	1673	5.6	0.012
3.90E-04	1.11	45	3	42	720	5 years	2851	3.4	0.0076

Ses Enormer		Calc. No.
		Rev. No.
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC Date: 7/14/2024
Client: Dane County	Subject: Underdrain Discharge	Chk'd: EO Date: 7/22/2024

Sheet No. 5 of 6

Sensitivity Analysis - High Hydraulic Conductivity Scenario

ESTIMATE Ro BASED ON DURATION OF DRAINAGE

High K Scenario, K = 1.8 x 10-3 cm/sec, based on geometric mean slug test result for Sinnipee Group (highest K formation) Rw based on subbase grades and seasonal high water table, aquifer thickness 200 ft

					rw-high	rw-high				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
1.80E-03	1.56E+00	200	60.96	9.48E+01	908	277	30	43,200	456	1495
1.80E-03	1.56E+00	200	60.96	9.48E+01	908	277	90	129,600	587	1924
1.80E-03	1.56E+00	200	60.96	9.48E+01	908	277	365	525,600	901	2955
1.80E-03	1.56E+00	200	60.96	9.48E+01	908	277	1825	2,628,000	1672	5485

High K Scenario, $K = 1.8 \times 10-3 \text{ cm/sec}$, based on geometric mean for slug tests in till Rw based on subbase grades and seasonal low water table, aquifer thickness 200 ft

					rw-low	rw-low				
K (cm/sec)	K (m/day)	B (ft)	B (m)	T (m2/day)	(ft)	(m)	t (days)	t(min)	Ro (m)	Ro (ft)
1.80E-03	1.56E+00	200	60.96	9.48E+01	720	220	30	43,200	398	1307
1.80E-03	1.56E+00	200	60.96	9.48E+01	720	220	90	129,600	529	1737
1.80E-03	1.56E+00	200	60.96	9.48E+01	720	220	365	525,600	843	2767
1.80E-03	1.56E+00	200	60.96	9.48E+01	720	220	1825	2,628,000	1615	5298

ESTIMATE UNDERDRAIN DISCHARGE

High water table scenarios, K = 1.8 x 10-3 cm/sec, Rw and s based on subbase grades and seasonal high water table

					rw-high	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
1.80E-03	5.10	200	6	194	908	30 days	1495	395	0.88
1.80E-03	5.10	200	6	194	908	90 days	1924	262	0.58
1.80E-03	5.10	200	6	194	908	1 year	2955	167	0.37
1.80E-03	5.10	200	6	194	908	5 years	5485	109	0.24

					rw-high	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
1.80E-03	5.10	50	6	44	908	30 days	1495	94	0.21
1.80E-03	5.10	50	6	44	908	90 days	1924	62	0.14
1.80E-03	5.10	50	6	44	908	1 year	2955	40	0.09
1.80E-03	5.10	50	6	44	908	5 years	5485	26	0.06

Low water table scenarios, $K = 1.8 \times 10-3 \text{ cm/sec}$, Rw and s based on subbase grades and seasonal low water table. Assumed aquifer thickness reduced by 5 feet based on average change in water table from March to December 2023.

					rw-low	Time from	Approximate		
K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	(ft)	Startup	Ro (ft)	Q (gpm)	Q (cfs)
1.80E-03	5.10	195	3	192	720	30 days	1307	162	0.361
1.80E-03	5.10	195	3	192	720	90 days	1737	110	0.245
1.80E-03	5.10	195	3	192	720	1 year	2767	72	0.160
1.80E-03	5.10	195	3	192	720	5 years	5298	48	0.108

K (cm/sec)	K (ft/day)	H (ft)	s (ft)	hw (ft)	rw-low (ft)	Time from Startup	Approximate Ro (ft)	Q (gpm)	Q (cfs)
1.80E-03	5.10	45	3	42	720	30 days	1307	36	0.081
1.80E-03	5.10	45	3	42	720	90 days	1737	24.7	0.055
1.80E-03	5.10	45	3	42	720	1 year	2767	16.1	0.036
1.80E-03	5.10	45	3	42	720	5 years	5298	10.9	0.0243

		Calc. No.		
		Rev. No.		
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024	
Client: Dane County	Subject: Underdrain Discharge	Chk'd: EO	Date: 7/22/2024	

Summary of Results

Using the more conservative 200-foot aquifer thickness, and the radius of influence developed after one year, the estimated long term average underdrain discharge rates are:

	Base Scenario		Low K S	Scenario	High K Scenario	
	Discharge	Discharge Discharge I		Discharge	Discharge	Discharge
Long Term Average	(gpm)	(cfs)	(gpm)	(cfs)	(gpm)	(cfs)
Seasonal high water table	79	0.18	59	0.13	167	0.37
Seasonal low water table	33	0.074	25	0.055	72	0.16
Average	56	0.12	42	0.094	119	0.27

Sheet No

6 of 6

Say approximately 60 gpm based on current average water table conditions, with a range from approximately 40 to 120 for high and low K scenarios and average water table conditions

The estimated underdrain discharge rates during construction and initial operation, using the 200-foot aquifer thickness and the radius of influence developed after 30 days, and assuming the entire site is constructed at the same time, are:

	Base Scenario		Low K S	Scenario	High K Scenario	
Peak Flow if Entire Site	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
Constructed at One Time	(gpm)	(cfs)	(gpm)	(cfs)	(gpm)	(cfs)
Seasonal high water table	207	0.46	162	0.36	395	0.88
Seasonal low water table	84	0.19	65	0.15	162	0.36
Average	145	0.32	114	0.25	278	0.62

Since the site will be constructed in phases over a period of several years, estimated peak flows accounting for the construction schedule would be significantly lower. Assuming that the final phase would include 25 percent of the underdrain and the previously constructed phases would contribute the remaining flow, the estimated maximum discharge rates are:

	Base Scenario		Low K S	Scenario	High K Scenario	
Peak Flow - 25% New Phase +	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
75% Existing Phase	(gpm)	(cfs)	(gpm)	(cfs)	(gpm)	(cfs)
Seasonal high water table	111	0.25	85	0.19	224	0.50
Seasonal low water table	46	0.10	35	0.08	94	0.21
Average	78	0.17	60	0.13	159	0.35

Say approximately 50 to 110 gpm for base scenario (geometric mean K) and current seasonal low and high water table conditions, with a range up to approximately 220 gpm for high K scenario under high water table conditions

These preliminary estimates provide an approximate range of potential discharge rates for the underdrain. Actual discharge rates maybe higher or lower depending on geologic conditions, the final design, and changes in recharge conditions with the discontinuation of golf course irrigation and construction of the landfill liner. The discharge rate is expected to decrease with time due to reduced infiltration.

SCS	ENGINEERS			SHEET NO.	1 of 6
				REV. NO.	
Job No.	25222268.00	Job	Dane County LF No. 3	BY	SCC DATE 7/16/24
Client	Dane County W&R	Subject	Underdrain Mound Height	CHK'D.	EO DATE 7/22/24

Preliminary Underdrain Groundwater Mound Height Estimates

Purpose

Evaluate whether the proposed underdrain design for Dane County Landfill No. 3 will maintain the water table below the bottom of the landfill liner under gravity-drained conditions except at the leachate collection sumps.

Approach

The calculation steps are:

- 1. Estimate groundwater discharge to the underdrain based on aquifer properties, expected drawdown, and area of drawdown (completed in previous calculation).
- 2. Calculate estimated groundwater mound height between drain lines for reasonable values of hydraulic conductivity and flow using the formula developed by Hooghoudt (Smedema and Rycroft, 1983).
- 3. Select drain depth below subbase grades and verify that drains will maintain water table below bottom of liner.

Assumptions

Site Specific Assumptions:

 The groundwater discharge per unit area beneath the expansion area can be estimated based on the area and expected drawdown as shown in the Underdrain Discharge calculation. The calculation provides a range of flows for high and low water table conditions and for a range of hydraulic conductivity values (base case, high K, low K).

Hooghoudt Formula Assumptions:

- 1. The Hooghoudt formula was developed for calculating spacing of agricultural drains based on hydraulic conductivity and recharge; however, the formula may also be used to calculate drain spacings or mound heights below an impermeable surface such as a landfill if groundwater discharge is substituted for recharge (Slane and Hoopes, 1988).
- 2. Discharge is distributed evenly over the area beneath the drains.

SCS	ENGINEERS			SHEET NO.	2 of 6
				REV. NO.	
Job No.	25222268.00	Job	Dane County LF No. 3	BY	SCC DATE 7/16/24
Client	Dane County W&R	Subject	Underdrain Mound Height	CHK'D.	EO DATE 7/22/24

- 3. The influence of cut-off walls is not included; however, the maximum mound will occur between the drains if the cut-off wall is located within half the drain separation distance of the perimeter drain. [Note: No cut-off wall is proposed for Dane County LF No. 3.]
- 4. The water table is maintained at the specified drain flow elevations; i.e. water does not back up in pipes/drains.
- 5. Boundary conditions assume no mounding at the drain, maximum mounding halfway between the drains, simple geometric shape of the mound, the impermeable base is areally extensive and does not leak.
- 6. Converging radial flow to partially penetrating drains is assumed beneath the drain level and horizontal flow is assumed in the mound above drain invert.

References

SCS Engineers, 2024a, Feasibility Report, Dane County Landfill Site No. 3, February 2024.

- SCS Engineers, 2024b, Feasibility Report Addendum No. 1, Dane County Landfill Site No. 3, July 2024.
- Slane, K. O., and Hoopes, J. A., 1988, The use of groundwater models to predict groundwater mounding beneath proposed groundwater gradient control systems for sanitary landfill designs; Wisconsin Groundwater Management Practice Monitoring Project No. 7: Madison, Wisconsin, Wisconsin Department of Natural Resources, 83 p.
- Smedema, L. K., and Rycroft, D. W., 1983, Land Drainage: Ithaca, New York, Cornell University Press, 376 p.

Conclusions

A drain spacing of 200 feet with a drain invert depth of 2.5 feet below the sub-base grades at the leachate line locations (not considering the trench undercut) will maintain the water table below the base of the clay component of the liner.

Under gravity-drained conditions, the water table will remain below the base of the clay at locations excluding the leachate sumps (to be designed in the Plan of Operation).

With the elimination of recharge within the Proposed Landfill footprint, the future high water table is expected to be lower than the current seasonal high water table; therefore, the

SCS	ENGINEERS			SHEET NO.	3 of 6
				REV. NO.	
Job No.	25222268.00	Job	Dane County LF No. 3	BY	SCC DATE 7/16/24
Client	Dane County W&R	Subject	Underdrain Mound Height	CHK'D.	EO DATE 7/22/24

assumed area of groundwater collected and assumed drawdown are conservative estimates.

Attachments: Mound Height Calculation (Step 2) Water Table Calculation and Graph (Step 3)

I:\25222268.00\Data and Calculations\Underdrain\FR Add 1\Underdrain_design cover memo_DCLF3_240716.docx

SCS ENGINEERS		Sheet No.	4 of 6
		Calc. No.	
		Rev. No.	
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024
Client: Dane County	Subject: Underdrain Mound Height	Chk'd: EO	Date: 7/22/2024

Purpose:

To determine the height of the groundwater mound between two underdrain

Approach:

pipes. Use the Hooghoudt equation to estimate mound height.

Calculation:

The Hooghoudt equation is given by:

 $L^{2} = (8k_{b}d_{e}m + 4k_{a}m^{2})/q$

where,

d _e =	d/[(8d/πL)ln(d/u)+1]	for d<=(L/4))
d _e =	πL/[8ln(L/u)]	for d>(L/4)

The Hooghoudt formula can be rewritten to solve for mound height given a drain spacing:

$$m = (-8k_b d_e + [(8k_b d_e)^2 - 4(4k_a)(-qL^2)]^{0.5})/2(4k_a)$$

where,

Variable	Description	Value	Source
L	distance between drain pipes (ft)	200	FR Plan Sheet 23
ka	hydraulic conductivity of material above drain (ft/yr)	see below	Slug test data
k _b	hydraulic conductivity of material below drain (ft/yr)	see below	Slug test data
m	height of mound between drains (ft)	calculated	
d	distance between water level at drain and	50	Assumed base of
	impermeable base elevation (ft)		flow to drain (see note)
d _e	equivalent (effective) depth to impermeable base (ft)	calculated	
q	recharge/groundwater discharge rate (ft/yr)	calculated	
u	wetted perimeter of drain (ft)	3	2-foot wide trench, minimum 0.5 feet below drain flow elevation

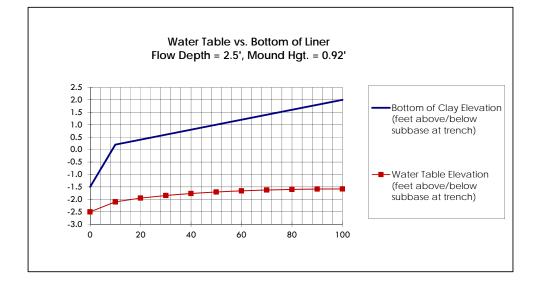
Note: The Hooghoudt formula is not sensitive to increase in the depth of the impermeable surface greater than 1/4 of the drain spacing. The depth to the "impermeable" surface is used to calculate the cross-sectional area available for groundwater movement horizontally between and radially into the drains.

Calculate the underdrain discharge rate, q, based on underdrain discharge flow and contributing area:

			Base Scenario		Low K Scenario		High K Scenario	
						Low		
		Low Water	High Water	Low Water	High Water	Water	High Water	
	Unit	Table	Table	Table	Table	Table	Table	
Area of Underdrain System	acres	37	59	37	59	37	59	
Estimated Discharge	gpm	33	79	25	59	72	167	
Discharge Per Acre	gpm/acre	0.89	1.32	0.66	1.00	1.92	2.81	
Underdrain Discharge Rate, q	ft/yr	1.4	2.1	1.1	1.6	3.1	4.5	

Calculate mound height using the high flow scenario:

	Input Variables					Calculate	d values		
K above	K below	Depth to		Wetted	Drain	K above		Effective	
drain	drain	base	Discharge	perimeter	spacing	drain	K below drain	depth	Mound height
ka	k _b	d	q	u	L	k _a	k _b	de	m
(cm/sec)	(cm/sec)	(ft)	(ft/yr)	(ft)	(ft)	(ft/yr)	(ft/yr)	(ft)	(ft)
Scenario 1: 0	Geometric me	ean hydrau	ilic conductiv	/ity from slug	tests applies	above and	below drain.		
6.00E-04	6.00E-04	50	2.1	3	200	621	621	18	0.92
Scenario 2: l	Jnderdrain dr	ainage sar	nd conductiv	ity applies at	oove drain ar	nd slug test g	eo mean applie	es below dr	ain.
1.00E-02	6.00E-04	50	2.1	3	200	10346	621	18	0.71
Scenario 3: 0	Scenario 3: Geometric mean hydraulic conductivity from till slug tests applies above and below drain.								
3.90E-04	3.90E-04	50	1.6	3	200	404	404	18	1.07
Scenario 4: 0	Scenario 4: Geometric mean hydraulic conductivity from Sinnipee Group slug tests applies above and below drain.								
1.80E-03	1.80E-03	50	4.5	3	200	1862	1862	18	0.66
Scenario 5: S	Same as scen	ario 1 exce	pt drain spa	cing increase	ed to 400 fee	t			
6.00E-04	6.00E-04	50	2.1	3	400	621	621	26	2.45


SCS ENGI	NEERS	Sheet No.			
		Calc. No.			
		Rev. No.			
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024		
Client: Dane County	Subject: Underdrain Mound Height	Chk'd: EO	Date: 7/22/2024		

Objective: Determine whether proposed drain flow depth will maintain water table below the bottom of the clay component of the liner, based on "worst case" mound height previously calculated for proposed drain spacing.

Scenario 1 - Base case, assume no sand drainage layer

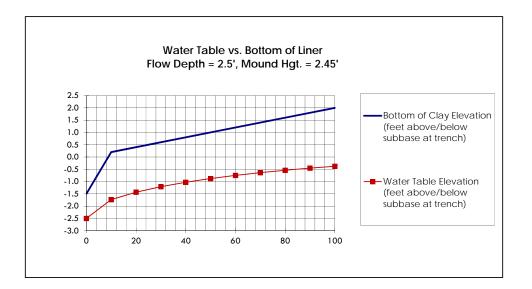
Spacing	200 ft
Half-spacing	100 ft
Mound Height	0.92 ft
Drain Flow Depth	2.5 ft
Liner slope to drain	0.02 ft/ft
Undercut depth	1.5 ft
Undercut half-width	10 ft

	Bottom of Clay Flevation		
	(feet		
Distance	above/below	Water Table Elevation	
From Drain	subbase at	(feet above/below	Separation
(feet)	trench)	subbase at trench)	(feet)
0	-1.50	-2.50	1.00
10	0.20	-2.10	2.30
20	0.40	-1.95	2.35
30	0.60	-1.84	2.44
40	0.80	-1.76	2.56
50	1.00	-1.70	2.70
60	1.20	-1.66	2.86
70	1.40	-1.62	3.02
80	1.60	-1.60	3.20
90	1.80	-1.58	3.38
100	2.00	-1.58	3.58
Average			2.67

Notes

- 1) Depths in calculations and on graphs are relative to the proposed sub-base grade at the trench location, not considering the trench undercut. The actual bottom of clay will be 1.5 feet below the sub-base grade, due to the undercut for the leachate piping trench, as shown on the graph.
- 2) Water table elevations calculated based on formula for an ellipse with axes equal to the drain spacing and the mound height, as described in Slane and Hoopes (1988).
- 3) Mound heights were calculated using the Hooghoudt equation--see previous calculation for documentation.
- 4) Drain flow depth at 2.5 feet assumes pipe will flow half full and pipe centerline will be 2.5 feet below subbase grade without trench, or 1 foot below bottom of clay in trench.

I:\25222268.00\Data and Calculations\Underdrain\FR Add 1\[Underdrain Discharge_240806_FR Add 1.xlsx]UD Flow 3


SCS ENG	NEERS	Sheet No.	6 of 6	
		Calc. No.		
		Rev. No.		
Job No. 25222268.00	Job: Landfill Site No. 3	By: SCC	Date: 7/14/2024	
Client: Dane County	Subject: Underdrain Mound Height	Chk'd: EO	Date: 7/22/2024	

Objective: Determine whether proposed drain flow depth will maintain water table below the bottom of the clay component of the liner, based on "worst case" mound height previously calculated for proposed drain spacing.

Scenario 2 - Alternative case when adjacent drain is at a higher elevation so the drainage divide will not be centered between the pipes. For worst case, assume double-spacing (one drain captures entire width between the 2 adjacent drains

-		
	Spacing	400 ft
	Half-spacing	200 ft
	Mound Height	2.45 ft
	Drain Flow Depth	2.5 ft
	Liner slope to drain	0.02 ft/ft
	Undercut depth	1.5 ft
	Undercut half-width	10 ft

	Dettern of Class		
	Bottom of Clay		
	Elevation		
	(feet		
Distance	above/below	Water Table Elevation	
From Drain	subbase at	(feet above/below	Separation
(feet)	trench)	subbase at trench)	(feet)
0	-1.50	-2.50	1.00
10	0.20	-1.73	1.93
20	0.40	-1.43	1.83
30	0.60	-1.21	1.81
40	0.80	-1.03	1.83
50	1.00	-0.88	1.88
60	1.20	-0.75	1.95
70	1.40	-0.64	2.04
80	1.60	-0.54	2.14
90	1.80	-0.45	2.25
100	2.00	-0.38	2.38
Average			1.91

Notes

- 1) Depths in calculations and on graphs are relative to the proposed sub-base grade at the trench location, not considering the trench undercut. The actual bottom of clay will be 1.5 feet below the sub-base grade, due to the undercut for the leachate piping trench, as shown on the graph.
- 2) Water table elevations calculated based on formula for an ellipse with axes equal to the drain spacing and the mound height, as described in Slane and Hoopes (1988).
- 3) Mound heights were calculated using the Hooghoudt equation--see previous calculation for documentation.
- 4) Drain flow depth at 2.5 feet assumes pipe will flow half full and pipe centerline will be 2.5 feet below subbase grade without undercut, or 1 foot below bottom of clay in undercut.

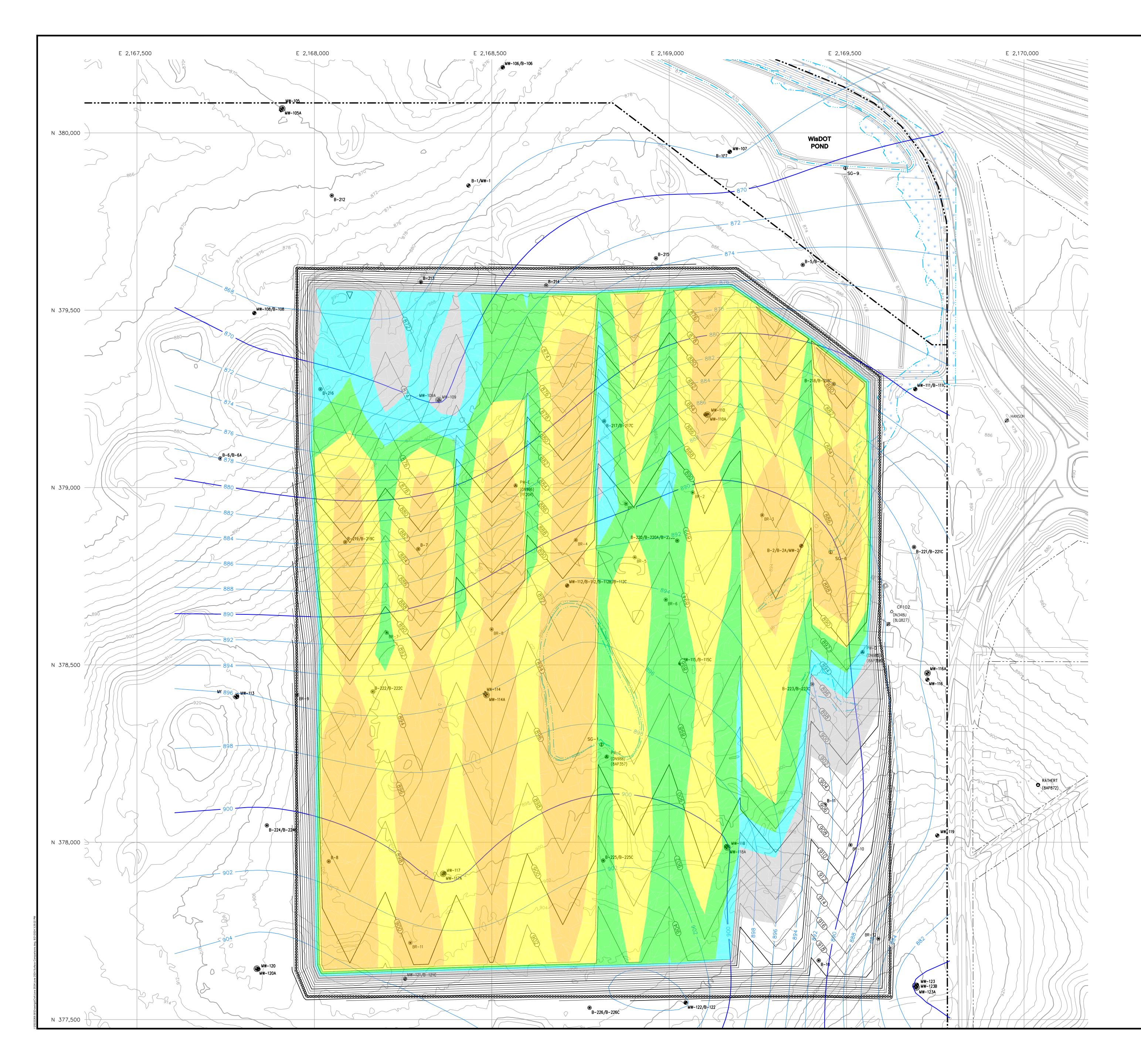
I:\25222268.00\Data and Calculations\Underdrain\FR Add 1\[Underdrain Discharge_240806_FR Add 1.xlsx]UD Flow 3

Table 5-6. Single Well Hydraulic Conductivity Test Results - All Wells Dane County Landfill Site No. 3 / SCS Engineers Project #25222268.00 Feasibility Report

Monitoring Well	Hydraulic Conductivity (K _h) (cm/s)	Lithology within Screen Interval	USCS Soil Type and/or Rock Unit
MW-1	4.5E-03	Loess and Outwash	ML, CL, and SP-SM
MW-2	1.7E-04	Till	SM
MW-3	1.6E-03	Till	SM
MW-4	4.4E-02	Dolomite (Prairie du Chien Group)	DOL
MW-105	5.2E-04	Loess, Outwash, and Till	CL, SP, SM
MW-105A	2.3E-04	Weathered Dolomite	GM
MW-106	5.3E-04	Loess and Till	CL and SM
MW-107	5.2E-04	Till	SM
MW-108	3.6E-04	Till	SM
MW-109	2.1E-03	Till, Weathered Dolomite, and Dolomite (Galena Fm.)	SM, SM, and DL1
MW-109A	1.4E-03	Dolomite (Galena Fm.)	DL1
MW-110	1.0E-03	Till	SM
MW-110A	1.8E-04	Sandstone (Glenwood Fm.)	SS1
MW-111	2.2E-03	Till & Outwash	SM, SP-SM
MW-112	7.5E-03	Till and Weathered Dolomite (Galena Fm.)	SM and SM
MW-113	4.5E-04	Dolomite (Galena Fm.)	DL1
MW-113A	3.9E-05	Dolomite (Platteville Fm.) & Sandstone (Glenwood Fm.)	DL2 and SS1
MW-114	2.3E-03	Loess, Till, and Sandstone (Tonti Member)	CL, SM, and SS2
MW-114A	9.6E-04	Dolomite (Prairie du Chien Gr., Shakopee Fm.)	DL3
MW-115	1.7E-02	Till, Weathered Dolomite, and Dolomite (Oneota Fm.)	SM, GM, and DL4
MW-116	4.5E-04	Sandstone (Tonti Member)	SS2
MW-116A	4.0E-03	Sandstone (Tonti Member)	SS2
MW-117	3.7E-04	Loess and Till	CH and SM
MW-117A	1.9E-04	Dolomite (Oneota Fm.)	DL4
MW-118	2.2E-03	Till and Sandstone (Tonti Member)	SM and SS2
MW-118A	8.0E-05	Variable Lithology (Readstown Member) & minor Dolomite (Prairie du Chien Gr.)	SS3 and DL5
MW-119	3.2E-03	Sandstone (Tonti Member)	SS2
MW-120	2.4E-04	Till	SM
MW-120A	1.8E-04	Dolomite (Oneota Fm.)	DL4
MW-121	4.5E-04	Till, Sandstone (Tonti Member), and Dolomite (Oneota Fm.)	SM, SS2, and DL4
MW-122	1.1E-04	Till	SM
MW-123	2.4E-04	Sandstone (Tonti Member)	SS2
MW-123A	8.0E-06	Dolomite (Shakopee Fm.)	DL3
MW-123B	5.4E-04	Variable Lithology (Readstown Member)	SS3
MW-124	1.1E-03	Dolomite (Oneota Fm.)	DL4
MW-124A	9.6E-05	Dolomite (Oneota Fm.)	DL4
MW-125	2.6E-04	Till, Variable Lithology (Readstown Member), and Dolomite (Prairie du Chien Gr.)	SM, SS3, and DL5
MW-125A	3.2E-04	Dolomite (Prairie du Chien Gr.)	DL5
Minimum	8.0E-06		+
Maximum	4.4E-02		
Geometric Mean	6.0E-04		
Created by:	ACW	Date: 9/28/2023	

Created by:	ACW	Date:	9/28/2023
Last revision by:	JR	Date:	1/15/2024
Checked by:	SCC	Date:	2/7/2024

I:\25222268.00\Deliverables\Feasibility Report\Tables\[5-6 Hydraulic Conductivity Test Results.xlsx]5-6 All Wells

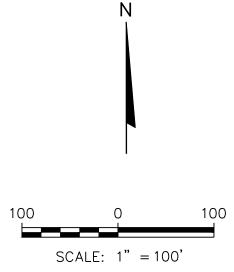

Table 10-3b. Single Well Hydraulic Conductivity Test Results - Wells in Till Dane County Landfill Site No. 3 / SCS Engineers Project #25222268.00 Feasibility Report Addendum No. 1

Monitoring Wells & Piezometers	Hydraulic Conductivity (Kh) (cm/s)	Lithology within Screen Interval	USCS & Rock Unit
MW-2	1.7E-04	Till	SM
MW-3	1.6E-03	Till	SM
MW-107	5.2E-04	Till	SM
MW-108	3.6E-04	Till	SM
MW-110	1.0E-03	Till	SM
MW-117	3.7E-04	Loess and Till	CH and SM
MW-120	2.4E-04	Till	SM
MW-122	1.1E-04	Till	SM
Minimum	1.1E-04		•
Maximum	1.6E-03		
Geometric Mean	3.9E-04		

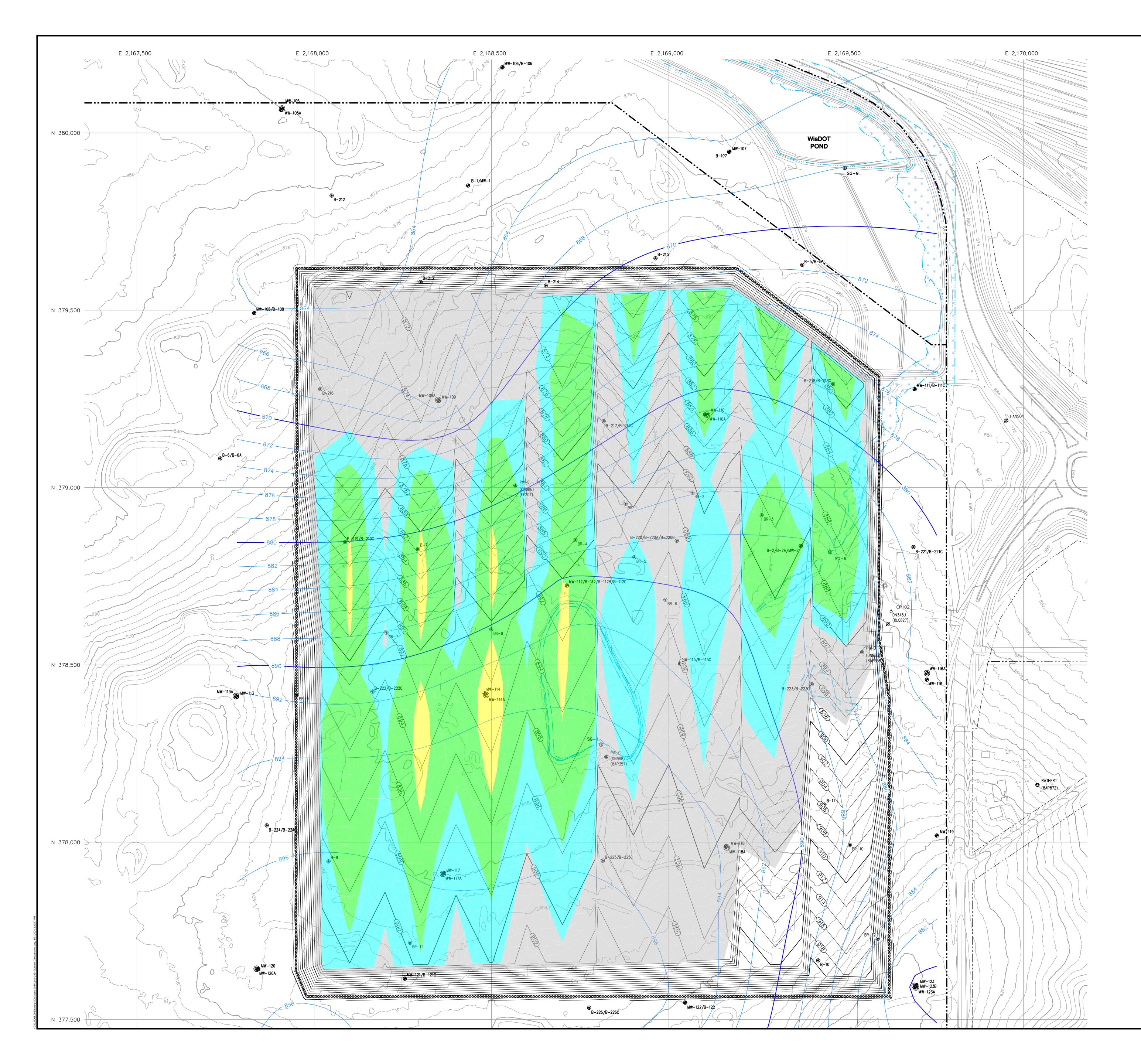
Checked by: BJS, 10/02/2023 Checked by: JR, 11/14/2023

Table 10-4. Single Well Hydraulic Conductivity Test Results - Wells in Sinnipee Group (Galena Formation)Dane County Landfill Site No. 3 / SCS Engineers Project #25222268.00Feasibility Report Addendum No. 1

Monitoring Well	Hydraulic Conductivity (K _h) (cm/s)		Lithology within Screen Interval	USCS Soil Type and/or Rock Unit
MW-109	2.1E-03	T	ill, Weathered Dolomite, and Dolomite (Galena Fm.)	SM, SM, and DL1
MW-109A	1.4E-03		Dolomite (Galena Fm.)	DL1
MW-112	7.5E-03		Till and Weathered Dolomite (Galena Fm.)	SM and SM
MW-113	4.5E-04		Dolomite (Galena Fm.)	DL1
Minimum	4.5E-04			
Maximum	7.5E-03			
Geometric Mean	1.8E-03			
Created by:	ACW	Date:	9/28/2023	
Checked by:	BJS	Date:	5/17/2024	


	LEGEND
	PROJECT PROPERTY LINE
	PROPERTY PARCEL LINE
000000000000000000000000000000000000000	PROPOSED LIMITS OF WASTE
	EXISTING GRADE (2' CONTOUR)
	EXISTING GRADE (10' CONTOUR)
	DOT BASIN CONSTRUCTION GRADE (2' CONTOUR)
	EXISTING PAVED ROAD
========	EXISTING UNPAVED ROAD
	EXISTING STREAM/EDGE OF WATER
* * *	EXISTING WETLAND
عالد	EXISTING SMALL WETLAND AREA
۲	EXISTING SOIL BORING
Ð	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Ф	EXISTING STAFF GAUGE
	SUBBASE GRADE (2' CONTOUR)
	SUBBASE GRADE (10' CONTOUR)
	SEASONAL HIGH WATER TABLE (2' CONTOUR)
	SEASONAL HIGH WATER TABLE (10' CONTOUR)

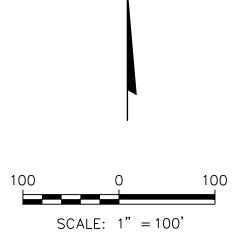
NOTES:


- 1. SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES.
- PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT BOTTOM OF CLAY LINER (SUBBASE GRADES). UNDERCUTS ARE NOT SHOWN.
- 3. WATER LEVELS MEASURED MARCH 29, 2023.
- 4. WATER TABLE SURFACE AND SUBBASE GRADES FROM FEASIBILITY REPORT ADDENDUM NO. 1, PLAN SHEETS 3 AND 23.

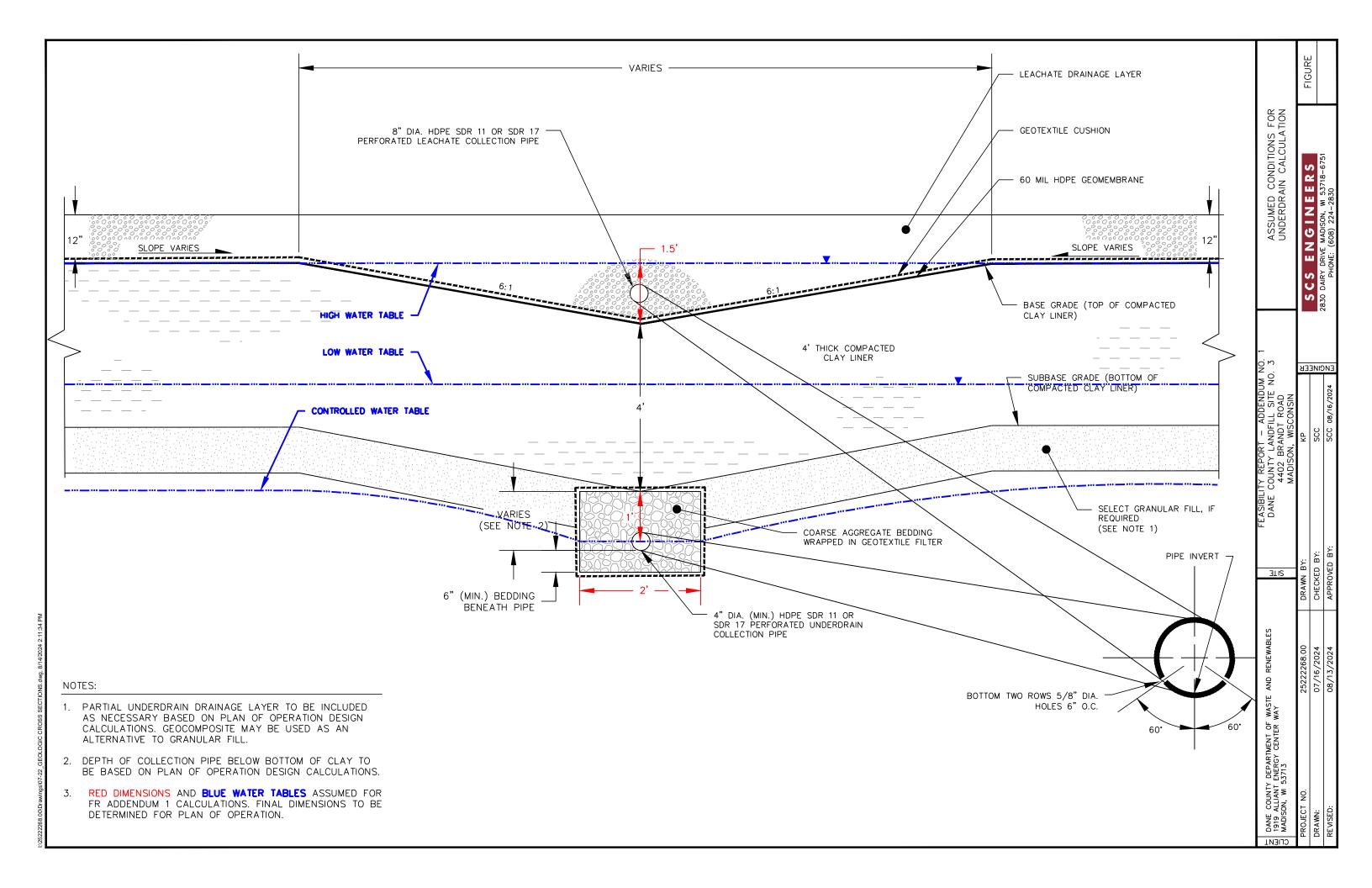
SEPARATION	SEPARATION TO WATER TABLE (FEET)				
Minimum	Maximum	Color			
-4.000	-2.000				
-2.000	0.000				
0.000	2.000				
2.000	4.000				
4.000	10.000				
	>10.000				

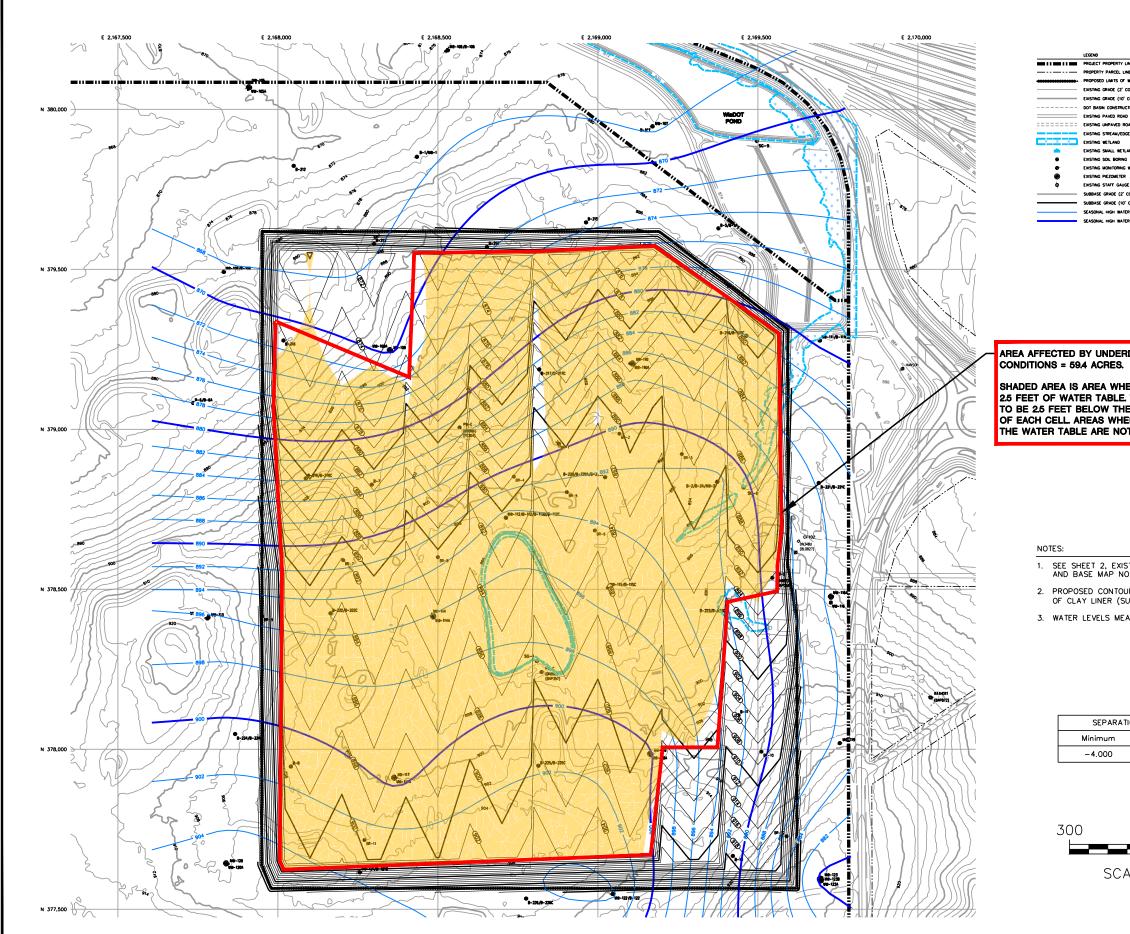
NEGATIVE VALUES (YELLOW AND ORANGE SHADING) INDICATE SEASONAL HIGH WATER TABLE ABOVE SUBBASE. FUTURE CONTROLLED WATER TABLE WILL BE BELOW SUBBASE GRADES WITH OPERATION OF UNDERDRAIN. AREA OF SUBBASE GRADES ABOVE SEASONAL HIGH WATER TABLE = 34.1 ACRES.

	FEASIBILITY REPORT - ADDENDUM NO. 1		:	PROJECT NO.	2522268.00	DRAWN BY:	KP
RASE GRADES (JIJI Y 2024) / SEASONAL HIGH WATER TARLE	DANE COUNTY LANDFILL SITE NO. 3		T DANE COUNTY DEPARIMENT OF WASIE AND RENEWABLES	DRAWN:	06 /12 /2024	CHFCKFD BY:	MRH /BI P
	파티	① 1 2830 DAIRY DRIVE MADISON、WI 53718-6751					
	MADISON. WISCONSIN		T MADISON, W 33/13	REVISED:	08/13/2024	APPROVED BY:	SCC 08/23/2024


	LEGEND
	PROJECT PROPERTY LINE
	PROPERTY PARCEL LINE
.00000000000000000000000000000000000000	PROPOSED LIMITS OF WASTE
	EXISTING GRADE (2' CONTOUR)
	EXISTING GRADE (10' CONTOUR)
	DOT BASIN CONSTRUCTION GRADE (2' CONTOUR)
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
	EXISTING STREAM/EDGE OF WATER
* * *	EXISTING WETLAND
عللد	EXISTING SMALL WETLAND AREA
۲	EXISTING SOIL BORING
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Φ	EXISTING STAFF GAUGE
	SUBBASE GRADE (2' CONTOUR)
	SUBBASE GRADE (10' CONTOUR)
	SEASONAL LOW WATER TABLE (2' CONTOUR)
	SEASONAL LOW WATER TABLE (10' CONTOUR)

NOTES:


- 1. SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES.
- PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT BOTTOM OF CLAY LINER (SUBBASE GRADES). UNDERCUTS ARE NOT SHOWN.
- 3. WATER LEVELS MEASURED DECEMBER 4, 2023.
- 4. WATER TABLE SURFACE AND SUBBASE GRADES FROM FEASIBILITY REPORT ADDENDUM NO. 1, PLAN SHEETS 4 AND 23.


SEPARATION	SEPARATION TO WATER TABLE (FEET)				
Minimum	Maximum	Color			
-1.000	0.000				
0.000	2.000				
2.000	4.000				
4.000	10.000				
	>10.000				

NEGATIVE VALUES (YELLOW SHADING) INDICATE SEASONAL LOW WATER TABLE ABOVE SUBBASE. FUTURE CONTROLLED WATER TABLE WILL BE BELOW SUBBASE GRADES WITH OPERATION OF UNDERDRAIN. AREA OF SUBBASE GRADES ABOVE SEASONAL LOW WATER TABLE = 75.3 ACRES.

S	FEASIBILITY REPORT - ADDENDUM NO. 1			PROJECT NO.	2522268.00	DRAWN BY:	ΚР
E SUBASE CDADES (111 × 2023) / SEASONAL LOW WATED TADIE	20 DANE COUNTY LANDFILL SITE NO. 3		zΥ	DRAWN.	06 /12 /2024	CHECKED BY.	MPH /RI D
JUDDAJE GIVANEJ (JUEI 2024) / JEAJE	표 IIS HWY 12/18	Z 2830 DAIRY DRIVE MADISON WI 53718-6751			1 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2		
T			그 MADISON, WI 53713	RF VISED.	08/13/2024	APPROVED RY.	SCC 08 /23 /2024
	MADISON, WISCONSIN						

		FIGURE	J 	
r LINE LINE yr Astr r Contour) of Contour) of Contour) MD MO MO MO MO MO MO MO MO MO MO	SUBBASE GRADES (JULY 2024) SEASONAL HIGH WATER TABLE	SCENCINEEDS	-	PHONE: (608) 224-2830
RDRAIN UNDER HIGH WATER TABLE	NO. 3	נ د لا	anic	
HERE SUBBASE GRADES ARE WITHIN E. THE UNDERDRAIN PIPE IS ASSUMED HE SUBBASE ALONG THE CENTERLINE HERE THE UNDERDRAIN PIPING IS ABOVE OT AFFECTED BY THE UNDERDRAIN.	FEASIBILITY REPORT DANE COUNTY LANDFILL SITE N 4402 BRANDT ROAD MADISON, WISCONSIN	КР	JR/MRH	SCC 08/23/2024
ISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS NOTES. DURS WITHIN LIMITS OF WASTE REPRESENT BOTTOM SUBBASE GRADES). UNDERCUTS ARE NOT SHOWN. EASURED MARCH 29, 2023.	SITE	DRAWN BY:	CHECKED BY:	APPROVED BY:
NTION TO WATER TABLE (FEET) Maximum Color 2.500 N	t of waste iter way	2522268.00	06/12/2024	08/13/2024
0 300 ALE: 1" = 300'	LE DANE COUNTY DEPARTMENT OF WASTE ZZ AND RENEWABLES 1919 ALLIANT ENERGY CENTER WAY MADISON, WI 53713	PROJECT NO.	DRAWN:	REVISED:

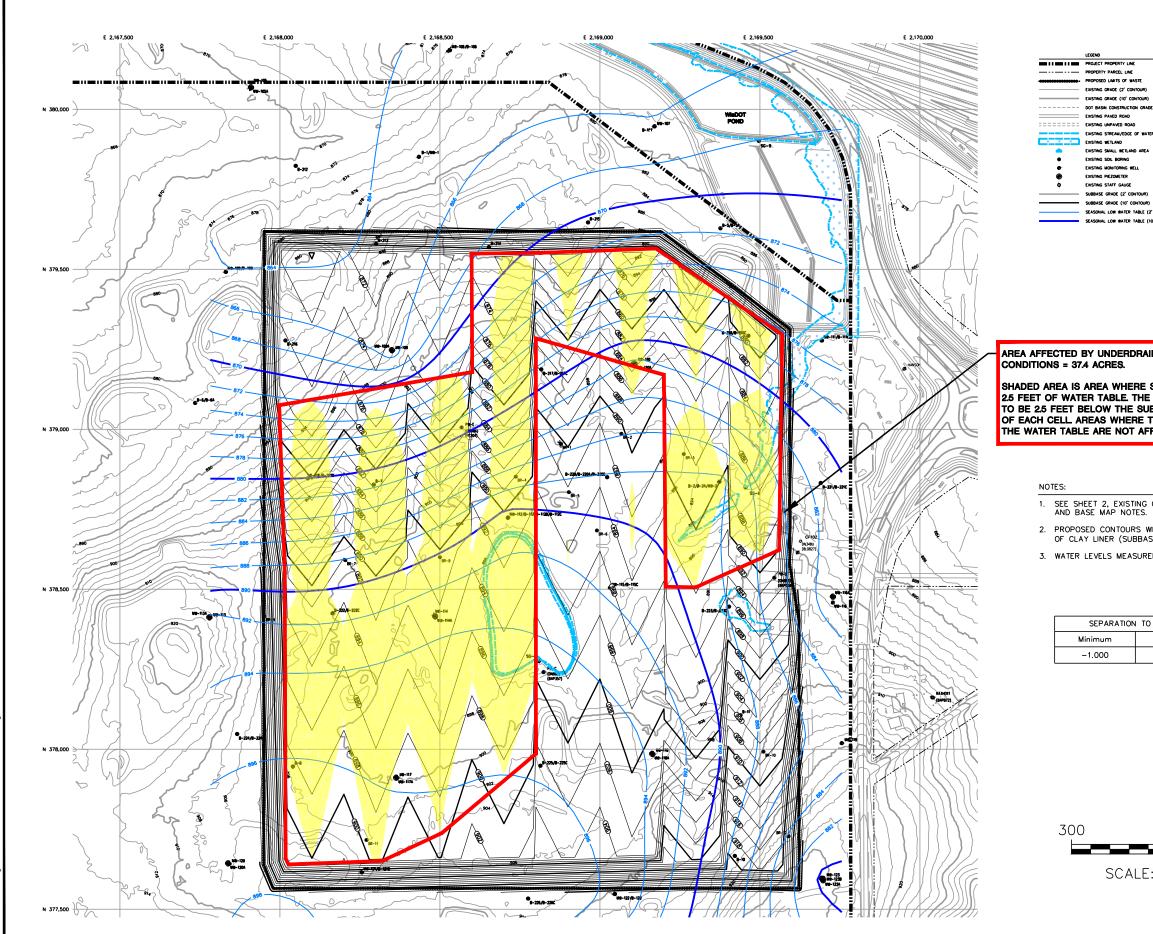


FIGURE 2024) TABLE SUBBASE GRADES (JULY SEASONAL LOW WATER DOT BASIN CONSTRUCTION GRADE (2' CONTOUR) SCSENGINEERS 2830 DAIRY DRIVE MADISON, W 53718-6751 PHONE: (608) 224-2830 EXISTING STREAM/EDGE OF WATER SEASONAL LOW WATER TABLE (2' CONTOUR) SEASONAL LOW WATER TABLE (10' CONTOUR) AREA AFFECTED BY UNDERDRAIN UNDER LOW WATER TABLE Μ ENCINEER Ň SHADED AREA IS AREA WHERE SUBBASE GRADES ARE WITHIN 2.5 FEET OF WATER TABLE. THE UNDERDRAIN PIPE IS ASSUMED FEASIBILITY REPORT E COUNTY LANDFILL SITE N 4402 BRANDT ROAD MADISON WISCOMUN TO BE 2.5 FEET BELOW THE SUBBASE ALONG THE CENTERLINE OF EACH CELL AREAS WHERE THE UNDERDRAIN PIPING IS ABOVE ARH 08, THE WATER TABLE ARE NOT AFFECTED BY THE UNDERDRAIN. N N 1. SEE SHEET 2, EXISTING CONDITIONS, FOR ADDITIONAL LEGEND ITEMS AND BASE MAP NOTES. DANE 2. PROPOSED CONTOURS WITHIN LIMITS OF WASTE REPRESENT BOTTOM OF CLAY LINER (SUBBASE GRADES). UNDERCUTS ARE NOT SHOWN. 3. WATER LEVELS MEASURED DECEMBER 4, 2023. CHECKED I SITE SEPARATION TO WATER TABLE (FEET) Maximum Color 2.500 68.00 /2024 2522: 06/1: 08/1. Ν WASTE WΑΥ Ъ CENTER ARTMENT 300 \cap RGY r DEP BLES ENEF 53713 と렬 SCALE: 1" = 300' AND 1919 MADI CLIENT