Alternate Daily Cover and Beneficial Reuse Plan Brown County South Landfill

Project I.D.: 18B027

Brown County Port & Resource Recovery Department Green Bay, Wisconsin

September 2019 Revised February 2024

Alternate Daily Cover and Beneficial Reuse Plan Brown County South Landfill

Project ID: 18B027

Prepared for
Brown County Port & Resource Recovery Department
2561 S. Broadway Street
Green Bay, WI 54304

Prepared by Foth Infrastructure & Environment, LLC

September 2019 Revised February 2024

REUSE OF DOCUMENTS

This document has been developed for a specific application and not for general use; therefore, it may not be used without the written approval of Foth. Unapproved use is at the sole responsibility of the unauthorized user.

Alternate Daily Cover and Beneficial Reuse Plan Brown County South Landfill

Table of Contents

		Pag	
List		previations, Acronyms, and Symbols	
1	Intro	luction	. 1
	1.1	Background Information	. 1
	1.2	Purpose	. 1
2	Pape	Mill Sludge	.2
3	Foun	dry Sand and Slag	.4
4		ed Glass	
5	Auto	nobile Shredder Fluff	.6
6	Shree	ded Wood	.7
7	Cont	minated Soils	.8
	7.1	Alternate Daily Cover	.8
	7.2	Intermediate Cover	.8
	7.3	Road Construction/Staging Areas	.9
	7.4	Berm Construction	
8	Boile	r/Fly Ash	10
9		Shell® Spray-on Synthetic Daily Cover	
	9.1	General	
	9.2	Proposed Mixtures	11
	9.3	Proposed Usage	
		9.3.1 Interior Active Areas and Slopes	
10	Tire	Derived Aggregate	
		Performance Evaluation and Contingency Plan	
		Material Delivery, Handling and Use	
		Trial Period.	
11	Allov	vable Daily Cover Amounts	15
•			-
		Attachments	
Atta	chmei	t 1 Typical Paper Mill Sludge Sources	
	chmei		ff
	chmei	1 1	
	chmei	•••	
	chmei		
		11	

List of Abbreviations, Acronyms, and Symbols

ADC Alternate Daily Cover

BCPRRD Brown County Port & Resource Recovery Department

BOW Brown, Outagamie, and Winnebago

cy cubic yard

FD Feasibility Determination

Foth Foth Infrastructure & Environment, LLC

FR Feasibility Report

lb pound

MSW municipal solid waste NELF Northeast Landfill

Plan Alternate Daily Cover and Beneficial Reuse Plan

SLF South Landfill

TDA Tire derived aggregate

WDNR Wisconsin Department of Natural Resources

1 Introduction

1.1 Background Information

The Brown County South Landfill (SLF) property is located in the E ½ of the SW ¼ Section 18, Township 21N, Range 20E, town of Holland, Brown County, Wisconsin. The county property encompasses approximately 313 acres, of which approximately 69.7 acres are proposed for the limits of filling for the SLF.

A Feasibility Report (FR) for the Brown County SLF was submitted in July of 1994. The SLF received a Feasibility Determination (FD) in October of 1996. The determination included a design capacity of 9,355,148 cubic yards (cy) for a municipal solid waste (MSW) landfill and an additional 3,696,323 cy for a process residue monofill.

This Alternate Daily Cover (ADC) and Beneficial Reuse Plan (Plan) is being submitted as an appendix to the SLF Plan of Operation. The Plan of Operation's design has an airspace capacity of 9,303,000 cy for MSW and does not include a monofill for process residue.

The SLF will serve as a replacement to the Outagamie County Northeast Landfill (NELF). The NELF currently operates as the Brown, Outagamie, and Winnebago (BOW) Counties' regional landfill in a tri-county waste agreement, with the SLF projected as the next BOW landfill. Landfill operations and waste types/sources at the SLF will be consistent with the NELF.

1.2 Purpose

The purpose of this Plan is to obtain approval to use various materials at the SLF as ADC or for other beneficial uses such as berms, dikes, roads, and the staging deck for haul trucks. The following waste types are proposed for use:

- Paper Mill Sludge
- Foundry Sand and Slag
- Automobile Shredder Fluff
- Shredded Wood
- Contaminated Soil
- Boiler/Fly Ash
- Posi-Shell® Spray-on Synthetic Daily Cover

Each proposed material is presented in the following sections along with a description of physical characteristics and its intended use. This Plan functions to reduce plan modifications needed in the future for the SLF. All of these materials have been approved for ADC and other beneficial uses at the NELF. This plan was later revised to include use of tire derived aggregate (TDA).

2 Paper Mill Sludge

The BOW regional waste system accepts paper mill sludge from a variety of sources. Paper mill sludge has been approved for use as ADC at the NELF. Prior to acceptance, each individual source of paper mill sludge is evaluated in accordance with the SLF's Special Waste Management Plan. If accepted, each source is evaluated for its potential to be used as ADC. Limiting factors include the consistency of the material and its ability to be efficiently handled and spread in a 6-inch layer. In addition, the potential to create an odor issue will also be considered.

Paper mill sludge works well as an ADC. It typically has the ability to absorb moisture which is a benefit during times of precipitation. The material is generally able to be spread in an even thickness, fills voids in the open face of the waste and works well on interior slopes. It also does not create significant dust and works well in windy conditions.

The paper mill sludge will be stockpiled daily near the active area. At the end of each day, the sludge will be spread in a 6-inch layer over the open face of the waste. The sludge will be removed to the extent practical prior to resuming filling to minimize the creation of barrier layers within the waste mass. The removed material can be reused or mixed with the MSW. Typically, the material would be removed during the next working day, but could possibly be left in-place for 2 to 4 weeks depending on fill sequencing. The maximum amount of time the material would be left in-place is 6 months, at which time intermediate cover would be required.

Table 1 indicates probable sources of paper mill sludge wastes that will be accepted at the Brown County Port & Resource Recovery Department (BCPRRD) SLF, along with their percent solids.

Table 1
Papermill Sludge as ADC

·	Percent		
Papermill Sludge Source	Solids	Volu	me (CY)*
Appvion Paper Mill	60.8		4,516
Clearwater Paper Mill	42.4		3,385
Fox River Fiber	50.6		21,999
Neenah Paper Appleton Paper Mill	39.5		1,085
Neenah Paper Neenah Paper Mill	36.0		3,461
Proctor & Gamble Paper Mill	31.5		11,498
Average	43.5	Total	45,944

^{*}Volume based on 2018 data.

As indicated by the table, paper mill sludge currently used for ADC averages 43.5% solids, with total percent solids varying with each source. BCPRRD proposes to continue using paper mill sludge as it is used at the current regional landfill in Outagamie County. Additional chemical and physical characteristics of paper mill sludge sources expected at the SLF are included in Attachment 1. Any new sources for paper mill sludge will be managed accordingly with the

SLF's Special Waste Managemer aforementioned characteristics, B (WDNR) approval.	nt Plan, and should SCPRRD shall seek	any potential sources Wisconsin Departme	s not meet the ent of Natural Resources

3 Foundry Sand and Slag

BCPRRD requests the use of foundry sand and slag for ADC in addition to construction of internal roadways, screening berms, and the staging deck for the haul trucks.

Foundry sand is created during the metal casting process. Sand is used in casting molds. The sand is reused numerous times and a portion of the sand is continuously removed and replaced with virgin sand. Eventually, heat and mechanical abrasion renders it unsuitable for use in the casting molds and it becomes a waste product. Slag is a solidified waste product removed from the molten metal created during the metal casting process.

When used as ADC, the foundry sand will be stockpiled adjacent to the active working face and spread over the refuse in a minimum 6-inch thickness at the end of each day. The foundry sand layer will be removed or mixed with the waste prior to additional waste placement. The sand will be removed to the extent practical prior to resuming filling to minimize the creation of barrier layers within the waste mass. The removed material can be reused or mixed with the MSW. Typically, the material would be covered during the next working day, but could possibly be left in-place for two to four weeks depending on fill sequencing. The maximum amount of time the material would be left in-place is six months, at which time intermediate cover would be required.

As much as possible, the material will be placed and graded directly to avoid double handling when used for berms or road base. Otherwise, it may be stockpiled temporarily near the berm or road locations. If foundry sand is used for berm construction, the outboard slopes will be covered with a minimum thickness of 1 foot of clean soil to prevent direct runoff from the material outside of the lined area of the landfill.

Slag will be stockpiled near to the active working face and used to construct structures (berms, dikes, roads or the staging deck) within the landfill limits on an as-needed basis. The primary use of the material will be for road base. If slag is used for berm construction, the outboard slopes will be covered with a minimum thickness of 1 foot of clean soil to prevent direct runoff from the material outside of the lined area of the landfill.

Foundry sand and slag can generally be used in all weather conditions. The material works well as ADC and for providing a firm base for roadways and staging areas. The sand and slag can also be mixed with other ADC materials to fill surface voids and add shear strength to the ground surface. Dusting may occur in windy conditions. The material will not be used if dust cannot be controlled. Foundry sand would not be used for berms during precipitation events unless all runoff from the material is contained within the lined area of the landfill.

4	Crushed Glass
BCPP this tir	RD rescinds its request to use residual glass and 3-mix glass as alternative daily cover at me.

5 Automobile Shredder Fluff

BCPRRD requests the use of automobile shredder fluff as an approved ADC material, in addition to construction of internal roadways and the staging deck for the haul trucks. Shredder fluff is created as a residue of the shredding and recycling of automobiles.

When used as ADC, the shredder fluff will be stockpiled adjacent to the active working face and spread over the refuse in a minimum 6-inch thickness at the end of each day. Typically, the material would be covered during the next working day but could possibly be left in-place for two to four weeks depending on fill sequencing. The maximum amount of time the material would be left in-place is six months, at which time intermediate cover would be required.

Shredder fluff is useful in providing an all-weather driving surface on internal haul roads and the staging deck. In general, the material is mixed with other materials (shredded wood, road gravel, foundry sand, etc.) and placed an approximate 1-foot thickness over the base material. As much as possible, the material will be placed and graded directly to avoid double handling. Otherwise, it may be stockpiled temporarily near the deck or road locations.

The shredder fluff material will be reviewed and approved for disposal in accordance with the SLF's Special Waste Management Plan. Attachment 2 provides the Special Waste Management Plan's analytical acceptance protocol, Protocol G, for accepting auto shredder fluff. Results of laboratory testing of the material will be included in the SLF's Annual Report.

6 Shredded Wood

BCPRRD is requesting source-separated, clean shredded wood be approved for ADC, internal roadway surfacing, and staging deck material for haul trucks. Typical particle size after shredding is 1 to 2 inches. Shredded wood works well as ADC in wet weather conditions. Shredded wood is most likely to be applied as staging deck material and internal roadway surfacing, but may be used sporadically as ADC. Precautions such as using the wood in wet weather conditions will be taken to minimize fire hazards. Any new sources for shredded wood will be managed accordingly with the SLF's Special Waste Management Plan, and should any potential sources not meet the aforementioned characteristics, BCPRRD shall seek WDNR approval. When used as ADC, the shredded wood will be stockpiled adjacent to the active working face and spread over the refuse in a minimum 6-inch thickness at the end of each day. The shredded wood will not require removal prior to additional waste placement. Typically, the material would be covered during the next working day, but could possibly be left in-place for 2 to 4 weeks depending on fill sequencing. The maximum amount of time the material would be left in-place is 6 months, at which time intermediate cover would be required.

As much as possible, the material will be placed and graded directly to avoid double handling when used for road base or staging areas. Otherwise, it may be stockpiled temporarily near the areas where it is to be used.

7 Contaminated Soils

BCPRRD proposes to use contaminated soils for ADC, intermediate cover, as well as interior structures such as berms, dikes, roads and staging areas. Each new source for contaminated soils will be evaluated per the SLF's Special Waste Management Plan. Limiting factors include the consistency of the material and its ability to be efficiently handled and spread in a 6-inch layer. A minimum of 1-foot thickness of clean soil will be placed over the exterior slope of berms constructed using contaminated soils where surface water runoff may occur. All surface water contacted by contaminated soils will be handled as leachate. Contaminated soils will not be used for intermediate cover on exterior slopes unless approved at a future date.

Contaminated soil sources used as ADC will not include all types of contaminated soils that have been approved for disposal in the landfill. Pre-approved ADC and beneficial reuse contaminated soils will be limited to contaminated soils with levels at or below the NR 720 Wis. Adm. Code Industrial Direct Contact Residual Contaminant Levels (RCL). ADC-approved contaminated soil sources will exclude soils approved for disposal in the landfill through a "contained out" determination made in accordance with the Guidance for Hazardous Waste Remediation. Contaminated soils that fall between the two levels will be approved on a case-by-case basis and BCPRRD will seek WDNR approval for these sources. Section 5.2 of the Special Waste Management Plan includes additional information about contaminated soil sources.

7.1 Alternate Daily Cover

Materials will be stockpiled adjacent to the active area at a location that will not affect traffic flow. The material will be placed in a 6-inch layer over the open face of the active fill area following each day's filling activities. The material may be supplemented with other ADC materials or soil. The material will be removed (to the extent practical) prior to filling additional waste materials in that area to minimize the potential to create hydraulic barrier layers in the waste mass. The material may be re-used as ADC if it can be removed with minimal contamination from the waste materials. Material not re-used will be mixed with the waste materials in a manner which will not create hydraulic barriers within the waste mass. Fine-grained soils will not be used during wet weather conditions.

7.2 Intermediate Cover

Materials will be stockpiled within the lined area of the landfill in a location where direct runoff from the material will be contained within the lined area. The material will be placed in an approximate 1-foot thick lift over a completed waste lift which will not receive additional waste for several weeks or more. The material will be placed in a manner which will direct all surface water runoff to the leachate collection system of the SLF. The material will not be placed on exterior slopes. The material will be removed (to the extent practical) prior to filling additional waste materials in that area. The material may be re-used as intermediate cover if it can be removed with minimal contamination from the waste materials. Material not re-used will be mixed with the waste materials in a manner which will not create hydraulic barriers within the waste mass.

7.3 Road Construction/Staging Areas

Materials will be stockpiled within the lined area of the landfill in a location where direct runoff from the material will be contained within the lined area. The material will be spread in 1 to 2 foot layers to provide a firm base over the waste material. Additional road base materials may be placed over the contaminated soils. The material may be re-used as road material if it can be removed with minimal contamination from the waste materials. Material not re-used will be mixed with the waste materials in a manner which will not create hydraulic barriers within the waste mass. Fine-grained soils will not be used during wet weather conditions.

7.4 Berm Construction

Materials will be stockpiled within the lined area of the landfill in a location where direct runoff from the material will be contained within the lined area. The material will used to construct screening berms around the perimeter of waste lifts. The berms will provide visual screening and protection from the wind. A minimum 1-foot thickness of clean soil will be placed over the exterior slope of the berms if there is a potential for direct runoff of surface water into the site surface water management system. Fine-grained soils will not be used during wet weather conditions.

8 Boiler/Fly Ash

BCPRRD requests approval for boiler/fly ash to be utilized at the SLF site for ADC as well as internal haul roads, screening berms, and staging areas. The ash from each source will be evaluated under the SLF's Special Waste Management Plan. Attachment 3 includes the typical sources of boiler/fly ash anticipated at the SLF. Boiler/fly ash may only be used if dust generation is prevented and controlled.

When used as ADC, the ash will be stockpiled adjacent to the active working face and spread over the refuse in a minimum 6-inch thickness at the end of each day. The ash layer will be mixed with the waste prior to additional waste placement. Typically, the material would be covered during the next working day, but could possibly be left in-place for two to four weeks depending on fill sequencing. The maximum amount of time the material would be left in-place is six months, at which time intermediate cover would be required.

As much as possible, the material will be placed and graded directly to avoid double handling when used for berms or road base. Otherwise, it may be stockpiled temporarily near the berm or road locations. The primary concern with the use of this material is creating dust. The material will not be used if dust cannot be controlled. Water may need to be applied to the material to control dust. The material will not be used on the surface of roadways or the deck area. In general, it will be mixed with other materials (i.e., breaker run, foundry sand, construction and demolition materials, slag, etc.) to form a solid base for the hauling vehicles to operate on. The material will be covered with a surface material (road gravel, shredder fluff, wood chips, etc.) prior to being used for vehicle traffic.

Boiler/fly ash has been used successfully at landfills to stabilize low strength areas. When hydrated, the material tends to form a solid structure which provides stability. For this reason, it is felt the material will make excellent road base or deck material.

9 Posi-Shell® Spray-on Synthetic Daily Cover

9.1 General

Posi-Shell® is a synthetic spray-on daily cover material which has been approved for use as ADC at the NELF. The approval denied the use of the spray-on material during windy days or significant rain events. In addition, the approval limited the amount of time which the material could be left exposed to 72 hours.

The material has been used successfully at the NELF since late 2013. BCPRRD proposes use of Posi-Shell® as an optional daily cover at the SLF.

9.2 Proposed Mixtures

BCPRRD proposes to use four separate mixes in accordance with manufacturer's recommendations. The Posi-Shell® formulation guide is included in Attachment 4 along with product information. Each separate mixture is described below:

Mixture 1 – Standard Mix for Dry Conditions

In general, a typical batch of Mixture 1 will begin with 1,600 gallons of water. Two, 500-pound (lb) bulk sacks of Posi-Shell® will be added and mixed at high speed for five minutes. The material will be spray applied at a rate of approximately 0.1 to 0.125 gallons per square feet. One batch of material will cover approximately 12,800 to 16,000 square feet. This mixture is referred to as the base mix in the Posi-Shell® formulation guide, which is provided in Attachment 4.

Mixture 2 – Moderate Wet Conditions

In general, a typical batch of Mixture 2 will begin with 1,600 gallons of water. Two, 500-lb bulk sacks of Posi-Shell® will be added and mixed at high speed for five minutes. The material will be spray applied at a rate of approximately 0.125 to 0.167 gallons per square feet. A total of 4,000 lbs of Portland cement will be added and mixed for two minutes. One batch of material will cover approximately 9,600 to 12,800 square feet. This mixture is referred to as the EC-4 mix in the Posi-Shell® formulation guide, which is provided in Attachment 4.

Mixture 3 – Severe Wet Conditions

In general, a typical batch of Mixture 3 will begin with 1,600 gallons of water. Two, 500-lb bulk sacks of Posi-Shell® will be added and mixed at high speed for five minutes. The material will be spray applied at a rate of approximately 0.167 to 0.25 gallons per square feet. A total of 4,000 lbs of Portland cement and up to 200 lbs of Xtreme Rain ShieldTM will be added and mixed for two minutes. One batch of material will cover approximately 6,400 to 9,600 square feet. This mixture is referred to as the Xtreme Rain ShieldTM Series (medium) mix in the Posi-Shell® formulation guide, which is provided in Attachment 4.

9.3 Proposed Usage

9.3.1 Interior Active Areas and Slopes

BCPRRD proposes to use Posi-Shell® spray-on ADC as an optional ADC for the SLF. Mixture 1 under dry weather conditions; and if light or moderate rain is expected (0 to 0.5 inches), Mixture 2 will be used. If heavy rain (>0.5 inches) is forecast, Mixture 3 will be used. The material will remain in place up to 72 hours before being covered with additional waste or other daily cover materials approved for extended exposure prior to intermediate cover placement. The material will be applied in accordance with manufacturer's recommendations. The material will not be used on exterior slopes. In addition, the material will not be used on windy days or during significant rain events.

10 Tire Derived Aggregate

BCPRRD proposes to use tire derived aggregate (TDA) or tire chips as an alternative construction material for horizontal gas extraction well and leachate recirculation pipe bedding aggregate. This material was approved in the November 17, 2023 plan modification approval.

The use of 2-inch by 2-inch nominally sized tire derived aggregate will result in an aggregate material similar to the 1.5-inch stone aggregate specified in the Plan of Operations. The tire derived aggregate loose density is approximately four times less dense than stone 22 pounds per cubic foot (lbs/cf) (110 for stone) as placed loose and between 30 lbs/cf to 60 lbs/cf when loaded. Studies on hydraulic conductivity of tire derived aggregate has shown ranges similar to that of stone (0.5 centimeter per second [cm/sec] to 20 cm/sec). Tire derived aggregate exhibits a greater degree of compressibility with smaller shredded size showing lower amounts than larger shreds. Compressibility of the tire derived aggregate also increases with higher vertical strains. The following design considerations are given.

- ◆ Compaction and Settlement To minimize the effects of compressibility, compaction and post-installation settlement will be addressed. Additional compaction efforts at material installation as well as thickening of the tire derived aggregate pipe bedding is proposed.
- ♦ Chip size Tire derived aggregate that is too small nominal size has tendency to result in lower void space for liquid and gas movement. Tire derived aggregate that is too large has greater risk of higher compressibility due to inadequate compaction on installation. Tire derived aggregate sizes of 2 inches is proposed as it appears to more closely match the planned stone aggregate characteristics for handling liquids drainage and gas extraction capacity.
- ◆ Trench size The width and depth of the bedding will be increased by 40% to account for compressibility under vertical stresses due to filling operations and vehicle loading.

10.1 Performance Evaluation and Contingency Plan

Documentation of installed tire derived aggregate as beneficial use material within horizontal gas extraction wells and leachate recirculation trenches will be performed and included with annual reports. Observations of material handling and compaction will be made. The trenches will be observed as waste filling continues post construction.

Gas extraction is anticipated to begin in 2026. At the time of gas extraction, observations on well performance will be made and documented in the annual report. Should Brown County install some horizontal gas extraction wells with stone aggregate, a comparison in performance can be made at that time. Leachate recirculation will not begin until after gas extraction equipment is up and running.

As noted in Addendum No. 1 to the Plan of Operations, "the horizontal gas extraction wells will be installed as temporary control devices installed during active fill to control gas prior to the time when vertical gas wells can be installed." Horizontal gas extraction wells have historically been prone to differential settlement of the waste mass resulting in low points in the gas piping.

Due to liquids settling out in low points, gas extraction may be hindered. Should horizontal gas extraction wells with tire derived aggregate bedding become flooded out or unusable, vertical gas extraction wells will be installed as the primary gas extractors once filling reaches design grades. For leachate recirculation wells with tire derived aggregate bedding, Brown County will monitor the system in accordance with the Leachate Recirculation Plan submitted as part of the Plan of Operation for warning symptoms and failure thresholds. Routine monitoring of the system will include documentation of gallons recirculated to each well and performance over time of the recirculation trenches will be used to assess system operations.

10.2 Material Delivery, Handling and Use

The tire aggregate material will be delivered to the site by trailer load at the start of gas or leachate well construction. Tire aggregate may be stockpiled on site or delivered just in time and placed right in the trench. Material stockpile amounts not to exceed 120% of required amounts to reduce excess storage. The tire aggregate will be stockpiled outside the limits of waste.

Installation of the material within trenches has shown to be consistent with stone aggregate installation. An excavator or other earth moving equipment will be used to move material into the dug trenches. An excavator bucket or other compaction equipment will be used to compact the installed tire derived aggregate pipe bedding. After piping installation, the remainder of the trench will be filled and compacted. Waste will be placed over the tire aggregate trenches to provide separation from the active fill area for fire mitigation.

10.3 Trial Period

A 7-year trial period will be applied to the use of the tire aggregate as a beneficial use material. This allows for construction of the wells to occur based on filling sequences and gas extraction system installation and operation. The tonnage accepted and used will be summarized and included in the SLF's annual report. A summary of the material effectiveness and any issues related to its use will be provided in the annual report.

11 Allowable Daily Cover Amounts

The SLF is expected to accept approximately 2,400 tons of waste (including beneficial use materials) per day. Assuming an average density of 1,650 lbs per cubic foot, the daily volume of airspace used is estimated to be 2,900 cy. The daily area where waste is placed is approximately 140 feet by 140 feet. Six inches of daily cover over the working face of the daily filling area results in a volume of 363 cy. Therefore, BCPRRD requests the acceptable daily cover percentage be increased to 363 cy/2,900 cy or 12.5% by volume (of the total airspace).

Attachment 1 Paper Mill Sludge Sources

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P 920 729 1100 | T 1 800 776 7196 F 920 729 4945

OUTAGAMIE COUNTY SOLID WASTE DEPARTMENT

1419 HOLLAND RD. APPLETON, WI 54911 Project Number: Report Date: Sampled By:

19000768 12/27/2018 CLIENT

Attn: BILL LONG

Samples:

5

Sample Number:

Sample ID:

49001625 APPVION

Sample Date: Date Received: 12/17/2018

Parameter

12/18/2018

Results

Units LOD LOQ

Dil. Method Analyzed Codes

AMMONIA NITROGEN KJELDAHL NITROGEN

58 1431

23 mg/I 70 mg/l

77 233

SM4500NH3G 12/26/18 98 639 EPA351.2

12/21/18

Sample Number:

49001626

Sample ID:

PROCTOR & GAMBLE

Sample Date: Date Received: 12/17/2018

Parameter

12/18/2018

AMMONIA NITROGEN

74 1003

Results

mg/l 23 28 mg/l

LOD

Units

77 93

LOQ

Dil. Method 98

259

Dil.

Analyzed Codes

SM4500NH3G 12/26/18 12/21/18 EPA351.2

Sample Number:

KJELDAHL NITROGEN

49001627

Sample ID:

NEENAN PAPER NEENAH

Sample Date: Date Received: 12/17/2018

12/18/2018

Parameter

AMMONIA NITROGEN

KJELDAHL NITROGEN

1070 7427

Results

mg/l mg/l

Units

23 115

LOD

77 383

LOQ

100 SM4500NH3G 12/26/18 1042 EPA351.2

Method

12/21/18

Analyzed Codes

Analytical Report

501 West Bell Street Neenah, WI 54956-4868 P 920 729 1100 | T 1.800 776 7196 F 920 729 4945

Sample Number:

49001628

Sample ID:

NEENAN PAPER APPLETON

Sample Date:

12/17/2018

Date Received:

12/18/2018

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
AMMONIA NITROGEN	184	mg/l	19	63	83	SM4500NH3	3G 12/26/18	
KJELDAHL NITROGEN	984	mg/l	40	133	363	EPA351.2	12/21/18	

Sample Number:

49001629

Sample ID:

FOX RIVER FIBER

Sample Date:

12/17/2018

Date Received:

12/18/2018

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
AMMONIA NITROGEN	71	mg/l	19	63	83	SM4500NH30	12/26/18	
KJELDAHL NITROGEN	923	mg/l	28	93	255	EPA351.2	12/21/18	

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Conarda Vordus

BLE:gr

Analytical Report

501 West Bell Street Neenah, WI 54956 4868 P 920 729 1100 | T 1 800 776 7196 F 920 729 4945

OUTAGAMIE COUNTY SOLID WASTE DEPARTMENT 1419 HOLLAND RD.

APPLETON, WI 54911-8985

Project Number: Report Date: Sampled By:

19000848 1/2/2019 CLIENT

Attn: MR. GARY STEEDE

Samples:

1

Sample Number:

49001781

Sample ID:

CLEARWATER PAPER

Sample Date:

12/19/2018

Date Received:

12/20/2018

Results expressed on an 'as received' basis.

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
AMMONIA NITROGEN	69	ppm	19	63	83	SM4500NH3	G 12/27/18	
KJELDAHL NITROGEN	1077	ppm	42	140	383	EPA351.2	12/31/18	

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABORATORIES, INC. WDNR Certified Lab #445023150 Approved By:

Clonarda Hordus

BLE:tk

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

APPVION

P.O. BOX 359, 825 E WISCONSIN AVE

APPLETON, WI 54912-

Attn: DAVE SCHOENLEBER

Report Number:

1511331

Report Date:

11/6/2015

Sampled By: Emailed: Client

11/6/2015

PO#:

427392

Samples:

1 SLUDGE

Sample Number:

45026376

Description:

WASTEWATER TREATMENT SLUDGE

Sample Date:

10/20/2015

Date Received:

10/21/2015

Parameter	Results	Units	Codes LO	D	LOQ	Method	Analyzed
CHLORINE	0.07	%	0.0	32	0.02	ASTM D2361	11/03/15
CYANIDE, TOTAL	<0.30	ppm	0.3	30	1.0	SM4500CN-E	10/28/15
CYANIDE-AM. TO CL2	<0.30	ppm	0.0	007	0.023	SM4500CN-G	10/28/15
FLASH POINT	SEE ATTAC	CHED ESC P	REPORT				
FREE LIQUIDS	0.0	%	0		0	SW 846 9095	10/22/15
METALS DIGESTION	DONE		0		0	SM3030E	11/02/15
PHENOL, TOTAL	6.0	ppm	1.1	1	3.7	EPA420.4	11/04/15
pH-LAB	7.0	S.U.	0		0	SW846-9045C	10/21/15
SULFIDE	SEE ATTA	CHED ESC F	REPORT				
TCLP ARSENIC	0.008	mg/l	0.0	005	0.017	SM3113B	11/02/15
TCLP BARIUM	0.15	mg/l	0.1	10	0.33	SM3111D	11/02/15
TCLP CADMIUM	< 0.01	mg/l	0.0	01	0.03	SM3111B	11/04/15
TCLP CHROMIUM	< 0.03	mg/i	0.0	03	0.10	SM3111B	11/02/15
TCLP EXTRACTION	COMPLETE		0		0	SW846-1311	10/31/15
TCLP LEAD	< 0.03	mg/l	0.0	03	0.10	SM3113B	11/04/15
TCLP MERCURY	< 0.0002	mg/l	0.0	0002	0.0008	SM3112B	11/05/15
TCLP ORGANICS	SEE ATTA	CHED ESC F	REPORT/L	_*			•
TCLP SELENIUM	< 0.005	mg/l	0.0	005	0.017	SM3113B	11/04/15
TCLP SILVER	< 0.01	mg/l	0.0	01	0.03	SM3113B	11/04/15
TOTAL SOLIDS	60.8	%	0.0	010	0.010	SM2540B	10/21/15

^{*}Quality Assurance Code(s):

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

offing M. Wagner

JMW:rt

Members
WI Environmental Labs; Am. Chemical Soc.;
T.A.P.P.I.; WI Food Processors Assn.;
Wisc. Paper Council

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water)

L. Sample(s) not received in a glass container as required by WDNR protocol.

ANALYTICAL REPORT

November 03, 2015

Badger Laboratories & Engineering, Inc.

Sample Delivery Group:

L796360

Samples Received:

10/23/2015

Project Number:

Description:

Report To:

Jeff Wagner

501 West Bell Street

Neenah, WI 54956

Entire Report Reviewed By: Jahn V Howkins

John Hawkins

Technical Service Representative

Results relatio endy to the thems tested or calibrated and our recented as recented as troughed values. This test report that is to be reproduced, except in this, without written approved of the laboratory. Where applicable, simpling conducted by ESC is performed per guidance provided in laboratory standard operating procedures. 06302, 063031, and 063034.

TABLE OF CONTENTS

ONE LAB. NATIONWIDE.

		(C :-
¹ Cp: Cover Page	1	Ср
² Tc: Table of Contents	2	z Te
³ Ss: Sample Summary	3	
⁴Cn: Case Narrative	4	³Ss
⁵Sr: Sample Results	5	4_
26376 L796360-01	5	[*] Cn
⁶ Qc: Quality Control Summary	6	⁵Sr
Wet Chemistry by Method 9034/9030B	6	<u> </u>
Wet Chemistry by Method D93/1010A	7	[®] Qc
Volatile Organic Compounds (GC/MS) by Method 8260B	8	7
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	10	[GI
⁷ GI: Glossary of Terms	12	⁸ AI
⁸ Al: Accreditations & Locations	13	L
⁹ Sc: Chain of Custody	14	Sc

SAMPLE SUMMARY

Collected by

ONE LAB, NIATIONWIDE.

Receive d date/time

Collected date/time

26376 L796360-01 Solid	10/20/15 13:30	10/23/15 09:00			
Method	Batch	Dilution	Preparation	Analysis	Analy sis Analyst
			date/time	date/time	
Preparation by Method 1311	WG824985	1	10/27/15 22:58	10/27/15 22:59	LJN
Preparation by Method 1311	WG825045	1	10/28/15 13:20	10/28/15 14:06	СНМ
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG825405	1	10/29/15 20:04	10/30/15 08:41	JF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG825364	1	10/29/15 17:34	10/29/15 17:34	BMB
Wet Chemistry by Method 9034/9030B	WG825488	1	10/30/15 11:10	10/31/15 13:45	AS
Wet Chemistry by Method D93/1010A	WG825708	1	10/31/15 12:08	10/31/15 12:08	MZ

26376

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/tlme: 10/20/15 13:30 Preparation by Method 1311

	Result	Qualifier	Prep	Batch	
Analyte			date / time		L.
TCLP Extraction	en de la companya de Persona de la companya	AND THE COLUMN TWO PARTY AND	10/27/2015 10:58:35 PM	WG824985	2
TCLP ZHE Extraction			10/28/2015 1:20:54 PM	WG825045	L

Wet Chemistry by Method 9034/9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / 1ime	
Reactive Sulf.(SW846 7.3.4.1)	ND	The second secon	25.0	1	10/31/2015 13:45	<u>WG825488</u>

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch	ľ
Analyte	Deg. F			date / time		L
lgnitability	DNI at 170) F	1	10/31/2015 12:08	WG825708	7

GI

ΆI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND	era nitra il no encuerità resser sittà domenti su fino i notiente, un la finnazione cue	0.0500	0.50	T	10/29/2015 17:34	WG825364
Carbon tetrachloride	ND		0.0500	0.50	1	10/29/2015 17:34	WG825364
Chlorobenzene	ND		0.0500	100	1	10/29/2015 17:34	WG825364
Chloroform	ND		0.250	6	1.	10/29/2015 17:34	WG825364
1,2-Dichloroethane	ND		0.0500	0.50	1	10/29/2015 17:34	WG825364
1,1-Dichloroethene	ND		0.0500	0.70	1	10/29/2015 17:34	WG825364
2-Butanone (MEK)	ND		0.500	200	1	10/29/2015 17:34	WG825364
Tetrachloroethene	ND		0.0500	0.70	1	10/29/2015 17:34	WG825364
Trichloroethene	ND		0.0500	0.50	1	10/29/2015 17:34	WG825364
Vinyl chloride	ND		0.0500	0.20	1	10/29/2015 17;34	WG825364
(S) Toluene-d8	105		90.0-115	114		10/29/2015 17:34	WG825364
(S) Dibromofluoromethane	101		79.0-121	125		10/29/2015 17:34	WG825364
(S) a,a,a-Trifluorotoluene	98.1		90.4-116	114		10/29/2015 17:34	WG825364
(S) 4-Bromofluorobenzene	90.9		80.1-120	128		10/29/2015 17:34	WG825364

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/i	mg/i		date / time	
1,4-Dichlorobenzene	ND	1944 aanthii (aa aaa , 1944 taha , 1, ga daaaga ta'alka aa ga	0.100	7.50	1	10/30/2015 08:41	WG825405
2,4-Dinitrotoluene	ND		0.100	0.13	1	10/30/2015 08:41	WG825405
Hexachlorobenzene	ND		0.100	0.13	1	10/30/2015 08:41	WG825405
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	10/30/2015 08:41	WG825405
Hexachloroethane	ND		0.100	3	1	10/30/2015 08:41	WG825405
Nitrobenzene	ND		0.100	2	1	10/30/2015 08:41	WG825405
Pyridine	ND		0.100	5	1	10/30/2015 08:41	WG825405
3&4-Methyl Phenol 2-Methylphenol 2-(V	ND		0.100	400	1	10/30/2015 08:41	WG825405
2-Methylphenol - (V	ND		0.100	200	1	10/30/2015 08:41	WG825405
Pentachlorophenol	ND		0.100	100	1	10/30/2015 08:41	WG825405
2,4,5-Trichlorophenol	ND		0.100	400	1	10/30/2015 08:41	WG825405
2,4,6-Trichlorophenol	ND		0.100	2	1	10/30/2015 08:41	WG825405
(S) 2-Fluorophenol	42.0		10.0-77.9	87		10/30/2015 08:41	WG825405
(S) Phenol-d5	30.5		5.00-70.1	67	14 (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14)	10/30/2015 08:41	WG825405
(S) Nitrobenzene-d5	43.9		21.8-123	120		10/30/2015 08:41	WG825405
(S) 2-Fluorobiphenyl	53.0	en grant ja de anakti Grant ja	29.5-131	122		10/30/2015 08:41	WG825405
(S) 2,4,6-Tribromophenol	54.6		11.2-130	148		10/30/2015 08:41	WG825405
(S) p-Terphenyl-d14	62.8		29.3-137	149	1924	10/30/2015 08:41	WG825405

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

^¹Cp

²Tc

³Ss

⁴Cn

⁵Sr

⁶Qc

7GI

⁸AI

Sc

John Hawkins

Technical Service Representative

lethod Blank (MB)													* 1
1B) 10/31/15 13:45										····			- [c
	MB Result	MB Qualifier	MB RDL										2_
nalyte eactive Sulf.(SW846 7.3.4.1)	mg/kg ND		mg/kg 25.0									****	_ []
eactive Suit,(SW840 7,S.4.1)	ND		25.0										3
796360-01 Original Sa	ample (OS) •	Duplicate	(DUP)										Ľ
S) 10/31/15 13:45 • (DUP) 10/31			(00.7										— ⁴(
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							Ļ
alyte	mg/kg	mg/kg		%	***************************************	rv l							15
	919			70		%]3
active Sulf.(SW846 7.3.4.1)	ND	ND	1	0.000	. unlicato (I C	20		O PART LANGUAGE STATE AND	Magazinia (Company), ggirin, i	THE STATE OF THE S	THE STREET PROGRAMMENT AND ADMINISTRATION AND A STREET PROGRAMMENT AND	erbernsk filikalenten man i ene i en ma	
boratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • I	ND Laborator	y Control S LCSD Resu	o.ooo ample Du	Rec. LCSD	20 CSD) Rec. Rec. Llmi	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		China da San Alaman (and page) and page (and page)	5
octive Sulf.(SW846 7.3.4.1) boratory Control Sar S) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			
octive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount	ND Laborator	y Control S LCSD Resu	o.ooo ample Du ult Lcs I	Rec. LCSD %	20 CSD) Rec. Rec. Llmi	LCS Qualifier	LCSD Qualifier					7
active Sulf.(SW846 7.3.4.1) boratory Control Sar	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) poratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
octive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) poratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD %	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) poratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7
ctive Sulf.(SW846 7.3.4.1) Doratory Control Sar 5) 10/31/15 13:45 - (LCSD) 10/	ND mple (LCS) • 31/15 13:45 Spike Amount mg/kg	ND Laborator LCS Result mg/kg	y Control S LCSD Resu mg/kg	0.000 ample Du ult LCS I %	Rec. LCSD	20 CSD) Rec. Rec. Llmi %	LCS Qualifier	LCSD Qualifier	%	%			7

WG825708

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method D93/1010A

L797217-01 Original Sample (OS) • Duplicate (DUP)

(OS) 10/31/15 12:08 • (DUP) 10/31/	5 12:08						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	s
Analyte	Deg. F	Deg. F		%		%	
Ignitability	DNI at 170 F	DNI at 170 F	1	0.000	VIII. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 10/31/15 12:08 · (LCSD) 10/3	J1/15 12:08									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	Deg. F	Deg. F	Deg. F	%	%	%			%	%
Ignitability	82.0	83	83	101	101	93.0-107	C. Ph I special C.C. Indian I - I who o'll light and proper to being differen-	A the state of the	0.000	20
						i				

³Sr

Method Blank (MB)													1
MB) 10/29/15 12:47											- Z Ÿ		
	MB Result	MB Qualifier	MB RDL								1		<u></u>
паlyte	mg/l		mg/l								1		2
enzene	ND		0.0500							and the throng the shiften de reason and the section of the sectio		(1844) - A. (1847) - J. (1846) - Thanks (1844) - 1844 - 1844 - 1844	
arbon tetrachloride	ND		0.0500										3
nlorobenzene	ND		0.0500										·
nloroform	ND		0.250						January .				4
2-Dichloroethane	ND		0.0500										
-Dichloroethene	ND		0.0500										<u> </u>
Butanone (MEK)	ND		0.500									,	5
etrachloroethene	ND		0.0500										L
ichloroethene	ND		0.0500										5
nyl chloride	ND		0.0500										6
(S) Toluene-d8	<i>105</i>		90.0-115										
(S) Dibromofluoromethane	102		79.0-121										7
(S) a,a,a-Trifluorotoluene	98.9		90.4-116										
(S) 4-Bromofluorobenzene	92.1		80.1-120										[5
boratory Control Sam	ple (LCS) •	Laboratory	Control Sar	npie Dupiid	ate (LCSL	기							1
-	29/15 11:01						LCS Qualifier	LCSD Qualifier	DDD	DDD Limits			9
CS) 10/29/15 10:41 • (LCSD) 10/2	29/15 11:01 Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits			
CS) 10/29/15 10:41 • (LCSD) 10/2	29/15 11:01	LCS Result		LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		%		too ananyahantahajambanyahahajam	The same of the sa
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene	29/15 11:01 Spike Amount mg/l	LCS Result	LCSD Result	LCS Rec. %	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%				
CS) 10/29/15 10:41 • (LCSD) 10/2 halyte enzene arbon tetrachloride	29/15 11:01 Spike Amount mg/l 0.0250	LCS Result mg/l 0.0274	LCSD Result mg/l 0.0272	LCS Rec. % 110	LCSD Rec. % 109	Rec. Limits % 73.0-122	LCS Qualifier	LCSD Qualifier	% 0,850	% 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239	LCSD Result mg/l 0.0272 0.0234	LCS Rec. % 110 95.7	LCSD Rec. % 109 93.6	Rec. Limits % 73.0-122 70.9-129	LCS Qualifier	LCSD Qualifier	% 0,850 2.26	% 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246	LCSD Result mg/l 0.0272 0.0234 0.0245	LCS Rec. % 110 95.7 98.3	LCSD Rec. % 109 93.6 98.0	Rec. Limits % 73.0-122 70.9-129 79.7-122	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330	% 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261	LCS Rec. % 110 95.7 98.3 106	LCSD Rec. % 109 93.6 98.0 104	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50	% 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane i-Dichloroethene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237	LCS Rec. % 110 95.7 98.3 106 97.8	LCSD Rec. % 109 93.6 98.0 104 94.9	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50 3.00	% 20 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane I-Dichloroethene Butanone (MEK)	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209	LCS Rec. % 110 95.7 98.3 106 97.8 88.1	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8	73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50 3.00 5.01	% 20 20 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane I-Dichloroethene -Butanone (MEK) etrachloroethene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105	73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2	% 20 20 20 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane I-Dichloroethene Butanone (MEK) etrachloroethene ichloroethene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160	% 20 20 20 20 20 20 20 20 20 20			
nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane 1-Dichloroethene -Butanone (MEK) etrachloroethene richloroethene inyl chloride	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121	LCS Qualifier	LCSD Qualifier	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane 1-Dichloroethene -Butanone (MEK) etrachloroethene richloroethene inyl chloride	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134	LCS Qualifier	LCSD Qualifier Application of the control of the c	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane I-Dichloroethene -Butanone (MEK) etrachloroethene richloroethene inyl chloride (S) Toluene-d8 (S) Dibromofluoromethane	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier	LCSD Qualifier Associated to the second of	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
cs) 10/29/15 10:41 • (LCSD) 10/2 lalyte enzene erbon tetrachloride intorobenzene intoroform 2-Dichloroethane -Dichloroethene Butanone (MEK) etrachloroethene ichloroethene inyl chloride (S) Toluene-d8 (S) Dibromofluoromethane (S) a,a,a-Trifluorotoluene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-115 79.0-121	LCS Qualifier	LCSD Qualifier Action of the control of the contro	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
alyte enzene arbon tetrachloride alorobenzene aloroform enzichloroethane enzichloroethene Butanone (MEK) artachloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloride (S) Toluene-d8 (S) Dibromofluoromethane (S) a,a,a-Trifluorotoluene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier The control of the co	LCSD Qualifier Action of the control of the contro	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
alyte enzene arbon tetrachloride alorobenzene aloroform enzichloroethane enzichloroethene Butanone (MEK) artachloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloroethene ichloride (S) Toluene-d8 (S) Dibromofluoromethane (S) a,a,a-Trifluorotoluene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier The Control of the Co	LCSD Qualifier According to the control of the con	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
CS) 10/29/15 10:41 • (LCSD) 10/2 nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane I-Dichloroethene -Butanone (MEK) etrachloroethene richloroethene inyl chloride (S) Toluene-d8 (S) Dibromofluoromethane	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier The Control of the Co	LCSD Qualifier According to the control of the con	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
nalyte enzene arbon tetrachloride hlorobenzene hloroform 2-Dichloroethane 1-Dichloroethene -Butanone (MEK) etrachloroethene richloroethene inyl chloride (S) Toluene-d8 (S) Dibromofluoromethane (S) a,a,a-Trifluorotoluene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier The control of the co	LCSD Qualifier A second and a	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			
(S) a,a,a-Trifluorotoluene	29/15 11:01 Spike Amount mg/l 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.125 0.0250 0.0250	LCS Result mg/l 0.0274 0.0239 0.0246 0.0265 0.0245 0.0220 0.147 0.0236 0.0244	LCSD Result mg/l 0.0272 0.0234 0.0245 0.0261 0.0237 0.0209 0.132 0.0236 0.0240	LCS Rec. % 110 95.7 98.3 106 97.8 88.1 118 94.5 97.5 96.1 105 105 97.6	LCSD Rec. % 109 93.6 98.0 104 94.9 83.8 105 94.4 96.1 92.7 105 103 97.0	Rec. Limits % 73.0-122 70.9-129 79.7-122 73.2-125 65.3-126 60.6-133 46.4-155 73.5-130 79.5-121 61.5-134 90.0-175 79.0-121 90.4-176	LCS Qualifier The Control of the Co	LCSD Qualifier A second and a	% 0.850 2.26 0.330 1.50 3.00 5.01 11.2 0.160 1.45	% 20 20 20 20 20 20 20 20 20 20 20 20			

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L796329-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike A	mount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	20000
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	² 7
Benzene	1.25	0.227	0.842	0.894	49.2	53.4	1	58.6-133	<u>J6</u>	<u> 16</u>	6.03	20	L_
Carbon tetrachloride	1.25	ND	0.781	0.832	62.5	66.5	1.1000	60.6-139	\$ 7 115 - 1		6.28	20	3 S
Chlorobenzene	1.25	ND	0.826	0.931	66.1	74.5	1	70.1-130	<u>J6</u>		12.0	20	3
Chloroform	1.25	ND	0.971	1.02	77.7	81.6	1	66.1-133			4.93	20	4
,2-Dichloroethane	1.25	ND	0.841	0.889	67.3	71.1	1	60.7-132	4 .		5.49	20	[]
,1-Dichloroethene	1.25	ND	0.557	0.575	44.5	46.0	1	48.8-144	<u>J6</u>	<u>J6</u>	3.18	20	L.
2-Butanone (MEK)	6.25	ND	5.27	5.27	84.3	84.4	1	45.0-156			0.0200	20.8	5
Tetrachloroethene	1.25	ND	0.656	0.729	52.5	58.3	1	57.4-141	<u>J6</u>	e to	10.5	20	3
richloroethene	1.25	ND	0.720	0.767	57.6	61.4	1	48.9-148			6.35	20	
/inyl chloride	1.25	ND	0.514	0.524	41.1	41.9	1	44.3-143	<u>J6</u>	<u>J6</u>	2.02	20	e (
(S) Toluene-d8					105	105		90.0-115		_			
(S) Dibromofluoromethane					103	104		79.0-121		and a first	4 4	A TO NOTE OF	7 (
(S) a,a,a-Trifluorotoluene		**			98.2	97.5		90.4-116					10
(S) 4-Bromofluorobenzene					90.9	90.0		80.1-120					-
													ľΔ
													L

	Spike Am	ount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%	· · · · · · · · · · · · · · · · · · ·		%	%
Benzene	1.25	0.0244	0.884	0.877	68.7	68.2	1	58.6-133	The second section of the sect	C. St. v. Comment can recognize the second section of the second second section of the second second second section of the second secon	0.770	20
Carbon tetrachloride	1.25	ND	0.781	0.758	62.5	60.6	v. 1 ∀.1 ~	60.6-139			2.96	20
Chlorobenzene	1.25	ND	0.928	0.953	74.2	76.3	1	70.1-130			2.71	20
Chloroform	1.25	ND	1.04	1.02	83.4	81.7	1	66.1-133			2.07	20
1,2-Dichloroethane	1.25	ND	0.892	0.870	71.4	69.6	1	60.7-132		***	2.53	20
1,1-Dichloroethene	1.25	ND	0.584	0.565	46.7	45.2	1	48.8-144	<u>J6</u>	<u>J6</u>	3.33	20
2-Butanone (MEK)	6.25	ND	3.90	3.77	62.4	60.4	1	45.0-156			3.28	20.8
Tetrachloroethene	1.25	ND	0.746	0.754	59.7	60.4	1	57.4-141			1.17	20
Trichloroethene	1.25	ND	0.857	0.850	68.6	68.0	1	48.9-148			0.910	20
Vinyl chloride	1.25	ND	0.507	0.496	40.6	39.7	1	44.3-143	<u>J6</u>	<u>J6</u>	2.25	20
(S) Toluene-d8			. , ,		105	105		90.0-115				
(S) Dibromofluoromethane					103	103		79.0-121			1000	
(S) a,a,a-Trifluorotoluene					97.9	98.9		90.4-116				
(S) 4-Bromofluorobenzene	1 No. 1 No.			18 10 Long 1 Long	89.6	93.6		80.1-120			4.70	

	ACCOUNT:		
daer	Laboratories & End	ineering	Inc

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE:

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

55.5

L796360-01

Method Blank (MB)

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

(MB) 10/30/15 06:44					Ср
	MB Result	MB Qualifier	MB RDL	<u>-</u>	
Analyte	mg/l		mg/l		Tc
1,4-Dichlorobenzene	ND		0.100		
2,4-Dinitrotoluene	ND		0.100	공사하다 하는 영화로 방문하다 나는 사람들은 사람들은 사람들이 하는 것이 되었다. 그는 모든 하지 않는 🖪	Ss
Hexachlorobenzene	ND		0.100		J3
Hexachloro-1,3-butadiene	ND		0.100	[2015년 - 1016] [12일 : 1015년 - 1016년 -	
Hexachloroethane	ND		0.100		Cn
Nitrobenzene	ND		0.100	된 그렇다는 이 수건을 발생하는 것을 내가 하다고 살아왔다는 것도 그는 것 같은 것도 하는 것이 먹는 것을 모습니다. 느	
Pyridine	ND		0.100	ls ls	Sr
2-Methylphenol	ND		0.100	나는 전에게 되는 민족들은 얼마를 보고 하겠다. 그들은 그들은 그들은 그들은 그들은 그들을 🗋	۱.
3&4-Methyl Phenol	ND		0.100		l'h silita
Pentachlorophenol	ND		0.100		Qc
2,4,5-Trichlorophenol	ND		0.100		
2,4,6-Trichlorophenol	ND		0.100		GI
(S) Nitrobenzene-d5	64.6		21.8-123		<u> </u>
(S) 2-Fluorobiphenyl	74.1		29.5-131		
(S) p-Terphenyl-d14	88.1		29.3-137		Αl
(S) Phenol-d5	39.2		5.00-70.1	이 소리가 있으면 한 경험을 잃었다. 이미를 하고 말하고 말하는 사람들이 되어 있는데 하는데 그렇게 되었다. 그 그렇게 다른데 그렇게 되었다.	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

10.0-77.9

11.2-130

(LCS) 10/30/15 05:34 • (LCSD) 10/3	0/15 05:57									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
1,4-Dichlorobenzene	0.0500	0.0262	0.0244	52.3	48.8	21.0-89.4			6.91	32.6
2,4-Dinitrotoluene	0.0500	0.0346	0.0327	69.3	65.4	31.2-105			5.82	22
Hexachlorobenzene	0.0500	0.0344	0.0328	68.9	65.6	38.5-116			4.88	20.1
Hexachloro-1,3-butadiene	0.0500	0.0259	0.0245	51.8	49.1	16.1-104			5.33	31.2
Hexachloroethane	0.0500	0.0260	0.0240	51.9	48.1	16.5-89.8			7.73	30.7
Nitrobenzene	0.0500	0.0290	0.0271	58.0	54.2	31.4-106			6.67	25.7
Pyridine	0.0500	0.0153	0.0137	30.6	27.4	13.5-58.9			10.8	32.5
2-Methylphenol	0.0500	0.0283	0.0257	56.6	51.3	26.4-86.9			9.81	26.5
3&4-Methyl Phenol	0.0500	0.0312	0.0287	62.4	57.4	27.9-92 0			8.37	27
Pentachlorophenol	0.0500	0.0248	0.0237	49.7	47.3	10.0-97.4			4.83	35.1
2,4,5-Trichlorophenol	0.0500	0.0362	0.0342	72.4	68.4	34.9-112			5.71	23.9
2,4,6-Trichlorophenol	0.0500	0.0357	0.0345	71.5	69.1	29.8-107			3.42	24.1

ACCOUNT:
Badger Laboratories & Engineering, Inc.

PROJECT:

SDG: L796360 DATE/TIME: 11/03/15 07:10 PAGE: 10 of 16

WG825405

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L796360-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 10/30/15 05:34 •	(LCSD) 10/30/15 05:57
------------------------	-----------------------

Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits	
(S) Nitrobenzene-d5				53.2	49.6	21.8-123	······································			The second secon	
(S) 2-Fluorobiphenyl				59.7	59.5	29.5-131					
(S) p-Terphenyl-d14				70.3	67.4	29.3-137					
(S) Phenol-d5				37.0	33.6	5.00-70.1			100	Springer (1997)	
(S) 2-Fluorophenol				49.0	44.6	10.0-77.9					
(S) 2,4,6-Tribromophenol				68.7	67.8	11.2-130					

L796180-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10011012011E 07:07	/A ACY	10/20/15 07:31	4400	10/2005 07.54
(OS) 10/30/15 07:07 •	ועון	10/30/13 07.31 •	(IVIJD	1 10/30/13 07.54

	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	ND	0.272	0.291	54.5	58.2	1	14.0-104	· ····································		6.72	36.4
2,4-Dinitrotoluene	0.500	ND	0.366	0.390	73.1	77.9	1.	16.2-135			6.38	20.6
Hexachlorobenzene	0.500	ND	0.362	0.397	72.4	79.3	1	31.9-135			9.11	20
Hexachloro-1,3-butadiene	0.500	ND	0.276	0.283	55.2	56.6	1	15.7-109			2.55	37.6
Hexachloroethane	0.500	ND	0.263	0.286	52.5	57.3	1	10.4-105			8.69	40
Nitrobenzene	0.500	ND	0.304	0.317	60.8	63.5	1	23.1-121			4.34	29
Pyridine	0.500	ND	0.151	0.164	30.1	32.7	1	10.0-77.8			8.28	38.8
2-Methylphenol	0.500	ND	0.290	0.289	58.0	57.9	1	10.0-133			0.260	40
3&4-Methyl Phenol	0.500	ND	0.315	0.312	63.1	62.4	1	17.4-100	ş		1.02	27.7
Pentachlorophenol	0.500	ND	0.311	0.340	62.2	68.1	1	10.0-108			9.06	40
2,4,5-Trichlorophenol	0.500	ND	0.394	0.414	78.7	82.8	1	30.6-120			5.00	33.8
2,4,6-Trichlorophenol	0.500	ND	0.394	0.406	78.8	81.2	1	19.1-114			3.00	29.9
(S) Nitrobenzene-d5					54.8	56.4		21.8-123			0.00	
(S) 2-Fluorobiphenyl				Tariba Na	62.8	66.8		29.5-131		San San San San		10 miles
(S) p-Terphenyl-d14					70.7	76.3		29.3-137				ta t
(S) Phenol-d5			t star gart		36.9	36.1		5.00-70.1			1	
(S) 2-Fluorophenol					48.8	49.1		10.0-77.9				
(S) 2,4,6-Tribromophenol		Day Commencer			71.6	79.3		11.2-130	egy e sy sakk			er aller grande

GLOSSARY OF TERMS

ONE LAB. N ATIONWIDE.

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Qualifier	Description
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

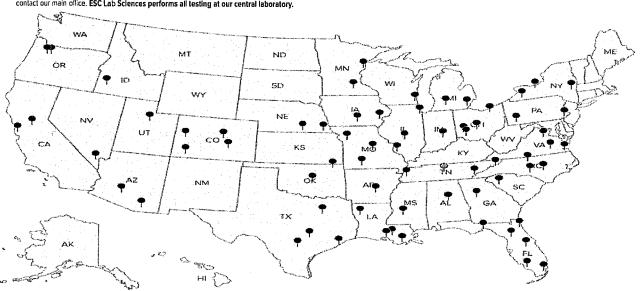
歌

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No ot her lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOI CE.

Ср

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
lorida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohlo-VAP	CL0069
daho	TN00003	Oklahoma	9915
llinois	200008	Oregon	TN200002
ndlana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Centucky 1	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouislana.	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
finnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Aissouri	340	Wisconsin	9980939910
Montana	CERTOO86	Wyoming	A2LA
Vebraska	NE-OS-15-05	NATIONAL CONTRACTOR OF THE CON	The second secon


¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁴ Accreditation not applicable

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
Canada	1461.01	DOD	1461.01	There is a second of the secon
EPA-Crypto	TN00003	USDA	S-67674	A CONTROL OF THE CONT

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

BADGER LABORATORIES & ENGINEERING CO., INC.

SAMPLE RECEIPT FORM

CLIENT INFORMATION

COMPANY:	30° 825 (273° (273° (1811 TO:	Schorn E. (NI 991.8 92 pplete Dav	sissin fis n Plane e School	u t	ve.			⊠ Nor □ Rus	mal sh (App	roval	ID TI		_)	☐ Wa ☐ WP ☐ Cod ☐ Drir ☐ Soli ☐ Oil ☐ Oth	oundwat stewate DES olling Wa nking W id Waste	er r ater ater		☐ Lab Filtered ☐ Field Filtered ☐ Grab ☐ Composite ☐ Flow Proportional ☐ Time Proportional		
	Why	BL & E REPORT			# of	lce-	DI	LIVER	MET	HOD		1	PRE:	SERVA	TION					
Customer Sample ID		#	BL & E SAMPLE#	темр '		Y/N	BL&E	CLIENT	UPS	OTHER	PIF	PIL	PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS	pH ok	EP
Weste W Treatmen		11371	24374			N	X				to a second of the second of t		X					Attached	A	
					C	HAI	N (OF C	US	TOD	Y R	ECC	ORD							
DATE/TIME SA	: D&Ue	Scho	MER enlaber 5 1:30p	m	RECEN DATE/I	/ED BY	: ECEIV		();	7 2 n 7 3	<u>.</u>	<u> </u>	Test P		or : ul			samie Counte Attached	4	

* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

* PIF= Preserved in field.

* PIL= Preserved in lab.

sampprct1.xls 7-1-02

Outagamie County Landfill Brown Outagamie Winnebago Counties Analytical Protocol/Acceptance Criteria Protocol A

(Foundry process waste; municipal, hospital and boiler ash; ink wastes; paint wastes and paint sludges; metal treatment/preparation sludges; waste glues and adhesives; ceramic production/manufacturing waste; soils contaminated with heavy metals.)

Analytical Parameter	Acceptance Criteria
pH	$2.0 \le pH \le 12.5$
Total solids	> 40%
Free liquids	0%
Flash point (closed cup)	>140°F
Chlorine	<1%
ΓCLP metals ¹	- 1-
arsenic	TCLP < 5.0 mg/l
barium	TCLP <100.0 mg/l
cadmium	TCLP < 1.0 mg/l
chromium	TCLP < 5.0 mg/l
lead	TCLP < 5.0 mg/l
mercury	TCLP < 0.2 mg/l
selenium	TCLP < 1.0 mg/l
silver	TCLP < 5.0 mg/l
Total available sulfide	<500 mg/kg
Total available cyanide	<250 mg/kg
Phenol	<2000 mg/l
TCLP organics ¹	_
benzene	TCLP < 0.5 mg/l
carbon tetrachloride	TCLP < 0.5 mg/l
chlorobenzene	TCLP <100.0 mg/l
chloroform	TCLP < 6.0 mg/l
$o-cresol^2$	TCLP <200.0 mg/l
m - $cresol^2$	TCLP < 200.0 mg/l
p - cresol ²	TCLP < 200.0 mg/l
1,4 - dichlorobenzene	TCLP < 7.5 mg/l
1,2 - dichloroethane	TCLP $< 0.5 \text{ mg/l}$
1,1 - dichloroethene	TCLP < 0.7 mg/l
2,4 - dinitrotoluene	TCLP < 0.13 mg/l
hexachlorobenzene	TCLP < 0.13 mg/l
hexachlorobutadiene	TCLP < 0.5 mg/l
hexachloroethane	TCLP < 3.0 mg/1
methyl ethyl ketone	TCLP <200.0 mg/l
	_

☐ BC Customer
☐ OC Customer
☐ WC Customer

Outagamie County Recycling & Solid Waste Brown Outagamie Winnebago Counties SPECIAL WASTE DISPOSAL APPLICATION

A. Generator Information	E. Waste Information
Name Clearwater Paper - Neenah	Waste Name Sludge - Primary Clarifier
Contact Person Katie Byrum	Process Used to Generate Waste Paper Making and Water Treatment
Email Address katie.byrum@clearwaterpaper.com	Waste Category Number C - Paper Mill Sludge Waste
Phone Number 920-727-3912	Total Anticipated Waste Volume (include units) 400 ton/mo
Site Address (where material is generated)	Frequency of Disposal 6x/week
249 N Lake St	Name of Lab Performing Analysis Badger Labs
Neenah, WI 54956	Date of Most Recent Analysis June 2013
	Physical State @ 25°C Solid
	Color gray Odor none Comments
B. Billing Information	Comments
(In order to be billed, you must fill out a credit application)	
Name Clearwater Paper - Neenah	
Contact Person David Woelz	*For all waste types, attach available pertinent documents, MSDSs,
Email Address david.woelz@clearwaterpaper.com	technical bulletins, etc. List attachments here:
Phone 920-727-3943	Lab Analytics from Badger Labs 8/2016
Fax Number	
Billing Address	
	F. Generator Warranty
	The constitution training
C. Consultant Information	The generator warrants, represents, and certifies that this
C. Consultant Information	waste is not hazardous waste as specified by NR600 or
Name_N/A	40CFR261, that his material does not contain more than
Contact Person	50 ppm of PCB materials, and that this information is
Email Address	representative of the waste.
Phone Number	
Fax Number	Lon Crane Sr. Mill Manager 8/2/16
Address	Generator's Signature Title Date
	Instructions:
D. Hauler Information	For Category A, B, and, C Wastes: Complete Section I
Name Advanced Disposal	For Category D Wastes: Complete Section II
Contact Person Patrick Coughlin	
Phone Number 920-685-6666	For Category E Wastes: Compete Section III
Address 250 Adler Ave/PO Box 337	
Omro, WI 54963	
Outagamie County Internal Use Only:	

Section I

For Category A, B, and C Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result		
% Solids	≥ 40% (A&B)			
	≥ 20% (C)	42.4%		
% Free Liquids (paint filter test)	0%	0%		
Flash Point	> 140°F			
pН	$2.0 \le pH \le 12.5$	7.3		
Total available sulfide	<500 mg/kg	67.0 mg/kg		
Total available cyanide	<250 mg/kg	<0.084 mg/kg		
Arsenic	< 5.0	<0.005 mg/l		
Barium	< 100.0	0.25 mg/l		
Cadmium	< 1.0	<0.01 mg/l		
Chromium	< 5.0	<0.02 mg/l		
Lead	< 5.0	<0.03 mg/l		
Mercury	< 0.2	<0.0002 mg/l		
Selenium	< 1.0	<0.009 mg/l		
Silver	< 5.0	<0.01 mg/l		
% Chlorine	< 1%	0.02%		
Phenol	< 2000	0.06 mg/l		
Benzene	< 0.5	<0.0500 mg/l		
Carbon tetrachloride	< 0.5	<0.0500 mg/l		
Chlorobenzene	< 100.0	<0.0500 mg/l		
Chloroform	< 6.0	<0.250 mg/l		
Cresol	< 200.0			
1,4-Dichlorobenzene	< 7.5	<0.100 mg/l		
1,2-Dichloroethane	< 0.5	<0.0500 mg/l		
1,1-Dichloroethylene	< 0.7	<0.0500 mg/l		
2,4-Dinitrotoluene	< 0.3	<0.100 mg/l		
Hexachlorobenzene	< 0.13	<0.100 mg/l		
Hexachlorobutadiene	< 0.5	<0.100 mg/l		
Hexachloroethane	< 3.0	<0.100 mg/l		
Methyl ethyl ketone	< 200.0			
Nitrobenzene	< 2.0	·		
Pentachlorophenol	< 100.0			
Pyridine	< 5.0	1		
Tetrachloroethylene	< 0.7			
Trichloroethylene	< 0.5			
2,4,5-Trichlorophenol	< 400.0			
2,4,6-Trichlorophenol	< 2.0			
Vinyl Chloride	< 0.2			

For Category B and C Wastes, complete the following and attach laboratory report:

PCB (Arochlor 1016, 1221, 1232, 1242, 1248, 1254, 1260)

Section II

For Category D Wastes, complete the following and attach laboratory report:

Analytical Information

	Parameter	Acceptance Level	Lab Result
a.	All Soils		
	Lead	Total <100 mg/kg	
		or TCLP <5 mg/l	
b.	Gasoline or Dies	sel	1. 10.
	(analyze all paras	meters in a., plus the follow	ving):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Benzene	Total <10 mg/kg	
		Or TCLP < 0.5 mg/l	
c.	Waste Oil or Un	known Petroleum Waste	1
	(analyze al paran	neters in a., plus the follow	ing):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Cadmium	Total <20 mg/kg	
		Or TCLP <1 mg/l	

Section III

For Category E Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
pH	$2.0 \le pH \le 12.5$	
% Solids	≥ 20%	
% Free liquids TCLP metals	0%	
Arsenic	< 5.0	
Barium	< 100.0	
Cadmium	< 1.0	
Chromium	< 5.0	
Lead	< 5.0	
Mercury	< 0.2	
Selenium	< 1.0	
Silver	< 5.0	
Total available sulfide	< 500 mg/kg	

Section IV

For Category F Wastes, include the following information and attach MSDS(s), technical bulletin(s), or other pertinent information regarding the waste stream. Indicate the waste type, the source of the waste stream, the reason for disposal, the physical state of the material, and describe the process from which the waste was generated.

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

CLEARWATER PAPER 249 N LAKE ST NEENAH, WI 54956

Report Number: Report Date:

16008119 8/10/2016

Sampled By: Emailed:

Client 8/10/16

Attn: KATIE BYRUM/BILL ANSTETT/DAVE DRZEWIECKI

PO#:

1025155

1

Samples:

Sample Number:

46018445

Description:

SLUDGE

Sample Date: Date Received: 7/18/2016 7/18/2016

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
CHLORINE	0.02	%	0.02	0.02		SW-846-5050	08/04/16	
CYANIDE, TOTAL	< 0.084	ppm	0.084	0.280	12	EPA335.4	07/25/16	
CYANIDE-AM. TO CL2	< 0.084	ppm	0.084	0.280	12	SM4500CN-G	07/25/16	
FLASH POINT	SEE ATTAC	CHED ESC R	EPORT					
FREE LIQUIDS	0.0	%	0	0		SW 846 9095	08/03/16	
METALS DIGESTION	DONE		0	0		SM3030E	07/22/16	
PCB, TOTAL	SEE ATTAC	CHED ESC R	EPORT					
PHENOL, TOTAL	0.06	mg/l	0.05	0.17	1	EPA420.4	08/08/16	
pH-LAB	7.3	S.U.	0	0		SW846-90450	07/20/16	
SULFIDE	SEE ATTAC	CHED ESC R	EPORT					
TCLP ARSENIC	< 0.005	mg/l	0.005	0.017	5	SM3113B	07/26/16	
TCLP BARIUM	0.25	mg/l	0.03	0.08	1	SM3111D	07/28/16	
TCLP CADMIUM	< 0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TCLP CHROMIUM	< 0.02	mg/l	0.02	0.06	1	SM3111B	07/27/16	
TCLP EXTRACTION	DONE	0.	0	0		SW846-1311	07/22/16	
TCLP LEAD	< 0.03	mg/l	0.03	0.10	1	SM3111B	07/27/16	
TCLP MERCURY	< 0.0002	mg/l	0.0002	0.0008	1	SM3112B	07/26/16	
TCLP ORGANICS	SEE ATTA		EPORT				CISC RIAL	
TCLP SELENIUM	< 0.009	mg/l	0.009	0.030	5	SM3113B	07/26/16	
TCLP SILVER	< 0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TOTAL SOLIDS	42.8	%	0.010	0.010		SM2540B	07/20/16	

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffing M. Wogner

JMW:rt

Members WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.; Wisc. Paper Council

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water)

ANALYTICAL REPORT

Badger Laboratories & Engineering, Inc.

Sample Delivery Group:

L848577

Samples Received:

07/21/2016

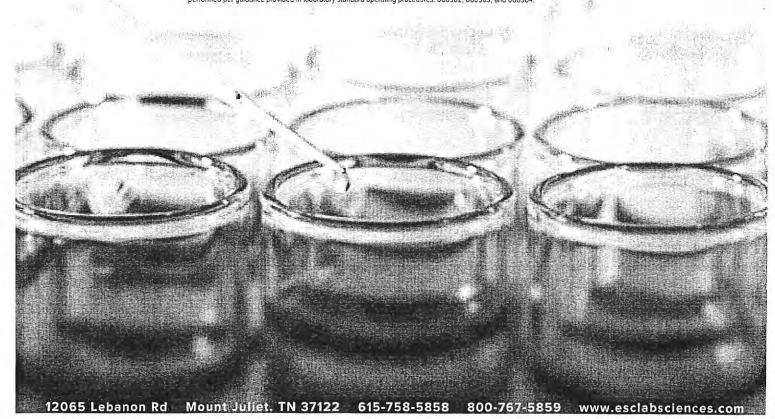
Project Number:

Description:

Report To:

Jeff Wagner

501 West Bell Street


Neenah, WI 54956

Entire Report Reviewed By: John V Houtins

John Hawkins

Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

ONE LAB, NATIONWIDE.

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴Cn: Case Narrative	4
⁵ Sr: Sample Results	5
18445 L848577-01	5
18445 L848577-02	6
18460 L848577-03	7
⁶ Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 9030B	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
Polychlorinated Biphenyls (GC) by Method 8082	12
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	13
⁷ Gl: Glossary of Terms	15
⁸ Al: Accreditations & Locations	16
⁹ Sc: Chain of Custody	17

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

Sr

Qc

GI

Ai

Sc

18445 L848577-01 Solid			Collected by	Collected date/time 07/18/16 00:00	Received date/lime 07/21/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Polychlorinated Biphenyls (GC) by Method 8082	WG891943	3	07/25/16 22:29	07/26/16 14:59	LKD
Total Solids by Method 2540 G-2011	WG892868	1	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	لالا
18445 L848577-02 Waste			Collected by	Collected date/time 07/18/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
model on the encountries and the same of t		- se in colorado	date/time	date/time	
Preparation by Method 1311	WG892468	1	07/26/16 12:37	07/26/16 12:38	BG
Preparation by Method 1311	WG892919	1	07/27/16 10:32	07/27/16 10:33	BG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG893216	1	07/28/16 21:14	07/29/16 16:30	SNR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG892961	1	07/28/16 03:35	07/28/16 03:35	ACG
18460 L848577-03 Solid			Collected by	Collected date/time 07/15/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
Regionalists - There a proposes productional a control to the production of the control to	m - married ballier De m	FI OF VEHICLE	date/time	date/time	Contraction (notes)
Total Solids by Method 2540 G-2011	WG892868	1.	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	JLJ

CASE NARRATIVE

ONE LAB. NATIONWIDE.

All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins

Technical Service Representative

Sample Handling and Receiving

Analysis was performed from an improper container for the following samples.

ESC Sample ID

Project Sample ID

Method

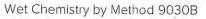
L848577-01

18445

8082

18445

SAMPLE RESULTS - 01


ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Collected date/time: 07/18/16 00:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	42.4	- Committee of Committee of the second	1	07/27/2016 09:27	WG892868

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Sulfide	67.0		25.0	1	07/28/2016 20:10	WG893594

Ss

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0351	3	07/26/2016 14:59	WG891943
PCB 1221	ND		0.0537	3	07/26/2016 14:59	WG891943
PCB 1232	ND		0.0417	3	07/26/2016 14:59	WG891943
PCB 1242	ND		0.0318	3	07/26/2016 14:59	WG891943
PCB 1248	ND		0.0315	3	07/26/2016 14:59	WG891943
PCB 1254	ND		0.0471	3	07/26/2016 14:59	WG891943
PCB 1260	ND		0.0495	3	07/26/2016 14:59	WG891943
(S) Decachlorobiphenyl	61.3		10.0-143		07/26/2016 14:59	WG891943
(S) Tetrachloro-m-xylene	78.3		29.2-144		07/26/2016 14:59	WG891943

18445

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 07/18/16 00:00 Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction			7/27/2016 10:32:03 AM	WG892919
TCLP ZHE Extraction	4		7/26/2016 12:37:09 PM	WG892468

Ss

Cn

GI

AL

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/I	mg/l		date / time	
Benzene	ND	*	0.0500	0.50	1	07/28/2016 03:35	WG892961
Carbon tetrachloride	ND		0.0500	0.50	1	07/28/2016 03:35	WG892961
Chlorobenzene	ND		0.0500	100	1	07/28/2016 03:35	WG892961
Chloroform	ND		0.250	6	1	07/28/2016 03:35	WG892961
1,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2016 03:35	WG892961
1,1-Dichloroethene	ND		0.0500	0.70	1	07/28/2016 03:35	WG892961
2-Butanone (MEK)	ND		0.500	200	1	07/28/2016 03:35	WG892961
Tetrachloroethene	ND		0.0500	0.70	1	07/28/2016 03:35	WG892961
Trichloroethene	ND		0.0500	0.50	1	07/28/2016 03:35	WG892961
Vinyl chloride	ND		0.0500	0.20	1	07/28/2016 03:35	WG892961
(S) Toluene-d8	106		90.0-115	114		07/28/2016 03:35	WG892961
(S) Dibromofluoromethane	102		79.0-121	125		07/28/2016 03:35	WG892961
(S) a,a,a-Trifluorotoluene	106		90.4-116	114		07/28/2016 03:35	WG892961
(S) 4-Bromofluorobenzene	101		80.1-120	128		07/28/2016 03:35	WG892961
1.	3						

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	07/29/2016 16:30	WG893216
2,4-Dinitrotoluene	ND		0.100	0.13	1	07/29/2016 16:30	WG893216
Hexachlorobenzene	ND		0.100	0.13	1	07/29/2016 16:30	WG893216
Hexachloro-1,3-butadiene	- ND		0.100	0.50	1	07/29/2016 16:30	WG893216
Hexachloroethane	ND		0.100	3	1	07/29/2016 16:30	WG893216
Nitrobenzene	ND		0.100	2	1	07/29/2016 16:30	WG893216
Pyridine	ND		0.100	5	1	07/29/2016 16:30	WG893216
3&4-Methyl Phenol	ND		0.100	400	1	07/29/2016 16:30	WG893216
2-Methylphenol	ND		0.100	200	1	07/29/2016 16:30	WG893216
Pentachlorophenol	ND		0.100	100	1	07/29/2016 16:30	WG893216
2,4,5-Trichlorophenol	ND		0.100	400	1	07/29/2016 16:30	WG893216
2,4,6-Trichlorophenol	ND		0.100	2	1	07/29/2016 16:30	WG893216
(S) 2-Fluorophenol	41.0		10.0-77.9	87		07/29/2016 16:30	WG893216
(S) Phenol-d5	28.5		5.00-70.1	67		07/29/2016 16:30	WG893216
(S) Nitrobenzene-d5	47.3		21.8-123	120		07/29/2016 16:30	WG893216
(S) 2-Fluorobiphenyl	61.2		29.5-131	122		07/29/2016 16:30	WG893216
(S) 2,4,6-Tribromophenol	90.3		11.2-130	148		07/29/2016 16:30	WG893216
(S) p-Terphenyl-d14	89.8		29.3-137	149		07/29/2016 16:30	WG893216

344 methy phonol \$2-methylphonol = 0-, m, p-cresol.

Form asks for Cresol. New defect for both personneters = <.100 + <.100 = <.200 reported in form. Kbyrum 8/25/14

Total Cresol

ACCOUNT:

PROJECT:

SDG: L848577

DATE/TIME: 08/01/16 15:33

PAGE: 6 of 20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L848577-01,03

Method Blank (MB)

Analyte

Total Solids

(MB	R3152777-1	07/27/16 09:27	

Total Solids by Method 2540 G-2011

0 09:27	
MB Result	MB Qualif

MB MDL %

MB RDL

%

L848956-01 Original Sample (OS) • Duplicate (DUP)

0.000200

The state of the state of the	9	1	4
(OS) L848956-01	07/27/16 09:27	(DUP) R3152777-3	07/27/16 09:27

	Original Result	DUP Result	
Analyte	%	%	
Total Solids	67.2	67.5	

Dilution DUP RPD

0.498

Rec. Limits

85.0-115

%

DUP Qualifier %

DUP RPD Limits

Ss

Cn

Laboratory Control Sample (LCS)

(LCS) R3152777-2 07/27/16 09:27

	Spike Amount	LCS Result	LCS
Analyte	%	%	%
Total Solids	50.0	50.0	100

LCS Rec. %

LCS Qualifier

GI

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

18460 Collected date/time: 07/15/16 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	46			date / time	
Total Solids	44.3	that is present which the lighter of the d	1	07/27/2016 09:27	мскороди и обращения доставления в произверения подражения высоков на произверения и обращения подражения в под WG892863

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		·date / time		
Sulfide	61.0	Com to some men men with	25.0	1	07/28/2016 20:10	WG893594	COLUMN CARCING COLUMN S

Sulfide

QUALITY CONTROL SUMMARY

DUP RPD Limits

20

ONE LAB. NATIONWIDE.

L848577-01,03

Method Blank (MB)

(MR) WG893594-1	07/28/16 20:10

Wet Chemistry by Method 9030B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Sulfide	U		7.63	25.0

³Ss

L848577-03 Original Sample (OS) • Duplicate (DUP)

61.0

(OS) L848577-03	07/28/16 20:10 - (DUP)	WG893594-4	07/28/16	20:10	
	Original Result	DUP Result	Dilution	DUP RPD	DUP
Analyte	mg/kg	mg/kg		%	

66.0

7.87

11 CSI WG893594-2	07/28/16 20:10 .	(LCSD) WG893594-3	07/28/16 20:10
(LCS) WG033334-2	0//20/10 20:10	(FC2D) MO033334-3	07720710 20.10

(LCS) WG693594-2 07/2					0.002.00	100000	1,022,000	7 122 E . X 2 K	24.5	2220000
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Sulfide	100	79.0	72.8	79.0	72.8	70.0-130			8.17	20

2-Butanone (MEK)

Tetrachloroethene

(S) Toluene-d8

(S) Dibromofluoromethane

(S) a,a,a-Trifluorotoluene

(S) 4-Bromofluorobenzene

Trichloroethene

Vinyl chloride

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L848577-02

Method Blank (MB)

(MB) R3152874-3 07/27/16 23:02

(MD) K3132674-3 07/2	1110 23.02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/I		mg/l	mg/l
Benzene	U	nestifications in the cities of miles from	0.0167	0.0500
Carbon tetrachloride	U		0.0167	0.0500
Chlorobenzene	U		0.0167	0.0500
Chloroform	U		0.0833	0.250
1,2-Dichloroethane	U		0.0167	0.0500
1,1-Dichloroethene	U		0.0167	0.0500

Volatile Organic Compounds (GC/MS) by Method 8260B

U

U

U

U

108

102

105

Laboratory Control Sample	(LCS) · La	boratory Control	Sample Duplicate	(LCSD)
---------------------------	------------	------------------	------------------	--------

0.167

0.0167 0.0167

0.0167

0.500

0.0500

0.0500

0.0500

90.0-115

79.0-121

90.4-116 80.1-120

(LCS) R3152874-1	07/27/16 21:44 •	(LCSD) R3152874-2	07/27/16 22:03
------------------	------------------	-------------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0228	0.0227	91.2	90.9	73.0-122		PER	0.300	20
Carbon tetrachloride	0.0250	0.0243	0.0235	97.2	93.9	70.9-129			3.48	20
Chlorobenzene	0.0250	0.0250	0.0246	99.8	98.6	79.7-122			1.24	20
Chloroform	0.0250	0.0235	0.0236	94.1	94.5	73.2-125			0.390	20
1,2-Dichloroethane	0.0250	0.0251	0.0253	100	101	65.3-126			0.890	20
1,1-Dichloroethene	0.0250	0.0240	0.0239	95.8	95.8	60.6-133			0.0200	20
2-Butanone (MEK)	0.125	0.126	0.124	101	98.9	46.4-155			1.74	20
Tetrachloroethene	0.0250	0.0242	0.0244	96.7	97.5	73.5-130			0.900	20
Trichloroethene	0.0250	0.0251	0.0248	101	99.1	79.5-121			1.52	20
Vinyl chloride	0.0250	0.0264	0.0261	105	105	61.5-134			0.900	20
(S) Toluene-d8				107	106	90.0-115				
(S) Dibromofluoromethane				107	105	79.0-121				
(S) a,a,a-Trifluorotoluene				105	106	90.4-116				
(S) 4-Bromofluorobenzene				102	101	80.1-120				

Vinyl chloride

(S) Toluene-d8

(S) Dibromofluoromethane

(S) a,a,a-Trifluorotoluene

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

1.25

ND

L848577-02

L848569-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

1.28

1.36

102

108

106

106

101

(OS) L848569-02 07/28/16 00:59 • (MS) R3152874-4 07/27/16 23:21 • (MSD) R3152874-5 07/27/16 23:41

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Benzene	1.25	ND	1.23	1.29	98.1	103	1	58.6-133			4.96	20	
Carbon tetrachloride	1.25	ND	1.22	1.34	97.9	107	1	60.6-139			8.78	20	
Chlorobenzene	1.25	ND	1.36	1.42	109	114	1	70.1-130			4.57	20	
Chloroform	1.25	ND	1.28	1.35	102	108	1	66.1-133			5.08	20	
1,2-Dichloroethane	1.25	ND	1.34	1.39	107	111	1	60.7-132			3.94	20	
1,1-Dichloroethene	1.25	ND	1.30	1.36	104	109	1	48.8-144			4.47	20	
2-Butanone (MEK)	6.25	ND	4.95	5.23	74.9	79.3	1	45.0-156			5.47	20.8	
Tetrachloroethene	1.25	ND	1.33	1.38	106	111	1	57.4-141			3.92	20	
Trichloroethene	1.25	ND	1.36	1.42	109	114	1	48.9-148			4.13	20	

109

107

105

104

101

44.3-143

90.0-115

79.0-121

90.4-116

80.1-120

6.01

20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L848577-01

Method Blank (MB)

Polychlorinated Biphenyls (GC) by Method 8082

(MB) R3152453-3 07/26/	16 10:15				
Analyte	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg	
PCB 1016	U		0.00350	0.0117	man with the man and the man again
PCB 1221	u		0.00537	0.0179	
PCB 1232	U		0.00417	0.0139	
PCB 1242	U		0.00318	0.0106	
PCB 1248	U		0.00315	0.0105	
PCB 1254	U		0.00472	0.0157	
PCB 1260	U		0.00494	0.0165	
(S) Decachlorobiphenyl	114			10.0-143	
(S) Tetrachloro-m-xylene	104			29.2-144	

Тс

3Ss

5 0

6

[©]Qc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3152453-1 07/26/16 09:46 · (LCSD) R31524	53-2 07/26/16 10:00
---	---------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
PCB 1260	0.167	0.161	0.139	96.8	83.6	46.5-120			14.7	27
PCB 1016	0.167	0.154	0.130	92.1	77.7	46.3-117			16.9	27.5
(S) Decachlorobiphenyl				113	87.5	10.0-143				
(S) Tetrachloro-m-xylene				106	81.2	29.2-144				

⁸Al

L849002-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L849002-05	07/26/16 13:48 · (MS) R3	3152453-4 07/26/16 13:19	9 · (MSD) R3152453-5 07/26/16 13:34

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
PCB 1260	0.167	ND	0.124	0.122	74.5	73.1	1	24.6-127			1.86	20	
PCB 1016	0.167	ND	0.135	0.133	80.8	80.0	1	23.9-147			0.970	25.8	
(S) Decachlorobiphenyl					61.6	65.4		10.0-143					
(S) Tetrachloro-m-xylene					89.6	86.4		29.2-144					

QUALITY CONTROL SUMMARY L848577-02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Method Blank (MB)

(MB) R3153267-3 07/29/	16 12:25					
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/l		mg/l	mg/l		
1,4-Dichlorobenzene	U		0.0333	0.100		
2,4-Dinitrotoluene	U		0.0333	0.100		35
Hexachlorobenzene	U		0.0333	0.100		
Hexachloro-1,3-butadiene	U		0.0333	0.100		4
Hexachloroethane	U		0.0333	0.100		
Nitrobenzene	U		0.0333	0.100		_
Pyridine	U		0.0333	0.100		5
2-Methylphenol	U		0.0333	0.100		
3&4-Methyl Phenol	U		0.0333	0.100		67
Pentachlorophenol	U		0.0333	0.100		# 6
2,4,5-Trichlorophenol	U		0.0333	0.100		GAAN .
2,4,6-Trichlorophenol	U		0.0333	0.100		170
(S) Nitrobenzene-d5	58.2			21.8-123		
(S) 2-Fluorobiphenyl	72.2			29.5-131		8
(S) p-Terphenyl-d14	83.1			29.3-137		T A
(S) Phenol-d5	34.8			5.00-70.1		L
(S) 2-Fluorophenol	50.0			10.0-77.9		99
(S) 2,4,6-Tribromophenol	80.7			11.2-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
nalyte	mg/l	mg/l	mg/l	%	%	%			%	%
4-Dichlorobenzene	0.0500	0.0293	0.0318	58.7	63.6	21.0-89.4	11-41		7.97	32.6
,4-Dinitrotoluene	0.0500	0.0423	0.0426	84.7	85.3	31.2-105			0.660	22
lexachlorobenzene	0.0500	0.0412	0.0444	82.4	88.8	38.5-116			7.45	20.1
exachloro-1,3-butadiene	0.0500	0.0365	0.0394	73.0	78.7	16.1-104			7.52	31.2
exachloroethane	0.0500	0.0267	0.0300	53.5	60.1	16.5-89.8			11.6	30.7
litrobenzene	0.0500	0.0287	0.0325	57.4	65.0	31.4-106			12.5	25.7
yridine	0.0500	0.00859	0.00948	17.2	19.0	13.5-58.9			9.83	32.5
-Methylphenol	0.0500	0.0267	0.0284	53.4	56.9	26.4-86.9			6.29	26.5
&4-Methyl Phenol	0.0500	0.0296	0.0317	59.2	63.5	27.9-92.0			7.02	27
entachlorophenol	0.0500	0.0352	0.0376	70.4	75.1	10.0-97.4			6.45	35.1
,4,5-Trichlorophenol	0.0500	0.0417	0.0445	83.5	89.1	34.9-112			6.51	23.9
,4,6-Trichlorophenol	0.0500	0.0389	0.0435	77.8	87.1	29.8-107			11.3	24.1
(S) Nitrobenzene-d5				67.1	7.0.8	21.8-123				
(S) 2-Fluorobiphenyl				77.8	80.3	29.5-131				
(S) p-Terphenyl-d14				90.1	91.9	29.3-137				

ACCOUNT:

PROJECT:

SDG: L848577

DATE/TIME: 08/01/16 15:33

PAGE: 13 of 20

ONE LAB. NATIONWIDE.

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L848577-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3153267-1	07/29/16 11:15 •	(LCSD) R3153267-2	07/29/16 11:38

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/I	mg/I	%	%	%			%	%	
(S) Phenol-d5	× = 74 : 144 : 147 : 147 : 147	mile marrer in the	The state of the s	37.2	39.8	5.00-70.1		ni - in chi chi missing	1111,000,000,000		
(S) 2-Fluorophenol				52.1	58.0	10.0-77.9					
(S) 2,4,6-Tribromophenol				100	101	11.2-130					

Cn

Sr

L849237-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L849237-01 07/29/16 16:53	 (MS) R3153267-4 	07/29/16 17:16 • (MSD) R3153267-5 07/29/16 17:40	
--------------------------------	-------------------------------------	--	--

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
1,4-Dichlorobenzene	0.500	ND	0.278	0.271	55.6	54.3	1	14.0-104			2.34	36.4	
2,4-Dinitrotoluene	0.500	ND	0.414	0.402	82.8	80.4	1	16.2-135			2.93	20.6	
Hexachlorobenzene	0.500	ND	0.423	0.411	84.6	82.3	1	31.9-135			2.84	20	
Hexachloro-1,3-butadiene	0.500	ND	0.353	- 0.328	70.6	65.5	1	15.7-109			7.47	37.6	
Hexachloroethane	0.500	ND	0.257	0.256	51.3	51.2	1	10.4-105			0.230	40	
Nitrobenzene	0.500	ND -	0.275	0.269	54.9	53.7	1	23.1-121			2.26	29	
Pyridine	0.500	ND	0.0989	0.103	19.8	20.5	1	10.0-77.8			3.74	38.8	
2-Methylphenol	0.500	ND	0.257	0.252	51.4	50.5	1	10.0-133			1.74	40	
3&4-Methyl Phenol	0.500	ND	0.295	0.288	59.0	57.6	1	17.4-100			2.49	27.7	
Pentachlorophenol	0.500	ND	0.375	0.375	75.0	74.9	1	10.0-108			0.0700	40	
2,4,5-Trichlorophenol	0.500	ND	0,415	0.421	83.0	84.3	1	30.6-120			1.53	33.8	
2,4,6-Trichlorophenol	0.500	ND	0.390	0.409	78.0	81.8	1	19.1-114			4.66	29.9	
(S) Nitrobenzene-d5					62.0	57.7		21.8-123					
(S) 2-Fluorobiphenyl					72.2	69.0		29.5-131					
(S) p-Terphenyl-d14					87.8	82.8		29.3-137					
(S) Phenol-d5					36.3	34.6		5.00-70.1					

48.0

98.2

49.2

99.6

10.0-77.9

11.2-130

Abbreviations ar	nd Definitions
SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

Ss

Cn

Sr

Qc

GI

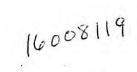
ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia ^t	923	Ohio-VAP	CL0069
daho	TN00003	Oklahoma	9915
Ilinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky 1	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas 5	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTOO86	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations


A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶⁹ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

BADGER LABORATORIES & ENGINEERING, INC.

501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966 (920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196

SAMPLE RECEIPT FORM

CLIENT INF					_		1														
COMPANY: Clear Water PAPer						TURN AROUND TIME: SA							SA	MPLE TYPE:							
NAME: BILL AnsTetT ADDRESS:							Normal □ Other TAT*						Groundwater		ater	□ Lab Filtered					
											AT*				Wastewater WPDES			☐ Field Filtered☐ Grab			
FAX/PHONE/EMAIL:					*REQUIRES PRIOR LAB							- 11	ater	□ Composite							
P.O. #:													□ Flow Proportional								
PROJECT/SITE:							1								母.	Solid	Wast	θ	☐ Time Proportional		
REPORT & BILL TO);															Oil					
ADDITIONAL REPO	RTS TO:]									Other		51	udge		
						CONT	_	DE	LIVERY	METH	IOD		-	RESE						-	7
CUSTOMER SAMPLE ID	SAMPLE DATE/TIME	DATE REC'D	BL'& E REPORT#	BL & E SAMPLE #	TEMP	Co. Same	Ice Y/N	BLAE				PIF	PIL	NON-		1	NAOH	OTHER	ANALYTICAL REQUESTS	pH ol	1.
Sludge	7-18-16 7am	7/4	SUI	1844	-	7	N		V					V					Lisz-	prior	+
J1093C	Tum	11-0	0001	10 10		-	14					-		/	-				, Crose	-	╀
					_			40													L
													119	40				112	40		
																			480	1	1
																V				-	╀
					-		-	7		1-0		-		_							-
*																					
			-																		Γ
			-																	+	+
															-					-	-
			-				_	-								_					
																	5,			1	
		CH	IAIN O	F CUST	OD	Y R	EC	ORE)							1:1					
FILLED IN BY CU SAMPLED BY: SO CO DATE/TIME SAMPLED: RELINQUISHED BY:	7-18-1	TOT	7			FILLE RECEN DATE/T LOGGE	ED IN VED BY	BY I	BADO		_ABS		/	(a:	40						

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved; H2SO4/HNO3 adjusted to pH <2.0; NaOH >12.0 * PIL= Preserved in lab. * PIF= Preserved in field.

	40	
		*
		*

June 28, 2017

Chad Doverspike BROWN CO PORT & SOLID WASTE 2561 S Broadway Green Bay, WI 54304

RE: Project: FRF SLUDGE

Pace Project No.: 40151526

Dear Chad Doverspike:

Enclosed are the analytical results for sample(s) received by the laboratory on June 13, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

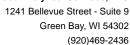
%Chlorine subcontracted to EMT Labs which is certified for that analysis.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer

Tod nolteneya


tod.noltemeyer@pacelabs.com

(920)469-2436

Project Manager

Enclosures

CERTIFICATIONS

Project: FRF SLUDGE Pace Project No.: 40151526

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235 Montana Certification #: Cert 0082
Nebraska Certification #: NE-05-29-14
Nevada Certification #: PA014572015-1
New Hampshire/TNI Certification #: 2976
New Jersey/TNI Certification #: PA 051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Oregon/TNI Certification #: PA200002
Pennsylvania/TNI Certification #: 65-00282

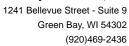
Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification

T O C'' C' T

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8
Utah/TNI Certification #: PA014572015-5
USDA Soil Permit #: P330-14-00213
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Certification


Wyoming Certification #: 8TMS-L

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: FRF SLUDGE Pace Project No.: 40151526

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40151526001	FRF #1	Solid	06/13/17 13:30	06/13/17 14:00

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: FRF SLUDGE Pace Project No.: 40151526

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40151526001	FRF #1	EPA 8082	BDS	10	PASI-G
		EPA 6010	DLB	7	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 8270	RJN	19	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	SSM	1	PASI-G
		EPA 1010	DEY	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 9095	DEY	1	PASI-G
		EPA 9014	PAS	1	PASI-PA
		SM4500S2F-00	PAS	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: FRF SLUDGE
Pace Project No.: 40151526

Method: EPA 8082
Description: 8082 GCS PCB

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3541 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: FRF SLUDGE
Pace Project No.: 40151526

Method: EPA 6010

Description: 6010 MET ICP, TCLP

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 7470

Description: 7470 Mercury, TCLP

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 258908

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40151516002,40151526001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1525797)
 - Mercury
- MS (Lab ID: 1525799)
 - Mercury
- MSD (Lab ID: 1525798)
 - Mercury

Additional Comments:

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 8270

Description: 8270 MSSV TCLP Sep Funnel **Client:** BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: FRF SLUDGE
Pace Project No.: 40151526

Method: EPA 8260 Description: 8260 MSV TCLP

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 258621

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.

- LCS (Lab ID: 1523789)
 - Chloroform

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 258621

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40151453001,40151516001,40151526001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1523961)
 - Chloroform

Additional Comments:

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 1010

Description: 1010 Flashpoint, Closed Cup

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 1010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 9040 Description: 9040 pH

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 9040. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

• FRF #1 (Lab ID: 40151526001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 259165

1q: Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before analysis.

- FRF #1 (Lab ID: 40151526001)
 - pH

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 9095

Description: 9095 Paint Filter Liquid Test

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 9095. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

(920)469-2436

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: EPA 9014

Description: 733C S Reactive Cyanide

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for EPA 9014. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SW-846 7.3.3.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

(920)469-2436

PROJECT NARRATIVE

Project: FRF SLUDGE Pace Project No.: 40151526

Method: SM4500S2F-00
Description: 734S Reactive Sulfide

Client: BROWN CO PORT & SOLID WASTE

Date: June 28, 2017

General Information:

1 sample was analyzed for SM4500S2F-00. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SW-846 7.3.4.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

Sample: FRF #1 Lab ID: 40151526001 Collected: 06/13/17 13:30 Received: 06/13/17 14:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	A 8082 Prepar	ration Metho	od: EP	A 3541			
PCB-1016 (Aroclor 1016)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	12674-11-2	
PCB-1221 (Aroclor 1221)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	11104-28-2	
PCB-1232 (Aroclor 1232)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	11141-16-5	
PCB-1242 (Aroclor 1242)	311	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	53469-21-9	
PCB-1248 (Aroclor 1248)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	12672-29-6	
PCB-1254 (Aroclor 1254)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	11097-69-1	
PCB-1260 (Aroclor 1260)	<49.4	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	11096-82-5	
PCB, Total	311	ug/kg	98.7	49.4	1	06/15/17 12:32	06/15/17 20:46	1336-36-3	
Surrogates									
Tetrachloro-m-xylene (S)	66	%	50-102		1	06/15/17 12:32	06/15/17 20:46	877-09-8	
Decachlorobiphenyl (S)	70	%	53-105		1	06/15/17 12:32	06/15/17 20:46	2051-24-3	
6010 MET ICP, TCLP	Analytical	Method: EPA	A 6010 Prepar	ration Metho	od: EP	A 3010			
	Leachate I	Method/Date	e: EPA 1311; 06	6/15/17 13:	57				
Arsenic	< 0.042	mg/L	0.12	0.042	1	06/19/17 09:59	06/20/17 11:49	7440-38-2	
Barium	0.28	mg/L	0.075	0.025	1	06/19/17 09:59	06/20/17 11:49	7440-39-3	
Cadmium	< 0.0066	mg/L	0.025	0.0066	1	06/19/17 09:59	06/20/17 11:49	7440-43-9	
Chromium	<0.013	mg/L	0.050	0.013	1	06/19/17 09:59	06/20/17 11:49	7440-47-3	
Lead	<0.022	mg/L	0.065	0.022	1	06/19/17 09:59	06/20/17 11:49	7439-92-1	
Selenium	<0.083	mg/L	0.25	0.083	1	06/19/17 09:59	06/20/17 11:49	7782-49-2	
Silver	<0.017	mg/L	0.050	0.017	1	06/19/17 09:59	06/20/17 11:49	7440-22-4	
7470 Mercury, TCLP			A 7470 Prepar			A 7470			
	Leachate I	Method/Date	e: EPA 1311; 06	6/15/17 13:	57				
Mercury	<0.13	ug/L	0.42	0.13	1	06/19/17 07:40	06/19/17 12:49	7439-97-6	MO
8270 MSSV TCLP Sep Funnel	Analytical	Method: EPA	A 8270 Prepar	ration Metho	od: EP	A 3510			
	Leachate I	Method/Date	e: EPA 1311; 06	6/15/17 13:	57				
1,4-Dichlorobenzene	<18.8	ug/L	62.5	18.8	1	06/19/17 07:50	06/19/17 16:29	106-46-7	
2,4,5-Trichlorophenol	<8.4	ug/L	28.0	8.4	1	06/19/17 07:50	06/19/17 16:29	95-95-4	
2,4,6-Trichlorophenol	<21.1	ug/L	70.4	21.1	1	06/19/17 07:50	06/19/17 16:29	88-06-2	
2,4-Dinitrotoluene	<7.9	ug/L	26.4	7.9	1	06/19/17 07:50	06/19/17 16:29	121-14-2	
2-Methylphenol(o-Cresol)	<8.7	ug/L	28.9	8.7	1	06/19/17 07:50	06/19/17 16:29	95-48-7	
3&4-Methylphenol(m&p Cresol)	<15.6	ug/L	52.0	15.6	1	06/19/17 07:50	06/19/17 16:29		
Hexachloro-1,3-butadiene	<24.6	ug/L	82.0	24.6	1	06/19/17 07:50	06/19/17 16:29	87-68-3	
Hexachlorobenzene	<16.9	ug/L	56.4	16.9	1	06/19/17 07:50	06/19/17 16:29	118-74-1	
Hexachloroethane	<26.6	ug/L	88.6	26.6	1	06/19/17 07:50	06/19/17 16:29	67-72-1	
Nitrobenzene	<14.5	ug/L	48.3	14.5	1	06/19/17 07:50	06/19/17 16:29	98-95-3	
Pentachlorophenol	<14.3	ug/L	47.8	14.3	1	06/19/17 07:50	06/19/17 16:29	87-86-5	
Phenol	<6.0	ug/L	20.0	6.0	1	06/19/17 07:50	06/19/17 16:29	108-95-2	
Pyridine	<17.9	ug/L	59.6	17.9	1	06/19/17 07:50	06/19/17 16:29	110-86-1	
Surrogates									
Nitrobenzene-d5 (S)	76	%	53-100		1		06/19/17 16:29		
2-Fluorobiphenyl (S)	83	%	59-109		1		06/19/17 16:29		
Terphenyl-d14 (S)	80	%	59-108		1	06/19/17 07:50	06/19/17 16:29	1718-51-0	

ANALYTICAL RESULTS

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

Sample: FRF #1 Lab ID: 40151526001 Collected: 06/13/17 13:30 Received: 06/13/17 14:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV TCLP Sep Funnel	Analytical	Method: EPA	8270 Prepai	ration Meth	od: EP	A 3510			
	Leachate	Method/Date:	EPA 1311; 0	6/15/17 13:	57				
Surrogates									
Phenol-d6 (S)	31	%	18-120		1	06/19/17 07:50	06/19/17 16:29		
2-Fluorophenol (S)	47	%	27-67		1	06/19/17 07:50	06/19/17 16:29		
2,4,6-Tribromophenol (S)	107	%	65-140		1	06/19/17 07:50	06/19/17 16:29	118-79-6	
8260 MSV TCLP	Analytical	Method: EPA	8260 Leach	ate Method	/Date:	EPA 1311; 06/14/1	7 12:56		
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		06/15/17 12:00	75-35-4	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		06/15/17 12:00	107-06-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		06/15/17 12:00	78-93-3	
Benzene	<5.0	ug/L	10.0	5.0	10		06/15/17 12:00	71-43-2	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		06/15/17 12:00	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		06/15/17 12:00	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		06/15/17 12:00	67-66-3	L1
Tetrachloroethene	<5.0	ug/L	10.0	5.0	10		06/15/17 12:00	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		06/15/17 12:00		
Vinyl chloride	<1.8	ug/L	10.0	1.8	10		06/15/17 12:00	75-01-4	
Surrogates	0.4	0.4	70.400		40		00/45/47 40 00	0007.00.5	
Toluene-d8 (S)	91	%	70-130		10		06/15/17 12:00		
4-Bromofluorobenzene (S)	117	%	61-130		10		06/15/17 12:00		
Dibromofluoromethane (S)	116	%	67-130		10		06/15/17 12:00	1868-53-7	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	49.4	%	0.10	0.10	1		06/14/17 15:06		
1010 Flashpoint,Closed Cup	Analytical	Method: EPA	1010						
Flashpoint	>210	deg F			1		06/15/17 14:21		
9040 pH	Analytical	Method: EPA	9040						
рН	8.4	Std. Units	0.10	0.010	1		06/20/17 10:40		1q,H6
9095 Paint Filter Liquid Test	Analytical	Method: EPA	9095						
Free Liquids	Pass	no units			1		06/15/17 16:07		
733C S Reactive Cyanide	Analytical	Method: EPA	9014 Prepai	ration Meth	od: SW	/-846 7.3.3.2			
Cyanide, Reactive	<0.79	mg/kg	2.0	0.79	1	06/16/17 14:18	06/16/17 23:06		
734S Reactive Sulfide		0 0			Metho	od: SW-846 7.3.4.2			
Sulfide, Reactive	<19.7	mg/kg	19.7	19.7	1		06/16/17 22:01		
Camao, Modelivo	\10.7	mg/Ng	15.7	13.7	'	30/10/11 17.10	30/10/11 22.01		

Date: 06/28/2017 11:07 AM

QUALITY CONTROL DATA

FRF SLUDGE Project: Pace Project No.: 40151526 QC Batch: 258908 Analysis Method: EPA 7470 QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury TCLP Associated Lab Samples: 40151526001 METHOD BLANK: 1525795 Matrix: Water Associated Lab Samples: 40151526001 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed < 0.13 0.42 06/19/17 12:25 Mercury ug/L METHOD BLANK: 1523835 Matrix: Water Associated Lab Samples: 40151526001 Blank Reporting Limit Units Result Analyzed Qualifiers Parameter 06/19/17 12:42 < 0.13 0.42 Mercury ug/L METHOD BLANK: 1523921 Matrix: Water Associated Lab Samples: 40151526001 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Mercury < 0.13 0.42 06/19/17 12:58 ug/L METHOD BLANK: 1523955 Matrix: Water Associated Lab Samples: 40151526001 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers < 0.13 0.42 06/19/17 13:05 Mercury ug/L LABORATORY CONTROL SAMPLE: 1525796 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 5 4.9 97 85-115 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1525797 1525798 MS MSD 40151516002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury ug/L < 0.00013 5 5 6.9 6.7 138 134 85-115 20 M0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

MATRIX SPIKE SAMPLE:	1525799						
		40151526001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	ug/L	<0.13		7.3	145	85-115	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258929 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 40151526001

METHOD BLANK: 1525856 Matrix: Water

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	06/20/17 11:28	
Barium	mg/L	< 0.0050	0.015	06/20/17 11:28	
Cadmium	mg/L	< 0.0013	0.0050	06/20/17 11:28	
Chromium	mg/L	< 0.0025	0.010	06/20/17 11:28	
Lead	mg/L	< 0.0043	0.013	06/20/17 11:28	
Selenium	mg/L	< 0.017	0.050	06/20/17 11:28	
Silver	mg/L	< 0.0033	0.010	06/20/17 11:28	

METHOD BLANK: 1523832 Matrix: Solid

Associated Lab Samples: 40151526001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	06/20/17 11:46	
Barium	mg/L	< 0.025	0.075	06/20/17 11:46	
Cadmium	mg/L	< 0.0066	0.025	06/20/17 11:46	
Chromium	mg/L	< 0.013	0.050	06/20/17 11:46	
Lead	mg/L	< 0.022	0.065	06/20/17 11:46	
Selenium	mg/L	< 0.083	0.25	06/20/17 11:46	
Silver	mg/L	<0.017	0.050	06/20/17 11:46	

METHOD BLANK: 1523833 Matrix: Solid

Associated Lab Samples: 40151526001

Date: 06/28/2017 11:07 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	06/20/17 12:08	
Barium	mg/L	< 0.0050	0.015	06/20/17 12:08	
Cadmium	mg/L	< 0.0013	0.0050	06/20/17 12:08	
Chromium	mg/L	< 0.0025	0.010	06/20/17 12:08	
Lead	mg/L	< 0.0043	0.013	06/20/17 12:08	
Selenium	mg/L	< 0.017	0.050	06/20/17 12:08	
Silver	mg/L	< 0.0033	0.010	06/20/17 12:08	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

METHOD BLANK: 1523919 Matrix: Solid

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	06/20/17 11:59	
Barium	mg/L	< 0.025	0.075	06/20/17 11:59	
Cadmium	mg/L	< 0.0066	0.025	06/20/17 11:59	
Chromium	mg/L	< 0.013	0.050	06/20/17 11:59	
Lead	mg/L	< 0.022	0.065	06/20/17 11:59	
Selenium	mg/L	< 0.083	0.25	06/20/17 11:59	
Silver	mg/L	< 0.017	0.050	06/20/17 11:59	

METHOD BLANK: 1523953 Matrix: Solid

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	06/20/17 12:03	
Barium	mg/L	< 0.025	0.075	06/20/17 12:03	
Cadmium	mg/L	< 0.0066	0.025	06/20/17 12:03	
Chromium	mg/L	< 0.013	0.050	06/20/17 12:03	
Lead	mg/L	< 0.022	0.065	06/20/17 12:03	
Selenium	mg/L	<0.083	0.25	06/20/17 12:03	
Silver	mg/L	< 0.017	0.050	06/20/17 12:03	

METHOD BLANK: 1523954 Matrix: Solid

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	06/20/17 12:18	
Barium	mg/L	< 0.0050	0.015	06/20/17 12:18	
Cadmium	mg/L	< 0.0013	0.0050	06/20/17 12:18	
Chromium	mg/L	< 0.0025	0.010	06/20/17 12:18	
Lead	mg/L	< 0.0043	0.013	06/20/17 12:18	
Selenium	mg/L	< 0.017	0.050	06/20/17 12:18	
Silver	mg/L	< 0.0033	0.010	06/20/17 12:18	

LABORATORY CONTROL SAMPLE: 1525857

Date: 06/28/2017 11:07 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	.5	0.40	80	80-120	
Barium	mg/L	.5	0.43	86	80-120	
Cadmium	mg/L	.5	0.41	83	80-120	
Chromium	mg/L	.5	0.44	88	80-120	
Lead	mg/L	.5	0.42	85	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

LABORATORY CONTROL SAMPLE: 1525857 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 82 Selenium mg/L .5 0.41 80-120 .25 85 Silver mg/L 0.21 80-120

MATRIX SPIKE SAMPLE:	1525858						
		40151526001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 mg/L	<0.042	2.5	2.4	94	75-125	
Barium	mg/L	0.28	2.5	2.6	94	75-125	
Cadmium	mg/L	<0.0066	2.5	2.4	96	75-125	
Chromium	mg/L	< 0.013	2.5	2.4	95	75-125	
Lead	mg/L	< 0.022	2.5	2.4	94	75-125	
Selenium	mg/L	<0.083	2.5	2.5	98	75-125	
Silver	mg/L	< 0.017	1.2	1.2	98	75-125	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 15258	59		1525860							
			MS	MSD								
	4	0151588002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	<0.042	2.5	2.5	2.3	2.3	92	92	75-125	0	20	
Barium	mg/L	0.87	2.5	2.5	3.2	3.2	95	95	75-125	0	20	
Cadmium	mg/L	< 0.0066	2.5	2.5	2.4	2.4	95	96	75-125	1	20	
Chromium	mg/L	0.075	2.5	2.5	2.5	2.5	98	98	75-125	1	20	
Lead	mg/L	< 0.022	2.5	2.5	2.4	2.4	95	96	75-125	1	20	
Selenium	mg/L	< 0.083	2.5	2.5	2.4	2.4	95	97	75-125	2	20	
Silver	mg/L	< 0.017	1.2	1.2	1.2	1.2	97	98	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258621 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 40151526001

METHOD BLANK: 1523788 Matrix: Water

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
4.4 Diablamathana	/1		4.0		
1,1-Dichloroethene	ug/L	<0.41	1.0	06/15/17 06:20	
1,2-Dichloroethane	ug/L	<0.17	1.0	06/15/17 06:20	
2-Butanone (MEK)	ug/L	<3.0	20.0	06/15/17 06:20	
Benzene	ug/L	< 0.50	1.0	06/15/17 06:20	
Carbon tetrachloride	ug/L	< 0.50	1.0	06/15/17 06:20	
Chlorobenzene	ug/L	< 0.50	1.0	06/15/17 06:20	
Chloroform	ug/L	<2.5	5.0	06/15/17 06:20	
Tetrachloroethene	ug/L	< 0.50	1.0	06/15/17 06:20	
Trichloroethene	ug/L	< 0.33	1.0	06/15/17 06:20	
Vinyl chloride	ug/L	<0.18	1.0	06/15/17 06:20	
4-Bromofluorobenzene (S)	%	115	61-130	06/15/17 06:20	
Dibromofluoromethane (S)	%	116	67-130	06/15/17 06:20	
Toluene-d8 (S)	%	91	70-130	06/15/17 06:20	

METHOD BLANK: 1523273 Matrix: Solid

Associated Lab Samples: 40151526001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	10.0	06/15/17 12:23	
1,2-Dichloroethane	ug/L	<1.7	10.0	06/15/17 12:23	
2-Butanone (MEK)	ug/L	<29.8	200	06/15/17 12:23	
Benzene	ug/L	<5.0	10.0	06/15/17 12:23	
Carbon tetrachloride	ug/L	<5.0	10.0	06/15/17 12:23	
Chlorobenzene	ug/L	<5.0	10.0	06/15/17 12:23	
Chloroform	ug/L	<25.0	50.0	06/15/17 12:23	
Tetrachloroethene	ug/L	<5.0	10.0	06/15/17 12:23	
Trichloroethene	ug/L	<3.3	10.0	06/15/17 12:23	
Vinyl chloride	ug/L	<1.8	10.0	06/15/17 12:23	
4-Bromofluorobenzene (S)	%	108	61-130	06/15/17 12:23	
Dibromofluoromethane (S)	%	114	67-130	06/15/17 12:23	
Toluene-d8 (S)	%	98	70-130	06/15/17 12:23	

LABORATORY CONTROL	SAMPLE:	1523789

Date: 06/28/2017 11:07 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	57.5	115	75-130	
1,2-Dichloroethane	ug/L	50	58.3	117	70-131	
2-Butanone (MEK)	ua/L		<3.0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

LABORATORY CONTROL SAMPLE:	1523789					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		63.2	126	73-145	
Carbon tetrachloride	ug/L	50	60.7	121	70-133	
Chlorobenzene	ug/L	50	53.6	107	70-130	
Chloroform	ug/L	50	60.9	122	80-121 l	L1
etrachloroethene	ug/L	50	50.1	100	70-130	
richloroethene	ug/L	50	60.1	120	70-130	
inyl chloride	ug/L	50	65.5	131	57-136	
-Bromofluorobenzene (S)	%			114	61-130	
ibromofluoromethane (S)	%			111	67-130	
oluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SPI	IKE DUPLICA	TE: 15239	59		1523960							
			MS	MSD								
	4	0151516001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethene	ug/L	<0.0041 mg/L	500	500	557	558	111	112	75-136	0	20	
1,2-Dichloroethane	ug/L	<0.0017 mg/L	500	500	576	573	115	115	70-131	1	20	
2-Butanone (MEK)	ug/L	<0.030 mg/L			<29.8	<29.8					20	
Benzene	ug/L	<0.0050 mg/L	500	500	613	621	123	124	73-145	1	20	
Carbon tetrachloride	ug/L	<0.0050 mg/L	500	500	588	593	118	119	70-134	1	20	
Chlorobenzene	ug/L	<0.0050 mg/L	500	500	543	543	109	109	70-130	0	20	
Chloroform	ug/L	<0.025 mg/L	500	500	579	592	116	118	80-121	2	20	
Tetrachloroethene	ug/L	<0.0050 mg/L	500	500	502	492	100	98	70-130	2	20	
Trichloroethene	ug/L	<0.0033 mg/L	500	500	612	605	122	121	70-130	1	20	
Vinyl chloride	ug/L	<0.0018 mg/L	500	500	616	637	123	127	56-143	3	20	
4-Bromofluorobenzene (S)	%	_					109	115	61-130			
Dibromofluoromethane (S)	%						107	110	67-130			
Toluene-d8 (S)	%						101	100	70-130			

MATRIX SPIKE SAMPLE:	1523961						
Parameter	Units	40151453001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	500	598	120	75-136	
1,2-Dichloroethane	ug/L	<1.7	500	591	118	70-131	
2-Butanone (MEK)	ug/L	<29.8		<29.8			
Benzene	ug/L	<5.0	500	639	128	73-145	
Carbon tetrachloride	ug/L	<5.0	500	638	128	70-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

MATRIX SPIKE SAMPLE:	1523961						
		40151453001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chlorobenzene	ug/L	<5.0	500		112	70-130	
Chloroform	ug/L	<25.0	500	622	124	80-121	MO
Tetrachloroethene	ug/L	<5.0	500	518	104	70-130	
Trichloroethene	ug/L	<3.3	500	622	124	70-130	
Vinyl chloride	ug/L	<1.8	500	661	132	56-143	
4-Bromofluorobenzene (S)	%				126	61-130	
Dibromofluoromethane (S)	%				113	67-130	
Toluene-d8 (S)	%				99	70-130	

MATRIX SPIKE SAMPLE:	1523962						
		40151526001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	500	591	118	75-136	
1,2-Dichloroethane	ug/L	<1.7	500	567	113	70-131	
2-Butanone (MEK)	ug/L	<29.8		<29.8			
Benzene	ug/L	<5.0	500	634	127	73-145	
Carbon tetrachloride	ug/L	<5.0	500	607	121	70-134	
Chlorobenzene	ug/L	<5.0	500	540	108	70-130	
Chloroform	ug/L	<25.0	500	606	121	80-121	
Tetrachloroethene	ug/L	<5.0	500	501	100	70-130	
Trichloroethene	ug/L	<3.3	500	610	122	70-130	
Vinyl chloride	ug/L	<1.8	500	692	138	56-143	
4-Bromofluorobenzene (S)	%				120	61-130	
Dibromofluoromethane (S)	%				111	67-130	
Toluene-d8 (S)	%				96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258693 Analysis Method: EPA 8082
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

Associated Lab Samples: 40151526001

METHOD BLANK: 1524083 Matrix: Solid

Associated Lab Samples: 40151526001

Date: 06/28/2017 11:07 AM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1221 (Aroclor 1221)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1232 (Aroclor 1232)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1242 (Aroclor 1242)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1248 (Aroclor 1248)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1254 (Aroclor 1254)	ug/kg	<25.0	50.0	06/15/17 22:51	
PCB-1260 (Aroclor 1260)	ug/kg	<25.0	50.0	06/15/17 22:51	
Decachlorobiphenyl (S)	%	75	53-105	06/15/17 22:51	
Tetrachloro-m-xylene (S)	%	67	50-102	06/15/17 22:51	

LABORATORY CONTROL SAMPLE:	1524084					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<25.0			
PCB-1221 (Aroclor 1221)	ug/kg		<25.0			
PCB-1232 (Aroclor 1232)	ug/kg		<25.0			
PCB-1242 (Aroclor 1242)	ug/kg		<25.0			
PCB-1248 (Aroclor 1248)	ug/kg		<25.0			
PCB-1254 (Aroclor 1254)	ug/kg		<25.0			
PCB-1260 (Aroclor 1260)	ug/kg	500	387	77	59-106	
Decachlorobiphenyl (S)	%			79	53-105	
Tetrachloro-m-xylene (S)	%			70	50-102	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE: 15240	85		1524086							
Parameter	4 Units	0151620001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<29.8			<29.8	<29.8					20	
PCB-1221 (Aroclor 1221)	ug/kg	<29.8			<29.8	<29.8					20	
PCB-1232 (Aroclor 1232)	ug/kg	<29.8			<29.8	<29.8					20	
PCB-1242 (Aroclor 1242)	ug/kg	66.6			62.8	71.4				13	20	
PCB-1248 (Aroclor 1248)	ug/kg	<29.8			<29.8	<29.8					20	
PCB-1254 (Aroclor 1254)	ug/kg	<29.8			<29.8	<29.8					20	
PCB-1260 (Aroclor 1260)	ug/kg	<29.8	596	596	440	439	74	74	51-109	0	20	
Decachlorobiphenyl (S)	%						73	72	53-105			
Tetrachloro-m-xylene (S)	%						67	68	50-102			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258922 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 40151526001

METHOD BLANK: 1525838 Matrix: Water

Associated Lab Samples: 40151526001

1,4-Dichlorobenzene ug/L <3.8 2,4,5-Trichlorophenol ug/L <1.7 2,4,6-Trichlorophenol ug/L <4.2	12.5 5.6	Analyzed 06/19/17 13:16 06/19/17 13:16	Qualifiers
2,4,5-Trichlorophenol ug/L <1.7 2,4,6-Trichlorophenol ug/L <4.2	5.6		
2,4,6-Trichlorophenol ug/L <4.2		06/19/17 13:16	
•	444	00, .0, 10.10	
	14.1	06/19/17 13:16	
2,4-Dinitrotoluene ug/L <1.6	5.3	06/19/17 13:16	
2-Methylphenol(o-Cresol) ug/L <1.7	5.8	06/19/17 13:16	
3&4-Methylphenol(m&p Cresol) ug/L <3.1	10.4	06/19/17 13:16	
Hexachloro-1,3-butadiene ug/L <4.9	16.4	06/19/17 13:16	
Hexachlorobenzene ug/L <3.4	11.3	06/19/17 13:16	
Hexachloroethane ug/L <5.3	17.7	06/19/17 13:16	
Nitrobenzene ug/L <2.9	9.7	06/19/17 13:16	
Pentachlorophenol ug/L <2.9	9.6	06/19/17 13:16	
Phenol ug/L <1.2	4.0	06/19/17 13:16	
Pyridine ug/L <3.6	11.9	06/19/17 13:16	
2,4,6-Tribromophenol (S) % 107	65-140	06/19/17 13:16	
2-Fluorobiphenyl (S) % 87	59-109	06/19/17 13:16	
Nitrobenzene-d5 (S) % 82	53-100	06/19/17 13:16	
Phenol-d6 (S) % 28	18-120	06/19/17 13:16	

METHOD BLANK: 1523834 Matrix: Water

Associated Lab Samples: 40151526001

Date: 06/28/2017 11:07 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<18.8	62.5	06/19/17 16:50	
2,4,5-Trichlorophenol	ug/L	<8.4	28.0	06/19/17 16:50	
2,4,6-Trichlorophenol	ug/L	<21.1	70.4	06/19/17 16:50	
2,4-Dinitrotoluene	ug/L	<7.9	26.4	06/19/17 16:50	
2-Methylphenol(o-Cresol)	ug/L	<8.7	28.9	06/19/17 16:50	
3&4-Methylphenol(m&p Cresol)	ug/L	<15.6	52.0	06/19/17 16:50	
Hexachloro-1,3-butadiene	ug/L	<24.6	82.0	06/19/17 16:50	
Hexachlorobenzene	ug/L	<16.9	56.4	06/19/17 16:50	
Hexachloroethane	ug/L	<26.6	88.6	06/19/17 16:50	
Nitrobenzene	ug/L	<14.5	48.3	06/19/17 16:50	
Pentachlorophenol	ug/L	<14.3	47.8	06/19/17 16:50	
Phenol	ug/L	<6.0	20.0	06/19/17 16:50	
Pyridine	ug/L	<17.9	59.6	06/19/17 16:50	
2,4,6-Tribromophenol (S)	%	105	65-140	06/19/17 16:50	
2-Fluorobiphenyl (S)	%	75	59-109	06/19/17 16:50	
Nitrobenzene-d5 (S)	%	73	53-100	06/19/17 16:50	
Phenol-d6 (S)	%	22	18-120	06/19/17 16:50	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

METHOD BLANK: 1523920 Matrix: Water

Associated Lab Samples: 40151526001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<18.8	62.5	06/19/17 17:12	
2,4,5-Trichlorophenol	ug/L	<8.4	28.0	06/19/17 17:12	
2,4,6-Trichlorophenol	ug/L	<21.1	70.4	06/19/17 17:12	
2,4-Dinitrotoluene	ug/L	<7.9	26.4	06/19/17 17:12	
2-Methylphenol(o-Cresol)	ug/L	<8.7	28.9	06/19/17 17:12	
3&4-Methylphenol(m&p Cresol)	ug/L	<15.6	52.0	06/19/17 17:12	
Hexachloro-1,3-butadiene	ug/L	<24.6	82.0	06/19/17 17:12	
Hexachlorobenzene	ug/L	<16.9	56.4	06/19/17 17:12	
Hexachloroethane	ug/L	<26.6	88.6	06/19/17 17:12	
Nitrobenzene	ug/L	<14.5	48.3	06/19/17 17:12	
Pentachlorophenol	ug/L	<14.3	47.8	06/19/17 17:12	
Phenol	ug/L	<6.0	20.0	06/19/17 17:12	
Pyridine	ug/L	<17.9	59.6	06/19/17 17:12	
2,4,6-Tribromophenol (S)	%	112	65-140	06/19/17 17:12	
2-Fluorobiphenyl (S)	%	78	59-109	06/19/17 17:12	
Nitrobenzene-d5 (S)	%	76	53-100	06/19/17 17:12	
Phenol-d6 (S)	%	24	18-120	06/19/17 17:12	

LABORATORY CONTROL SAMPLE:	1525839					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	50	36.9	74	44-84	
2,4,5-Trichlorophenol	ug/L	50	56.4	113	63-127	
2,4,6-Trichlorophenol	ug/L	50	56.6	113	65-125	
2,4-Dinitrotoluene	ug/L	50	60.9	122	68-137	
2-Methylphenol(o-Cresol)	ug/L	50	37.1	74	54-103	
3&4-Methylphenol(m&p Cresol)	ug/L	50	30.6	61	50-95	
Hexachloro-1,3-butadiene	ug/L	50	42.7	85	57-100	
Hexachlorobenzene	ug/L	50	49.5	99	70-130	
Hexachloroethane	ug/L	50	34.9	70	41-130	
Nitrobenzene	ug/L	50	46.1	92	70-130	
Pentachlorophenol	ug/L	50	46.7	93	57-121	
Phenol	ug/L	50	22.1	44	25-120	
Pyridine	ug/L	50	9.8J	20	10-79	
2,4,6-Tribromophenol (S)	%			125	65-140	
2-Fluorobiphenyl (S)	%			99	59-109	
Nitrobenzene-d5 (S)	%			94	53-100	
Phenol-d6 (S)	%			35	18-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

Date: 06/28/2017 11:07 AM

MATRIX SPIKE SAMPLE:	1525840							
		40151516001	Spike	MS	MS	% Rec		
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
1,4-Dichlorobenzene	ug/L	<0.019 mg/L	250	188	75	42-96		
2,4,5-Trichlorophenol	ug/L	<0.0084 mg/L	250	217	87	49-127		
2,4,6-Trichlorophenol	ug/L	<0.021 mg/L	250	251	100	52-125		
2,4-Dinitrotoluene	ug/L	<0.0079 mg/L	250	278	111	56-137		
2-Methylphenol(o-Cresol)	ug/L	<0.0087 mg/L	250	192	77	29-103		
3&4-Methylphenol(m&p Cresol)	ug/L	<0.016 mg/L	250	156	62	21-95		
Hexachloro-1,3-butadiene	ug/L	<0.025 mg/L	250	222	89	52-100		
Hexachlorobenzene	ug/L	<0.017 mg/L	250	237	95	67-130		
Hexachloroethane	ug/L	<0.027 mg/L	250	170	68	41-130		
Nitrobenzene	ug/L	<0.015 mg/L	250	215	86	61-130		
Pentachlorophenol	ug/L	<0.014 mg/L	250	232	93	44-134		
Phenol	ug/L	<6.0	250	98.6	39	16-120		
Pyridine	ug/L	<0.018 mg/L	250	60.3	24	10-79		
2,4,6-Tribromophenol (S)	%	10.010 mg/L	200	00.5	116	65-140		
2-Fluorobiphenyl (S)	%				87	59-109		
Nitrobenzene-d5 (S)	%				86	53-100		
Phenol-d6 (S)	%				33	18-120		
(-)								
MATRIX SPIKE SAMPLE:	1525841							
		40151453001	Spike	MS	MS	% Rec		
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
1,4-Dichlorobenzene	ug/L	<18.8	250	183	73	42-96		
2,4,5-Trichlorophenol	ug/L	<8.4	250	248	99	49-127		
2,4,6-Trichlorophenol	ug/L	<21.1	250	275	110	52-125		
2,4-Dinitrotoluene	ug/L	<7.9	250	293	117	56-137		
2-Methylphenol(o-Cresol)	ug/L	<8.7	250	178	71	29-103		
3&4-Methylphenol(m&p Cresol)	ug/L	<15.6	250	162	65	21-95		
Hexachloro-1,3-butadiene	ug/L	<24.6	250	206	83	52-100		
Hexachlorobenzene	ug/L	<16.9	250	228	91	67-130		
Hexachloroethane	ug/L	<26.6	250	162	65	41-130		
Nitrobenzene	ug/L	<14.5	250	216	87	61-130		
Pentachlorophenol	ug/L	<14.3	250	241	96	44-134		
Phenol	ug/L	<6.0	250	99.9	40	16-120		
Pyridine	ug/L	<17.9	250	25.6J	10	10-120		
2,4,6-Tribromophenol (S)	ug/∟ %	111.5	250	25.05	120	65-140		
2,4,6-11blofflopheriol (3) 2-Fluorobiphenyl (S)	% %				93	59-109		
Nitrobenzene-d5 (S)	% %				93 93	59-109		
Phenol-d6 (S)	%				34	18-120		
MATRIX SPIKE SAMPLE:	1525842							
		40151526001	Spike	MS	MS	% Rec		
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
- aramotor							Qualifor	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

250

250

165

274

66

110

42-96

49-127

<18.8

<8.4

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

MATRIX SPIKE SAMPLE:	1525842						
		40151526001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2,4,6-Trichlorophenol	ug/L	<21.1	250	280	112	52-125	
2,4-Dinitrotoluene	ug/L	<7.9	250	294	118	56-137	
2-Methylphenol(o-Cresol)	ug/L	<8.7	250	183	73	29-103	
3&4-Methylphenol(m&p Cresol)	ug/L	<15.6	250	159	64	21-95	
Hexachloro-1,3-butadiene	ug/L	<24.6	250	195	78	52-100	
Hexachlorobenzene	ug/L	<16.9	250	232	93	67-130	
Hexachloroethane	ug/L	<26.6	250	149	60	41-130	
Nitrobenzene	ug/L	<14.5	250	212	85	61-130	
Pentachlorophenol	ug/L	<14.3	250	265	106	44-134	
Phenol	ug/L	<6.0	250	107	43	16-120	
Pyridine	ug/L	<17.9	250	83.8	34	10-79	
2,4,6-Tribromophenol (S)	%				121	65-140	
2-Fluorobiphenyl (S)	%				82	59-109	
Nitrobenzene-d5 (S)	%				81	53-100	
Phenol-d6 (S)	%				34	18-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258542

QC Batch Method: ASTM D2974-87

Associated Lab Samples: 40151526001

542 Analysis Method:

Analysis Description: Dry Weight/Percent Moisture

ASTM D2974-87

SAMPLE DUPLICATE: 1523157

Date: 06/28/2017 11:07 AM

40151370034 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers % 18.0 Percent Moisture 18.8 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 258650 Analysis Method: EPA 1010

QC Batch Method: EPA 1010 Analysis Description: 1010 Flash Point, Closed Cup

Associated Lab Samples: 40151526001

LABORATORY CONTROL SAMPLE: 1523890

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Flashpoint deg F 80.8

SAMPLE DUPLICATE: 1524596

Date: 06/28/2017 11:07 AM

ParameterUnitsResult Result RPDMax Result RPDQualifiersFlashpointdeg F>210>210C4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: FRF SLUDGE

Pace Project No.: 40151526

QC Batch: 259165 QC Batch Method: EPA 9040 Analysis Method: EPA 9040
Analysis Description: 9040 pH

Associated Lab Samples: 40151526001

SAMPLE DUPLICATE: 1526648

Date: 06/28/2017 11:07 AM

 Parameter
 Units
 40151803006 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH
 Std. Units
 7.2
 7.3
 1
 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Free Liquids

Date: 06/28/2017 11:07 AM

QUALITY CONTROL DATA

Project: FRF SLUDGE Pace Project No.: 40151526 QC Batch: 258751 Analysis Method: EPA 9095 QC Batch Method: EPA 9095 Analysis Description: 9095 PAINT FILTER LIQUID TEST Associated Lab Samples: 40151526001 METHOD BLANK: 1524455 Matrix: Solid Associated Lab Samples: 40151526001 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers Free Liquids Fail 06/15/17 15:32 no units LABORATORY CONTROL SAMPLE: 1524456 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Free Liquids no units **Pass** SAMPLE DUPLICATE: 1524457 40151516002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers

Pass

no units

Pass

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE Pace Project No.: 40151526

QC Batch: 262127 Analysis Method: EPA 9014

QC Batch Method: SW-846 7.3.3.2 Analysis Description: 733C Reactive Cyanide

Associated Lab Samples: 40151526001

METHOD BLANK: 1290868 Matrix: Solid

Associated Lab Samples: 40151526001

Parameter Units Result Limit Analyzed Qualifiers

Cyanide, Reactive mg/kg <0.40 0.99 06/16/17 22:57

LABORATORY CONTROL SAMPLE: 1290869

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide, Reactive mg/kg 101 < 0.40 0 0-8

SAMPLE DUPLICATE: 1290870

Date: 06/28/2017 11:07 AM

ParameterUnits40151526001 ResultDup ResultMax ResultMax ResultCyanide, Reactivemg/kg<0.79</td><0.79</td>20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: FRF SLUDGE
Pace Project No.: 40151526

QC Batch: 262126 Analysis Method: SM4500S2F-00
QC Batch Method: SW-846 7.3.4.2 Analysis Description: 734S Reactive Sulfide

Associated Lab Samples: 40151526001

METHOD BLANK: 1290865 Matrix: Solid

Associated Lab Samples: 40151526001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfide, Reactive mg/kg <9.9 9.9 06/16/17 22:01

LABORATORY CONTROL SAMPLE: 1290866

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 26 Sulfide, Reactive mg/kg 201 52.3 0-52

SAMPLE DUPLICATE: 1290867

Date: 06/28/2017 11:07 AM

ParameterUnits40151526001 ResultDup ResultMax ResultMax ResultSulfide, Reactivemg/kg<19.7</td><19.6</td>20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: FRF SLUDGE Pace Project No.: 40151526

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G	Pace Analytical Services - Green Bay
PASI-PA	Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 06/28/2017 11:07 AM

1q	Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before
•	analysis.

C4 Sample container did not meet EPA or method requirements.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FRF SLUDGE Pace Project No.: 40151526

Date: 06/28/2017 11:07 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40151526001	FRF #1	EPA 3541	258693	EPA 8082	258694
40151526001	FRF #1	EPA 3010	258929	EPA 6010	259129
40151526001	FRF #1	EPA 7470	258908	EPA 7470	258931
40151526001	FRF #1	EPA 3510	258922	EPA 8270	259012
40151526001	FRF #1	EPA 8260	258621		
40151526001	FRF #1	ASTM D2974-87	258542		
40151526001	FRF #1	EPA 1010	258650		
40151526001	FRF #1	EPA 9040	259165		
40151526001	FRF #1	EPA 9095	258751		
40151526001	FRF #1	SW-846 7.3.3.2	262127	EPA 9014	262199
40151526001	FRF #1	SW-846 7.3.4.2	262126	SM4500S2F-00	262197

	(Please	Print Clearly)										UPPEF	R MIDW	EST R	EGION S	SM	Page 1	of
Company Nai	me:	rown Coun	to									MN: 6	12-607-	-1700	WI: 920-469-2436			f 50
Branch/Locat	175	yté Risoun	Show	m /		Pace.		lytic celabs.c								<u> </u>	Page 1	9 age 38 of 50
Project Conta	ict:	Inch Doller	spila	71/			** ** ** . 5.04	vonova.c	AJE / L						Quote #:			Page
Phone:	19	20)492-4	455		C	HA	IN	OF	C	JS	TO	DY			Mail To Contact:			
Project Numb	er:			A=No	one B≃l	-ICL C≃H	-	Preserva D≈HNO3	tion Code E≃DIV		=Methan	ol G≔N	аОН		Mail To Company:			
Project Name	: 19	2f sludg	; L			fate Solutio			n Thiosulfa		Other				Mail To Address:			
Project State:					RED? (NO)	YIN	N											
Sampled By (Print):	had Dora	Apila		VATION DE)*	Pick Letter	N	***************************************							Invoice To Contact:			
Sampled By (Sign):	endor			ateliotina promining sectioning	-	22								Invoice To Company:			
PO #:			Regulat Progra			Requested	72								Invoice To Address:			
Data Packa	ge Options		<u> </u>	Matrix Codes W = Water	5	1 8	8											
☐ EP/	A Level III	On your samp (billable)	B = Biota C = Charcon	DW ≃ Drinki	nd Water		7								Invoice To Phone:			
LJ EP/	A Level IV	NOT needed your sample	S = Soil SI = Sludge	WW = Wast WP = Wipe		Analyses	BC								CLIENT	LAB C	OMMENTS	Profile #
PACE LAB #	CL	ENT FIELD ID	DĄ	TE TIME	MATRIX		$\mathcal{J}_{\mathcal{S}}$								COMMENTS	(Lab	Use Only)	
001	FRF	#1	6/1	2 1:30	5				,							7-6	102ag	
			17	7				**************************************									9	
								******************				Wed-Vertexaniana	V-redominado messos					
**************************************											o de la composición de la com	*************	***************************************				Harten President Amberland in the construction of the construction	
	etientikistikeisesteti etiesisessissississessessississississi															**************************************	THE RESERVE OF THE PROPERTY OF	
was managari ya casa wa managa								***************************************			ulVartino)Armera mediensi		************					
	CONTRACTOR																	
	AND COLUMN THE OWNER, OF THE PERSONS SERVICE					-		·										
***						-												

***************************************	Mathematica and approximation constitution of the										**********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					www.p.l.stage.com.com.com.com.com.com.com.com.com.com	
													***************************************			***************************************		
															BARROSHI AND CONTRACTOR CO	maker ration and resident the first facilities		
											entransportent en en	14.000 Excellent 100 Her	4					
		ime Requested - P to approval/surch	a a	Reliments hed By		Incident ion		Da	te/Time:	2	מנום'	Deceived	W.	2000	Date/Time:	~140C)	PACE Pro	ject No.
(Rusii i	Date Nee			Relinquished By:					te/Time:	<u> </u>	W U1	Received		WY	Date/Time:		701515	⁻ 26
- 	lim Rush Resi	ults by (complete what)			nega amerikan propinsi alikelengi esik	ومناساته والخشام والمشاعدة والمتاسات فالمتار بعراجه	iga de de la companya					-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Receipt Temp = 4	2070
Email #1:				Relinquished By:				Da	te/Time:			Received	By:		Date/Time:		Sample Re	
Email #2:	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Daliandah - 3 P					to/Tim			Done	D.o.		D-4- (F)-		Sample Re OK / Adj	
Telephone: Fax:				Relinquished By:				Da	te/Time:			Received	øy:		Date/Time:		Cooler Cust	THE RESERVE THE PROPERTY OF THE PERSON NAMED AND TH
	iampies on HO	LD are subject to		Relinquished By:	***************************************			Da	te/Time:	OCKCOMMENSORMONDO		Received	By:		Date/Time;		Present / No	
		i release of liability					NAGOV/QUENTIFERINA		man section and the section an				okanoko azirondoko	and the second second second			Intact / No	
				Commission of the Commission o											- Constitution of the Cons		Version 6.0 06/14/06	

Sample Condition Upon Receipt

Pace Analytical Services, LLC. - Green Bay WI 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Pace Analytical **

Client Name: Brown Co				Project # WO#: 40151526
Courier: Fed Ex TUPS Client Pac	ce Other:			
Custody Seal on Cooler/Box Present: Tyes.	PO	Seals	intact:	- 40151526 F no 40151526 F yes F no
Custody Seal on Samples Present: yes	no	Seals	intact:	yes no
Packing Material:	oble Bag	s	None	Other
Thermometer Used NA	_	,		Blue Dry None Samples on ice, cooling process has begun
Cooler Temperature Uncorr: //Corr:	(20)		Biolo	gical Tissue is Frozen: yes
Temp Blank Present: yes no	•			Person examining contents:
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.				Comments:
Chain of Custody Present:	Yes	□No	□N/A	1.
Chain of Custody Filled Out:	Yes	□No	□n/a	2.
Chain of Custody Relinquished:	Yes	□No	□n/a	3.
Sampler Name & Signature on COC:	Yes	□No	□N/A	4.
Samples Arrived within Hold Time:	Yes	□No	□n/a	5.
- VOA Samples frozen upon receipt	□Yes	□No		Date/Time:
Short Hold Time Analysis (<72hr):	□Yes	ÐNo	□n/a	6.
Rush Turn Around Time Requested:	□Yes	DNO	□n/a	7.
Sufficient Volume:	√∐Yes	□No	□n/a	8.
Correct Containers Used:	Yes	□No	□n/a	9.
-Pace Containers Used:	✓Yes	□No	□n/a	
-Pace IR Containers Used:	1		□N/A	
Containers Intact:			□N/A	10
Filtered volume received for Dissolved tests			□N/A	
Sample Labels match COC:	·····		□n/a	
-Includes date/time/ID/Analysis Matrix:	7			
All containers needing preservation have been checked (Non-Compliance noted in 13.)	I. □Yes	□No	ZN/A	T HNO3 T H2SO4 T NaOH T NaOH +ZnAct
All containers needing preservation are found to be in				15.
compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes	□No	Øn/a	
exceptions: VOA, coliform, TOC, TOX, TOH, O&G, WIDROW, Phenolics, OTHER:	□Yes	No		Initial when Lab Std #ID of Date/ completed preservative Time:
Headspace in VOA Vials (>6mm):	□Yes	□No	⊠N/A	14.
Trip Blank Present:	□Yes	□No	.☑N/A	15.
Trip Blank Custody Seals Present	□Yes	□No	DWA	
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:				If checked, see attached form for additional comments
Person Contacted:			_Date/	Time:
Comments/ Resolution:				
Project Manager Review: Rmw	(ار	TN	-	Date: 6/17/17

F-GB-C-031-Rev.04 (12Dec2016) SCUR.xls Pace Analytical Services LLC. - Green Bay WI

Analytical Report

Tod Noltenmeyer Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302 June 20, 2017

Work Order: 17F0534

RE: Green Bay

FRF Sludge / 40151526

Dear Tod Noltenmeyer:

Enclosed are the analytical reports for the EMT Work Order listed. Also included with this analytical report is a copy of the chain of custody associated with these samples. If you have any questions, please contact me.

Sincerely,

Approved by,

Arminta Priddy Project Manager 847.967.6666

847.967.6666 apriddy@emt.com

Approved for release: 6/20/2017 2:42:56PM

Comento P Puddy

Matthew Gregory Technical Manager

The contents of this report apply to the sample(s) analyzed. No duplication is allowed except in its entirety. Detection and Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

State of Wisconsin Dept of Natural Resources, Cert No. 999888890

Table of Contents

Cover Letter	1
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Dates Report	6
Quality Control	7
Certified Analyses	9
List of Certifications	9
Qualifiers and Definitions	10
Chain of Custody	11

Sample Summary

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FRF#1	17F0534-01	Solid	06/13/17 13:30	06/15/17 10:00

Case Narrative

Client: Pace Analytical Services, Inc. Date: 06/20/2017

Project: Green Bay

FRF Sludge / 40151526

Work Order: 17F0534

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Sample results only relate to the sample(s) received at the laboratory and analytes of interest tested.

Work Order: 17F0534

The samples were received on 06/15/17 10:00. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was

CoolerTemp C°Default Cooler6.8

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Client Sample Results

Client: Pace Analytical Services, Inc.

Project: Green Bay

FRF Sludge / 40151526

Work Order: 17F0534

Client Sample ID: FRF#1

Report Date: 06/20/2017

Collection Date: 06/13/2017 13:30

Matrix: Solid

Lab ID: 17F0534-01

	_		5 4 6						
		Reporting				Date/Time			
Analyses	Result	Limit	Qual	Units	MDL	Analyzed	Batch	Analyst	D
Anions by Ion Chroma	atography								
Method	: SW9056A / SW5050								
Chlorine	0.0318	0.231	J	% dry	0.0139	06/19/17 14:11	B7F0638	NB1	5
Wet Chemistry									
Method	: SM2540G								
Total Solids	49.9	0.100		% (Percent)	0.00700	06/19/17 06:12	B7F0665	CP1	1

Report Date: 06/20/2017

8100 N. Austin Avenue Morton Grove, IL 60053-3203 P 847.967.6666 800.246.0663 F 847.967.6735 www.emt.com

Dates Report

Client: Pace Analytical Services, Inc.

Project: Green Bay

FRF Sludge / 40151526

Work Order: 17F0534

					Leached				
Sample ID	Client Sample ID	Collection	Matrix	Test Name	Prep Date	Prep Date	Analysis Date	Batch ID	Sequence
17F0534-01	FRF#1	06/13/17	Solid	Chlorine, Percent		06/19/17 08:30	06/19/17 14:11	B7F0638	S7F0383
				Total Solids / Percent Moisture		06/19/17 06:00	06/19/17 06:12	B7F0665	

Quality Control

Client: Pace Analytical Services, Inc.

Project: Green Bay

FRF Sludge / 40151526

Work Order: 17F0534

Report Date: 06/20/2017

Matrix: Solid

Anions by Ion Chromatography

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	DF
Batch: B7F0638 - SW5050											
Blank (B7F0638-BLK1)				Prepared	: 06/19/201	7 08:30	Analyzed: 00	6/19/2017	09:59		
Chlorine	< 0.00000600	0.000100	% wet								1
Blank (B7F0638-BLK2)				Prepared	: 06/19/201	7 08:30	Analyzed: 0	6/19/2017	11:23		
Chlorine	< 0.000582	0.00970	% wet								1
LCS (B7F0638-BS1)				Prepared	: 06/19/201	7 08:30	Analyzed: 06	6/19/2017	10:27		
Chlorine	0.0000235	0.000100	% wet	0.00002000		117	80-120			J	1
LCS (B7F0638-BS2)				Prepared	: 06/19/201	7 08:30	Analyzed: 00	6/19/2017	10:55		
Chlorine	0.000494	0.000100	% wet	0.0005000		98.7	80-120				1
Duplicate (B7F0638-DUP1)		Source: 17	F0534-01	Prepared	: 06/19/201	7 08:30	Analyzed: 00	6/19/2017	14:39		
Chlorine	0.0280	0.209	% dry		0.0318			12.9	20	J	5
Reference (B7F0638-SRM1)				Prepared	: 06/19/201	7 08:30	Analyzed: 00	6/19/2017	11:51		
Chlorine	0.00339	0.0188	% wet	0.008400		40.4	50-150			S, J	1
Reference (B7F0638-SRM2)				Prepared	: 06/19/201	7 08:30	Analyzed: 00	6/19/2017	12:19		
Chlorine	0.0372	0.0189	% wet	0.03800		97.9	50-150				1

Quality Control

(Continued)

Client: Pace Analytical Services, Inc.

Project: Green Bay

FRF Sludge / 40151526

Work Order: 17F0534

Report Date: 06/20/2017

Matrix: Solid

Wet Chemistry

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	DF
Batch: B7F0665											
Blank (B7F0665-BLK1)				Prepared	: 06/19/201	7 06:00	Analyzed: 06	6/19/2017	06:16		
Total Solids	< 0.100	0.100	%								1
LCS (B7F0665-BS1)				Prepared	: 06/19/201	7 06:00	Analyzed: 06	6/19/2017	06:18		
Total Solids	0.190	0.100	%	0.2000		94.8	88.3-107				1
Duplicate (B7F0665-DUP1)		Source: 17F	0464-01	Prepared	: 06/19/201	7 06:00	Analyzed: 06	6/19/2017	06:20		
Total Solids	85.4	0.100	%		86.0			0.695	5		1

Certified Analyses included in this Report

Analyte	CAS#	Certifications
SM2540G in Solid		
Total Solids	Moist	WDNR

List of Certifications

Code	Description	Number	Expires
AKDEC	State of Alaska, Dept. Environmental Conservation	UST-105	07/16/2017
CPSC	US Consumer Product Safety Commission, Accredited by PJLA Lab No. 1050	L14-56	04/30/2018
DoD	Department of Defense, Accredited by PJLA	L14-55	04/30/2018
ILEPA	State of Illinois, NELAP Accredited Lab No. 100256	003674	07/27/2017
ISO	ISO/IEC 17025, Accredited by PJLA	L14-56	04/30/2018
LELAP	State of Louisiana, NELAP Accredited Lab No. 171344	05015	06/30/2017
NJDEP	State of New Jersey, NELAP Accredited Lab No. IL010	NLC160001	06/30/2017
WDNR	State of Wisconsin Dept of Natural Resources	999888890	08/31/2017

8100 N. Austin Avenue Morton Grove, IL 60053-3203 P 847.967.6666 800.246.0663 F 847.967.6735 www.emt.com

Qualifiers and Definitions

Item	Description
J	Estimated Value
S	The recovery is outside of the laboratory control limits.
%Rec	Percent Recovery
MDL	In the state of Wisconsin MDL is equivalent to LOD; in all other applications MDL is equivalent to MDL.

17F0534 PM: Arminta Priddy Pace Analytical Services, Inc. Green Bay

Chain	of (Cus	tody
-------	------	-----	------

Work	order: 40151526	Workorder Name:	FRF SLUDGE				Re	sults Re	quested B	y: 6/27/201	7	
Repor	/ Invoice To	Subco	ntract To	ija.					Requeste	d Analysis		
Pace 1241 Suite Green Phone	oltemeyer Analytical Green Bay Bellevue Street 9 Bay, WI 54302 9 (920)469-2436 tod.noltemeyer@pacelal	Morton	S rth Austin Av Grove, IL 60				acted to EMT Labs					
State	of Sample Origin: W	I LOD/LOQ			Prese	erved Containe	ers o					
Item	Sample ID	Collect Date/Time	Lab ID M	atrix	Unpreserved		Thlorine suk					LAB USE ONLY
1	FRF #1	6/13/2017 13:30	40151526001 Sc	olid	1		X					OIA
3							1					
4						+++	+	H	-			
5												***************************************
						9 - 1				Comn	nents	
1 2	Released By	view Peter appli		у		Dat	te/Time					
3			ale			Val.	5/17 1	000				_
Cool	er Temperature on Re	ceipt & 8°C	Custody Seal Y	or N		Receive			N	Sam	ples Intact	or N

Outagamie County Internal Use Only:

BC Customer

OC Customer

☐ WC Customer

Outagamie County Recycling & Solid Waste Brown Outagamie Winnebago Counties SPECIAL WASTE DISPOSAL APPLICATION

Name Neenah Lager Appleton M. // Contact Person Email Address Phone Number 920-738-9396 Site Address (where material is generated) 430 E South Island St. Apple Ion, WISY915	Waste Information Waste Name Process Used to Generate Waste Waste Category Number Total Anticipated Waste Volume (include units) Frequency of Disposal Name of Lab Performing Analysis Date of Most Recent Analysis Physical State @ 25°C Color Comments Odor Comments
B. Billing Information	Comments
(In order to be billed, you must fill out a credit application)	
Name Veenah Paper Accounts Payade Contact Person Email Address Phone Fax Number Billing Address 1376 Kunberty Drave Meenah W 54956	*For all waste types, attach available pertinent documents, MSDSs, technical bulletins, etc. List attachments here:
C. Consultant Information Name Contact Person Email Address Phone Number	The generator warrants, represents, and certifies that this waste is not hazardous waste as specified by NR600 or 40CFR261, that his material does not contain more than 50 ppm of PCB materials, and that this information is representative of the waste.
Fax NumberAddress	Generator's Signature Title Date
D. Hauler Information Name Vans Waste Contact Person Jeff Vander Iteiden Phone Number 920 - 687-3632 Address N 2061 Vanden Proct Rel Kayleauna, W 54130	Instructions: For Category A, B, and, C Wastes: Complete Section I For Category D Wastes: Complete Section II For Category E Wastes: Compete Section III

Section I

For Category A, B, and C Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
% Solids	≥ 40% (A&B)	
	≥ 20% (C)	39.5
% Free Liquids (paint	0%	
filter test)		0,0
Flash Point	$> 140^{\circ} F$	7170
рН	$2.0 \le pH \le 12.5$	7.0
Total available sulfide	<500 mg/kg	73.0
Total available cyanide	<250 mg/kg	× 0.090
Arsenic	< 5.0	4 0,005
Barium	< 100.0	0.17
Cadmium	< 1.0	<001
Chromium	< 5.0	10,02
Lead	< 5.0	<0.03
Mercury	< 0.2	<0.000
Selenium	< 1.0	40.009
Silver	< 5.0	<0.01
% Chlorine	< 1%	<0.02
Phenol	< 2000	0.06
Benzene	< 0.5	ND
Carbon tetrachloride	< 0.5	ND
Chlorobenzene	< 100.0	110
Chloroform	< 6.0	ND
Cresol	< 200.0	
1,4-Dichlorobenzene	< 7.5	ND
1,2-Dichloroethane	< 0.5	ND
1,1-Dichloroethylene	< 0.7	ND
2,4-Dinitrotoluene	< 0.3	WD
Hexachlorobenzene	< 0.13	ND
Hexachlorobutadiene	< 0.5	ND
Hexachloroethane	< 3.0	ND
Methyl ethyl ketone	< 200.0	
Nitrobenzene	< 2.0	ND
Pentachlorophenol	< 100.0	ND
Pyridine	< 5.0	ND
Tetrachloroethylene	< 0.7	ND
Trichloroethylene	< 0.5	ND
2,4,5-Trichlorophenol	< 400.0	ND
2,4,6-Trichlorophenol	< 2.0	ND
Vinyl Chloride	< 0.2	NIS

For Category B and C Wastes, complete the following and attach laboratory report:

PCB (Arochlor 1016, 1221, 1232, 1242, 1248, 1254, 1260)

Section II

For Category D Wastes, complete the following and attach laboratory report:

Analytical Information

	Parameter	Acceptance Level	Lab Result
a.	All Soils		
	Lead	Total <100 mg/kg	
		or TCLP <5 mg/l	
b.	Gasoline or Dies	el	
	(analyze all paran	neters in a., plus the follow	ving):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Benzene	Total <10 mg/kg	
		Or TCLP < 0.5 mg/l	
c.	Waste Oil or Uni	known Petroleum Waste	
	(analyze al param	eters in a., plus the follow	ring):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Cadmium	Total <20 mg/kg	
		Or TCLP <1 mg/l	

Section III

For Category E Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
рН	$2.0 \le pH \le 12.5$	
% Solids	≥ 20%	
% Free liquids	0%	
TCLP metals		
Arsenic	< 5.0	
Barium	< 100.0	
Cadmium	< 1.0	
Chromium	< 5.0	
Lead	< 5.0	
Mercury	< 0.2	
Selenium	< 1.0	
Silver	< 5.0	
Total available sulfide	< 500 mg/kg	

Section IV

For Category F Wastes, include the following information and attach MSDS(s), technical bulletin(s), or other pertinent information regarding the waste stream. Indicate the waste type, the source of the waste stream, the reason for disposal, the physical state of the material, and describe the process from which the waste was generated.

ANALYTICAL REPORT

Badger Laboratories & Engineering, Inc.

Sample Delivery Group:

L848569

Samples Received:

07/21/2016

Project Number:

Description:

Report To:

Jeff Wagner

501 West Bell Street

Neenah, WI 54956

Entire Report Reviewed By: John V Howkins

John Hawkins

Technical Service Representative

Results relate only to the Items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

ONE LAB. NATIONWIDE

V - 4
you"se
UTLESSEEN FORCE
(Market)

233			ă
	1		ž
38	Ť,		Š
95	36		H
427	E 61	1430	L

C	
5\$	
	Ss

1)r	٦	
L	_	_	_	

_

¹ Cp: Cover Page	No.
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
18555 L848569-01	5
18555 L848569-02	6
18556 L848569-03	7
18556 L848569-04	8
⁶ Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 9030B	10
Wet Chemistry by Method D93/1010A	11
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Polychlorinated Biphenyls (GC) by Method 8082	14
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	15
⁷ Gl: Glossary of Terms	17
⁸ Al: Accreditations & Locations	18
⁹ Sc: Chain of Custody	19

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

Э	u	۸	м	2
Ц	۹	а	э	y
4			н	٠.

18555 L848569-01 Solid			Collected by	Collected date/time 07/20/16 00:00	Received date/lime 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Polychlorinated Biphenyls (GC) by Method 8082	WG891275	1.5	07/22/16 00:44	07/22/16 18:36	LKD
Total Solids by Method 2540 G-2011	WG892868	1	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	٦٢٦
18555 L848569-02 Waste			Collected by	Collected date/time 07/20/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	, , , , ,
Preparation by Method 1311	WG892468	200	07/26/16 12:37	07/26/16 12:38	BG
Preparation by Method 1311	WG892919	1	07/27/16 10:32	07/27/16 10:33	BG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG893216	1	07/28/16 21:14	07/29/16 15:09	JF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG892961	1	07/28/16 00:59	07/28/16 00:59	ACG
Wet Chemistry by Method D93/1010A	WG891428	î	07/22/16 12:20	07/22/16 12:20	MZ
18556 L848569-03 Solid			Collected by	Collected date/time 07/20/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Polychlorinated Biphenyls (GC) by Method 8082	WG891275	1.5	07/22/16 00:44	07/22/16 18:48	LKD
Total Solids by Method 2540 G-2011	WG892868	1	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	٦٢٦
18556 L848569-04 Waste			Collected by	Collected date/time 07/20/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	F France 22
Preparation by Method 1311	WG892468	i	07/26/16 12:37	07/26/16 12:38	BG
Preparation by Method 1311	WG892919	3.	07/27/16 10:32	07/27/16 10:33	BG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG893216	1	07/28/16 21:14	07/29/16 15:32	SNR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG892961	1	07/28/16 03:15	07/28/16 03:15	ACG
Wet Chemistry by Method D93/1010A	WG891428	8	07/22/16 12:20	07/22/16 12:20	MZ

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John Hawkins

Technical Service Representative

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Collected date/time: 07/20/16 00:00

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte Total Solids	% 39.8	Barster - III	1	date / time 07/27/2016 09:27	WG892868	24 11 1	

Wet Chemistry by Method 9030B

	Result	Qualifier R	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg	п	ng/kg		date / time		4
Sulfide	36.4	2	25.0	1	07/28/2016 20:10	WG893594	L

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifler	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg		date / time		6
PCB 1016	ND	<u>J3</u>	0.0176	1.5	07/22/2016 18:36	WG891275	L
PCB 1221	ND		0.0269	1.5	07/22/2016 18:36	WG891275	7
PCB 1232	ND		0.0209	1.5	07/22/2016 18:36	WG891275	
PCB 1242	ND		0.0159	1.5	07/22/2016 18:36	WG891275	L
PCB 1248	ND		0.0158	1.5	07/22/2016 18:36	WG891275	l ^s .
PCB 1254	ND		0.0236	1.5	07/22/2016 18:36	WG891275	L
PCB 1260	ND	<u>J3</u>	0.0248	1.5	07/22/2016 18:36	WG891275	9
(S) Decachlorobiphenyl	59.0	-	10.0-143		07/22/2016 18:36	WG891275	
(S) Tetrachioro-m-xylene	76.7		29.2-144		07/22/2016 18:36	WG891275	

TCLP ZHE Extraction

Collected date/time: 07/20/16 00:00

SAMPLE RESULTS - 02

WG892468

ONE LAB, NATIONWIDE,

Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction		8 1000	7/27/2016 10:32:03 AM	WG892919

Wet Chemistry by Method D93/1010A

Result	Qualifier	Dilution	Analysis	Batch

7/26/2016 12:37:09 PM

Analyte Deg. F date / time Ignitability DNI at 170 F 07/22/2016 12:20 WG891428

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l	v = ========	mg/l	mg/l		date / time	J 2220 8010 200
Benzene	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Carbon tetrachloride	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Chlorobenzene	ND		0.0500	100	1	07/28/2016 00:59	WG892961
Chloroform	ND		0.250	6	1	07/28/2016 00:59	WG892961
1,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
1,1-Dichloroethene	ND		0.0500	0.70	1	07/28/2016 00:59	WG892961
2-Butanone (MEK)	ND		0.500	200	1	07/28/2016 00:59	WG892961
Tetrachloroethene	ND		0.0500	0.70	1	07/28/2016 00:59	WG892961
Trichloroethene	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Vinyl chloride	ND		0.0500	0.20	1	07/28/2016 00:59	WG892961
(S) Toluene-d8	107		90.0-115	114		07/28/2016 00:59	WG892961
(S) Dibromofluoromethane	104		79.0-121	125		07/28/2016 00:59	WG892961
(S) a,a,a-Trifluorotoluene	105		90.4-116	114		07/28/2016 00:59	WG892961
(S) 4-Bromofluorobenzene	101		80.1-120	128		07/28/2016 00:59	WG892961

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
I,4-Dichlorobenzene	ND		0.100	7.50	1	07/29/2016 15:09	WG893216
2,4-Dinitrotoluene	ND		0.100	0.13	1	07/29/2016 15:09	WG893216
Hexachlorobenzene —	ND		0.100	0.13	1	07/29/2016 15:09	WG893216
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	07/29/2016 15:09	WG893216
Hexachloroethane	ND		0.100	3	1	07/29/2016 15:09	WG893216
Nitrobenzene	ND		0.100	2	1	07/29/2016 15:09	WG893216
Pyridine	ND		0.100	5	1	07/29/2016 15:09	WG893216
3&4-Methyl Phenol	ND		0.100	400	1	07/29/2016 15:09	WG893216
2-Methylphenol	ND		0.100	200	1	07/29/2016 15:09	WG893216
Pentachlorophenol	ND		0.100	100	1	07/29/2016 15:09	WG893216
2,4,5-Trichlorophenol	ND		0.100	400	1	07/29/2016 15:09	WG893216
2,4,6-Trichlorophenol	ND		0.100	2	1	07/29/2016 15:09	WG893216
(S) 2-Fluorophenol	<i>53.4</i>		10.0-77.9	87		07/29/2016 15:09	WG893216
(S) Phenol-d5	36.8		5.00-70.1	67		07/29/2016 15:09	WG893216
(S) Nitrobenzene-d5	64.3		21.8-123	120		07/29/2016 15:09	WG893216
(S) 2-Fluorobiphenyl	71.3		29.5-131	122		07/29/2016 15:09	WG893216
(S) 2,4,6-Tribromophenol	99. <i>2</i>		11.2-130	148		07/29/2016 15:09	WG893216
(S) p-Terphenyl-d14	87.6		29.3-137	149		07/29/2016 15:09	WG893216

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 07/20/16 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier Dilution	Analysis	Batch		ell.
Analyte Total Solids	% 38.5		date / time 07/27/2016 09:27	WG892868	B	

	Result	Qualitier	RDL	Dilution	Analysis	Batch	
Analyte Sulfide	mg/kg 73.0	10 G U	mg/kg 25.0	1	date / time 07/28/2016 20:10		

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			
PCB 1016	ND	<u>13</u>	0.0176	1.5	07/22/2016 18:48	WG891275	 70	
PCB 1221	ND		0.0269	1,5	07/22/2016 18:48	WG891275		
PCB 1232	ND		0.0209	1.5	07/22/2016 18:48	WG891275		
PCB 1242	ND		0.0159	1.5	07/22/2016 18:48	WG891275		
PCB 1248	ND		0.0158	1.5	07/22/2016 18:48	WG891275		
PCB 1254	ND		0.0236	1.5	07/22/2016 18:48	WG891275		
PCB 1260	ND	<u>13</u>	0.0248	1,5	07/22/2016 18:48	WG891275		
(S) Decachlorobiphenyl	67.3		10.0-143		07/22/2016 18:48	WG891275		
(S) Tetrachloro-m-xylene	91.3		29.2-144		07/22/2016 18:48	WG891275		

Collected date/time: 07/20/16 00:00

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE:

Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction	-CHC HATNE	W- 1874	7/27/2016 10:32:03 AM	WG892919
TCLP ZHE Extraction	350		7/26/2016 12:37:09 PM	WG892468

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Anaiysis	Batch
Analyte			***	date / time	
Ignitabilily	DNI at 170 F		1	07/22/2016 12:20	WG891428

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/I		mg/l	mg/t		date / time	
Benzene	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
Carbon tetrachloride	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
Chlorobenzene	ND		0.0500	100	1	07/28/2016 03:15	WG892961
Chloroform	ND		0.250	6	1	07/28/2016 03:15	WG892961
1,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
1,1-Dichloroethene	ND		0.0500	0.70	1	07/28/2016 03:15	WG892961
2-Butanone (MEK)	ND		0.500	200	1	07/28/2016 03:15	WG892961
Tetrachloroethene	ND		0.0500	0.70	1	07/28/2016 03:15	WG892961
Trichloroethene	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
Vinyl chloride	ND		0.0500	0.20	1	07/28/2016 03:15	WG892961
(S) Toluene-d8	107		90.0-115	114		07/28/2016 03:15	WG892961
(S) Dibromofluoromethane	103		79.0-121	125		07/28/2016 03:15	WG892961
(S) a,a,a-Trifluorotoluene	105		90.4-116	114		07/28/2016 03:15	WG892961
(S) 4-Bromofluorobenzene	103		80.1-120	128		07/28/2016 03:15	WG892961

GI

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/f		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	07/29/2016 15:32	WG893216
2,4-Dinitrotoluene	ND		0.100	0.13	1	07/29/2016 15:32	WG893216
Hexachlorobenzene	ND		0.100	0.13	1	07/29/2016 15:32	WG893216
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	07/29/2016 15:32	WG893216
Hexachloroethane	ND		0.100	3	1	07/29/2016 15:32	WG893216
Nitrobenzene	ND		0.100	2	ä	07/29/2016 15:32	WG893216
Pyridine	ND		0.100	5	1	07/29/2016 15:32	WG893216
3&4-Methyl Phenol	ND		0.100	400	1	07/29/2016 15:32	WG893216
2-Methylphenol	ND		0.100	200	1	07/29/2016 15:32	WG893216
Pentachlorophenol	ND		0.100	100	1	07/29/2016 15:32	WG893216
2,4,5-Trichlorophenol	ND		0.100	400	1	07/29/2016 15:32	WG893216
2,4,6-Trichlorophenol	ND		0.100	2	1	07/29/2016 15:32	WG893216
(S) 2-Fluorophenol	44.9		10.0-77.9	87		07/29/2016 15:32	WG893216
(S) Phenol-d5	32.4		5.00-70.1	67		07/29/2016 15:32	WG893216
(S) Nitrobenzene-d5	53.8		21.8-123	120		07/29/2016 15:32	WG893216
(S) 2-Fluorobiphenyl	66.3		29.5-131	122		07/29/2016 15:32	WG893216
(S) 2,4,6-Tribromophenol	88.4		11.2-130	148		07/29/2016 15:32	WG893216
(S) p-Terphenyl-d14	85.6		29.3-137	149		07/29/2016 15:32	WG893216

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L848569-01,03

Method Blank (MB)

(MB) R3152777-1 07/27/16 09:27

Total Solids by Method 2540 G-2011

MB Result MB Qualifier MB MDL MB RDL

%

Analyte

0.000200 **Total Solids**

Ss

L848956-01 Original Sample (OS) • Duplicate (DUP)

(OS) L848956-01 07/27/16 09:27 • (DUP) R3152777-3 07/27/16 09:27

Original Result DUP Result Dilution DUP RPD **DUP Qualifier DUP RPD Limits** %

%

Total Solids 67.2 67.5 0.498

Cn

Laboratory Control Sample (LCS)

(LCS) R3152777-2 07/27/16 09:27

Analyte

Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte % % %

Total Solids 50.0 50.0 100 85.0-115

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE,

L848569-01,03

Method Blank (MB)

Analyte

Sulfide

Analyte

Sulfide

(MB) WG893594-1 07/28/16 20:10

Wet Chemistry by Method 9030B

MB Result MB Qualifier MB MDL mg/kg mg/kg U

MB RDL mg/kg 7.63 25.0

Ss

L848577-03 Original Sample (OS) • Duplicate (DUP)

(OS) L848577-03 07/28/16 20:10 • (DUP) WG893594-4 07/28/16 20:10

Original Result DUP Result Dilution DUP RPD **DUP Qualifier DUP RPD Limits** mg/kg mg/kg % 61.0 66.0 7.87 20

Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) WG893594-2 07/28/16 20:10 • (LCSD) WG893594-3 07/28/16 20:10

Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. LCSD Qualifier RPD Rec. Limits LCS Qualifier **RPD Limits** Analyte mg/kg mg/kg % % % mg/kg % % Sulfide 100 79.0 72.8 79.0 72.8 70.0-130 8.17 20

Analyte Ignitability

QUALITY CONTROL SUMMARY

ONE LAB NATIONWIDE.

L848569-02,04

Wet Chemistry by Method D93/1010A

L848569-02 Original Sample (OS) • Duplicate (DUP)

(OS) L848569-02 07/22/16 12:20 • (DUP) WG891428-3 07/22/16 12:20

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Deg. F	Deg. F		%		%
DNI at 170 F	DNI at 170 F	1	0.000		10

ILCCL MCQQ142Q	1 07/22/10 12:20 /	CCD/14/C004420 2	07/22/40 42 22
(LCS) WG691426-	1 0//22/10 12:20 • (LCSD) WG891428-2	0//22/16 12:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	Deg. F	Deg. F	Deg. F	%	%	%		%	%
Ignitability	82.0	82.9	82.9	101	101	93.0-107		0.000	20

SDG:

L848569

1,2-Dichloroethane

1,1-Dichloroethene

2-Butanone (MEK)

Tetrachloroethene

(S) Toluene-d8

Trichloroethene

Vinyl chloride

QUALITY CONTROL SUMMARY

ONE LAB_NATIONWIDE.

L848569-02,04

Met

(MB) R3152874-3 07/27/16 23:02

ethod Blank (MB)				
tillog platik (Mip)				

Volatile Organic Compounds (GC/MS) by Method 8260B

U

U

U

U

U

U

108

	MB Result	MB Qualifier	MB MDL	MB RDL				-
Analyte	mg/l		mg/l	mg/l				2
Benzene	U	111	0.0167	0.0500	 	5 75 11 1 91 1 H	the service of the second second	-
Carbon tetrachloride	U		0.0167	0.0500				3
Chlorobenzene	U		0.0167	0.0500				ľ
Chloroform	U		0.0833	0.250				=

(S) Dibromofluoromethane	102	79.0-121
(S) a,a,a-Trifluorotoluene	105	90.4-116
(S) 4-Bromofluorobenzene	103	80.1-120
l abayatan. Castral	C	-ht Ct C - D // CCD
ranolatoly Courtol	29mble (FC2) • f	aboratory Control Sample Duplicate (LCSD

0.0167

0.0167

0.167

0.0167

0.0167

0.0167

0.0500

0.0500

0.500

0.0500

0.0500

0.0500

90.0-115

(LCS) R3152874-1 07/27/16 21:44 · (LCSD) R3152874-2 07/27/16 22:03

(LCS) K3152874-1 U/12//1	0 21:44 • (LCSD) K3152874-2	07/27/16 22:0.	5						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0228	0.0227	91.2	90.9	73.0-122			0.300	20
Carbon tetrachloride	0.0250	0.0243	0.0235	97.2	93.9	70.9-129			3.48	20
Chlorobenzene	0.0250	0.0250	0.0246	99.8	98.6	79.7-122			1.24	20
Chloroform	0.0250	0.0235	0.0236	94.1	94.5	73.2-125			0.390	20
1,2-Dichloroethane	0.0250	0.0251	0.0253	100	101	65.3-126			0.890	20
1,1-Dichloroethene	0.0250	0.0240	0.0239	95.8	95.8	60.6-133			0.0200	20
2-Butanone (MEK)	0.125	0.126	0.124	101	98.9	46.4-155			1.74	20
Tetrachloroethene	0.0250	0.0242	0.0244	96.7	97.5	73.5-130			0.900	20
Trichloroethene	0.0250	0.0251	0.0248	101	99.1	79.5-121			1.52	20
Vinyl chłoride	0.0250	0.0264	0.0261	105	105	61.5-134			0.900	20
(S) Toluene-d8				107	106	90.0-115				
(S) Dibromofluoromethane				107	105	79.0-121				
(S) a,a,a-Trifluorotoluene				105	106	90.4-116				
(S) 4-Bromofluorobenzene				102	101	80.1-120				

DATE/TIME:

QUALITY CONTROL SUMMARY

ONE LAB NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L848569-02.04

L848569-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	1.25	ND	1.23	1.29	98.1	103	1	58.6-133	Antiques in the same		4.96	20
Carbon tetrachloride	1.25	ND	1.22	1.34	97.9	107	1	60.6-139			8.78	20
Chlorobenzene	1.25	ND	1.36	1.42	109	114	1	70.1-130			4.57	20
Chloroform	1.25	ND	1.28	1.35	102	108	1	66.1-133			5.08	20
1,2-Dichloroethane	1.25	ND	1.34	1.39	107	111	1	60.7-132			3.94	20
i,1-Dichloroethene	1.25	ND	1.30	1.36	104	109	1	48.8-144			4.47	20
2-Butanone (MEK)	6.25	ND	4.95	5.23	74.9	79.3	1	45.0-156			5.47	20.8
Tetrachloroethene	1.25	ND	1.33	1.38	106	111	1	57.4-141			3.92	20
Trichloroethene	1.25	ND	1.36	1.42	109	114	1	48.9-148			4.13	20
Vinyl chloride	1.25	ND	1.28	1.36	102	109	1	44.3-143			6.01	20
(S) Toluene-d8					108	107		90.0-115				
(S) Dibromofluoromethane					106	105		79.0-121				
(S) a,a,a-Trifluorotoluene					106	104		90.4-116				
(S) 4-Bromofluorobenzene					101	101		80.1-120				

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE,

L848569-01,03

Method Blank (MB)

(S) Decachlorobiphenyl

(S) Tetrachloro-m-xylene

(S) Decachlorobiphenyl

(S) Tetrachloro-m-xylene

(S) Tetrachloro-m-xylene

Analyte

PCB 1260

PCB 1016

Polychlorinated Biphenyls (GC) by Method 8082

87.0

91.7

mg/kg

0.167

0.167

(LCS) R3151699-2 07/22/16 09:16 · (LCSD) R3151699-3 07/22/16 09:29 Spike Amount LCS Result

mg/kg

0.124

0.111

OCU 240452 04 07/2246 40:00 #460 0246400 4 07/2246 40:40 #460 025/2005 7 07/200

(MB) R3151699-1 O	7/22/16 09:04			
Analyte	MB Result mg/kg	MB Qualifier	MB MDL mg/kg	MB RDL mg/kg
PCB 1016	U	200	0.00350	0.0117
PCB 1221	U		0.00537	0.0179
PCB 1232	U		0.00417	0.0139
PCB 1242	U		0.00318	0.0106
PCB 1248	U		0.00315	0.0105
PCB 1254	U		0.00472	0.0157
PCB 1260	U		0.00494	0.0165

L848452-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCSD Result

mg/kg

0.166

0.150

(US) L848452-U1 U7/22	1 (SW) • OO:EI 91	(3151699-4 07)	22/16 19:13 •	(MSD) R3151699	0-5 07/22/16 19	9:25					
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%
PCB 1260	0.167	ND	0.139	0.147	83.2	88.0	1	24.6-127			5.67
PCB 1016	0.167	ND	0.180	0.215	86.2	103	1	23.9-147			18.0
(S) Decachlorobiphenyl					66.4	74.2		10.0-143			

84.4

LCSD Rec.

%

99.6

89.7

100

102

Rec. Limits

46.5-120

46.3-117

10.0-143

29.2-144

87.0

%

LCS Qualifier

LCSD Qualifier

<u>13</u>

RPD

28.8

29.8

%

RPD Limits

RPD Limits % 20 25.8

%

27

27.5

10.0-143

29.2-144

LCS Rec.

%

74.5

66.5

89.7

96.8

29.2-144

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

L848569-02.04

Method	Blank (N	1B)

(MB) R3153267-3 07/29/1	6 12:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
1,4-Dichlorobenzene	U		0.0333	0.100
2,4-Dinitrotoluene	U		0.0333	0.100
Hexachlorobenzene	U		0.0333	0.100
Hexachloro-1,3-butadiene	U		0.0333	0.100
Hexachloroethane	U		0.0333	0.100
Nitrobenzene	U		0.0333	0.100
Pyridine	U		0.0333	0.100
2-Methylphenol	U		0.0333	0.100
3&4-Methyl Phenol	U		0.0333	0.100
Pentachlorophenol	U		0.0333	0.100
2,4,5-Trichlorophenol	บ		0.0333	0.100
2,4,6-Trichlorophenol	U		0.0333	0.100
(S) Nitrobenzene-d5	58.2			21.8-123
(S) 2-Fluorobiphenyl	72.2			29.5-131
(S) p-Terphenyl-d14	83.1			29.3-137
(S) Phenol-d5	34.8			5.00-70.1
(S) 2-Fluorophenol	50.0			10.0-77.9
(S) 2,4,6-Tribromophenol	80.7			11.2-130

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) // CSI P3153267-1 07/20//6 11:15 . // CSD) P2152267 2 07/20//6 11:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
1,4-Dichlorobenzene	0.0500	0.0293	0.0318	58.7	63.6	21.0-89.4			7.97	32.6
2,4-Dinitrotoluene	0.0500	0.0423	0.0426	84.7	85.3	31.2-105			0.660	22
Hexachlorobenzene	0.0500	0.0412	0.0444	82.4	88.8	38.5-116			7.45	20.1
Hexachloro-1,3-butadiene	0.0500	0.0365	0.0394	73.0	78.7	16.1-104			7.52	31.2
Hexachloroethane	0.0500	0.0267	0.0300	53.5	60.1	16.5-89.8			11.6	30.7
Nitrobenzene	0.0500	0.0287	0.0325	57.4	65.0	31.4-106			12.5	25.7
Pyridine	0.0500	0.00859	0.00948	17.2	19.0	13.5-58.9			9.83	32.5
2-Methylphenol	0.0500	0.0267	0.0284	53.4	56.9	26.4-86.9			6.29	26.5
3&4-Methyl Phenol	0.0500	0.0296	0.0317	59.2	63.5	27.9-92.0			7.02	27
Pentachlorophenol	0.0500	0.0352	0.0376	70.4	75.1	10-0-97.4			6.45	35.1
2,4,5-Trichlorophenol	0.0500	0.0417	0.0445	83.5	89.1	34.9-112			6.51	23.9
2,4,6-Trichlorophenol	0.0500	0.0389	0.0435	77.8	87.1	29.8-107			11.3	24.1
(S) Nitrobenzene-d5				67.1	70.8	21.8-123				
(S) 2-Fluorobiphenyl				77.8	80.3	29.5-131				
(S) p-Terphenyl-d14				90.1	91.9	29.3-137				

ACCOUNT: Badger Laboratories & Engineering, Inc.

PROJECT:

SDG: L848569

DATE/TIME: 08/01/16 15:33

PAGE: 15 of 23

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L848569-02.04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3153267-1 0)7/29/16 11:15 .	(LCSD) R3153267-2	07/29/16 11:39

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
(S) Phenol-d5				37.2	39.8	5.00-70.1				The state of the second
(S) 2-Fluorophenol				52.1	58.0	10.0-77.9				
(S) 2,4,6-Tribromophenol				100	101	11.2-130				

L849237-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L849237-01 07/29/16 16:53	 (MS) R3153267-4 	07/29/16 17:16 • (MSD) R3153267-5 07/29/16 17:40
--------------------------------	-------------------------------------	--

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/ł	mg/l	%	%		%			%	%	
1,4-Dichlorobenzene	0.500	ND	0.278	0.271	55.6	54.3	1	14.0-104			2.34	36.4	
2,4-Dinitrotoluene	0.500	ND	0.414	0.402	82.8	80.4	1	16.2-135			2.93	20.6	
Hexachlorobenzene	0.500	ND	0.423	0.411	84.6	82.3	1	31.9-135			2.84	20	
Hexachloro-1,3-butadiene	0.500	ND	0.353	0.328	70.6	65.5	1	15.7-109			7.47	37.6	
Hexachloroethane	0.500	ND	0.257	0.256	51.3	51.2	1	10.4-105			0.230	40	
Nitrobenzene	0.500	ND	0.275	0.269	54.9	53.7	1	23.1-121			2.26	29	
Pyridine	0.500	ND	0.0989	0.103	19.8	20.5	1	10.0-77.8			3.74	38.8	
2-Methylphenol	0.500	ND	0.257	0.252	51.4	50.5	1	10.0-133			1.74	40	
3&4-Methyl Phenol	0.500	ND	0.295	0.288	59.0	57.6	1	17.4-100			2.49	27.7	
Pentachlorophenol	0.500	ND	0.375	0.375	75.0	74.9	1	10.0-108			0.0700	40	
2,4,5-Trichlorophenol	0.500	ND	0.415	0.421	83.0	84.3	1	30.6-120			1.53	33.8	
2,4,6-Trichlorophenol	0.500	ND	0.390	0.409	78.0	81.8	1	19.1-114			4.66	29.9	
(S) Nitrobenzene-d5					62.0	57.7		21.8-123					
(S) 2-Fluorobiphenyl					72.2	69.0		29.5-131					
(S) p-Terphenyl-d14					87.8	82.8		29.3-137					
(S) Phenol-d5					36.3	34.6		5.00-70.1					
(S) 2-Fluorophenol					49.2	48.0		10.0-77,9					

98.2

99.6

11,2-130

Abbreviations and Definitions

J3	The associated batch QC was outside the established quality control range for precision.
Qualifier	Description
Rec.	Recovery.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Original Sample	from a quality control sample. The Original Sample may not be included within the reported SDG.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD)
RPD	Relative Percent Difference.
U	Not detected at the Reporting Limit (or MDL where applicable).
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
MDL	Method Detection Limit.
SDG	Sample Delivery Group.

Ss

Cn

Sr

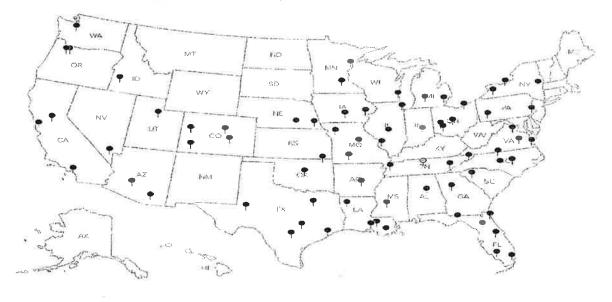
GI

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conductive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample Integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CH OICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginla	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		


Third Party & Federal Accreditations

10:1 100 1000				
A2LA – ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶⁶ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office, ESC Lab Sciences performs all testing at our central laboratory.

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4888 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

NEENAH PAPER INC-NEENAH MILL 135 N COMMERCIAL ST NEENAH, WI 54956-

Attn: MR. STEVEN HAGGLUND

Report Number: Report Date:

16008170 8/10/2016

Sampled By: Emailed:

Client 8/10/16

PO#:

333242966

2

Samples:

Canania zii

Sample Number:

46018555

Description:

NEENAH SLUDGE

Sample Date:

7/20/2016

Date Received:

7/20/2016

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
CHLORINE	<0.02	%	0.02	0.02		SW-846-5050	08/04/16	
CYANIDE, TOTAL	0.098	ppm	0.086	0.286	12	EPA335.4	07/25/16	
CYANIDE-AM. TO CL2	0.098	ppm	0.086	0.286	12	SM4500CN-G	07/26/16	
FLASH POINT	SEE ATTA	CHED ESC R	EPORT					
FREE LIQUIDS	0.0	%	0	0		SW 846 9095	08/03/16	
METALS DIGESTION	DONE		0	0		SM3030E	07/22/16	
PCB, TOTAL	SEE ATTA	CHED ESC R	EPORT					
PHENOL, TOTAL	< 0.05	mg/l	0.05	0.17	1	EPA420.4	08/08/16	
pH-LAB	7.7	S.U.	0	0		SW846-90450	07/21/16	
SULFIDE	SEE ATTA	CHED ESC R	EPORT					
TCLP ARSENIC	< 0.005	mg/l	0.005	0.017	5	SM3113B	07/26/16	
TCLP BARIUM	0.30	mg/l	0.03	0.08	1	SM3111D	07/28/16	
TCLP CADMIUM	< 0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TCLP CHROMIUM	< 0.02	mg/l	0.02	0.06	1	SM3111B	07/27/16	
TCLP EXTRACTION	DONE		0	0		SW846-1311	07/22/16	
TCLP LEAD	< 0.03	mg/l	0.03	0.10	1	SM3111B	07/27/16	
TCLP MERCURY	< 0.0002	mg/l	0.0002	0.0008	1	SM3112B	07/26/16	
TCLP ORGANICS	SEE ATTA	CHED ESC R	EPORT					
TCLP SELENIUM	< 0.009	mg/l	0.009	0.030	5	SM3113B	07/26/16	
TCLP SILVER	0.02	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TOTAL SOLIDS	36.0	%	0.010	0.010		SM2540B	07/25/16	

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number:

46018556

Description:

APPLETON SLUDGE

Sample Date:

7/20/2016

Date Received:

7/20/2016

Parameter	Results	Units	LOD	LOQ	Dil _s	Method	Analyzed	Codes
CHLORINE	<0.02	%	0.02	0.02		SW-846-5050	08/04/16	
CYANIDE, TOTAL	<0.086	ppm	0.086	0.286	12	EPA335.4	07/25/16	
CYANIDE-AM. TO CL2	<0.086	ppm	0.086	0.286	12	SM4500CN-G	07/25/16	
FLASH POINT	SEE ATTACH	ED ESC RE	PORT					
FREE LIQUIDS	0.0	%	0	0		SW 846 9095	08/03/16	
METALS DIGESTION	DONE		0	0		SM3030E	07/22/16	
PCB, TOTAL	SEE ATTACH	ED ESC RE	PORT					
PHENOL, TOTAL	0.06	mg/l	0.05	0.17	1	EPA420.4	08/08/16	
pH-LAB	7.0	S.U.	0	0		SW846-90450	07/21/16	
SULFIDE	SEE ATTACH	ED ESC RE	PORT					
TCLP ARSENIC	<0.005	mg/l	0.005	0.017	5	SM3113B	07/26/16	
TCLP BARIUM	0.17	mg/l	0.03	0.08	1	SM3111D	07/28/16	
TCLP CADMIUM	<0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TCLP CHROMIUM	<0.02	mg/l	0.02	0.06	1	SM3111B	07/27/16	
TCLP EXTRACTION	DONE		0	0		SW846-1311	07/22/16	
TCLP LEAD	<0.03	mg/l	0.03	0.10	1	SM3111B	07/27/16	
TCLP MERCURY	<0.0002	mg/l	0.0002	0.0008	1	SM3112B	07/26/16	
TCLP ORGANICS	SEE ATTACH	ED ESC RE	PORT					
TCLP SELENIUM	<0.009	mg/l	0.009	0.030	5	SM3113B	07/26/16	
TCLP SILVER	<0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TOTAL SOLIDS	39.5	%	0.010	0.010		SM2540B	07/25/16	

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

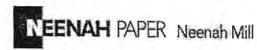
JMW:rt

2

CHEMISTS **ENGINEERS**

BADGER LABORATORIES & ENGINEERING, INC. 501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966

(920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196


16008170

SAMPLE RECEIPT FORM

COMPANY: NAME: ADDRESS: FAX/PHONE/EMAIL P.O. #: PROJECT/SITE: REPORT & BILL TO ADDITIONAL REPO	:	lno		Jap.					RN A	Nor	mal ner T	AT*	R LA	В	000000	MPL. Grou Was WPD Cooli Drinki Solid Oil	indwa tewai DES ing W ing W Wasti	ater ter ater ater	□ Lab Filtered □ Field Filtered □ Grab □ Composite □ Flow Proportional □ Time Proportional	
	SAMPLE	DATE	BL&E	DI A.S.		CONT		DE	LIVERY	METH	OD		F	PRESE	RVATI	ON				
CUSTOMER SAMPLE ID	DATE/TIME	REC'D	REPORT #	BL & E SAMPLE #	TEMP	AINER S		BLAE	CLIENT	UPB	OTHER	PIF	PIL	NON- PRES	H2SO	HNO3	NAOH	OTHER	ANALYTICAL REQUESTS	pH ok
		7/20	940	18538	-	3	4	T	4					3					(48)	ph or
			8170	WEST	1	3	1		1					5					- CVI	
			\$140	MD PROC	-		-	+	7			-	-	1	-					
	-						Щ						21/		L					
																				+
																				+
				-				. 8								\vdash	-	-		
					\vdash	-	0 V			-			-							
												114								
																			,	
FILLED IN BY CU	stomer.	CH	IAIN OF	CUSTO		Y RE	_		_	ER L	ABS	& EN	1G							
SAMPLED BY: 0 DATE/TIME SAMPLED: RELINQUISHED BY:			$\stackrel{\sim}{=}$			RECEIVI DATE/TII LOGGEL	ED BY ME RE		11				SA.	SD						

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved; H2SO4/HNO3 adjusted to pH <2.0; NaOH >12.0 * PiL= Preserved in lab.

^{*} PIF= Preserved in field.

NEENAH PAPER WWTP SAMPLE CHAIN OF CUSTODY RECORD

SAMPLE(S) SOURCE INFORMATION		
NEENAH PAPER CONTACT:	STEVEN HAGGLUN	ID
ADDRESS:	NEENAH PAPER IN	C NEENAH MILL
	135 NORTH COMME	ERCIAL STREET
	P. O. BOX 2003	
	NEENAH, WISCONS	SIN 54957-2003
CONTACT PHONE NUMER:	(920) 721-1065	
WWTP OPERATOR PHONE NUMBER:	(920) 721-1049	Daily 7am - 3pm
FAX NUMBER:	678-784-7261	,

PURCHASE ORDER:

DESTINATION/TESTING LAB	INFORMATION
LAB NAME AND ADDRESS:	BADGER LABS AND ENGINEERING
1	501 WEST BELL STREET
P	NEENAH, WISCONSIN 54957-1392
LAB PHONE NUMBER:	(920) 729-1100
LAB CONTACT PERSON:	JEFF WAGNER

			Sampl	е Туре		Sample ID	
Sampled by: Signature	Date	Time	Grab	Comp	Preservation	(must match sample label)	Analyte
Ataloggli	22016	10:30	Х		None	Neenah Sludge	TCLP
15-liggle	7-20-16	11:10	Х		None	Appleton Sludge	TCLP
100							
	-						
				-			
		120					

Relinquished by (signature)	Date: Time:	4	Delivered to: (signature)	Date:	Time:	
Atalyge	7-20-16 12:15	Neenah Paper	4 Chone	7-20-16	12:15	Badger Labs

RETURN THIS FORM WITH TEST RESULTS

BADGER LABORATORIES & ENGINEERING RE

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

MAXIMUM CONCENTRATION OF CONTAMINANTS FOR TOXICITY CHARACTERISTIC

Arsenic 5.0	Contaminant	Regulatory Level (mg/l.)	
Barium 100.0			
Benzene			
Cadmium 1.0 Carbon tetrachloride 0.5 Chlordane 0.03 Chlorobenzene 100.0 Chloroform 6.0 Chromium 5.0 o-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 2.4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver <t< td=""><td></td><td></td><td></td></t<>			
Carbon tetrachloride 0.5 Chlorodane 0.03 Chlorobenzene 100.0 Chloroform 6.0 Chromium 5.0 o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 20.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0			
Chlordane 0.03 Chlorobenzene 100.0 Chloroform 6.0 Chromium 5.0 o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachloroenzene 0.13 Hexachloroenzene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 20.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichloroethylene 0			
Chloroform 6.0 Chloroform 5.0 o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichloroethylene 0.5 2,4,5-Trichloroephenol 400.0	Carbon tetrachloride	0.5	
Chloroform 6.0 Chromium 5.0 o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichloroethane 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachloroel, 3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 200.0 Nitrobenzene 200.0 Nitrobenzene 200.0 Nitrobenzene 200.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichloroethylene 0.5	Chlordane	0.03	
Chromium 5.0 o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	Chlorobenzene	100.0	
o-Cresol 200.0 m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.4 Mercury 0.2 Methoxychlor 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichloroethylene 0.5	Chloroform	6.0	
m-Cresol 200.0 p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Trichloroethylene 0.5 Trichloroethylene 0.5 Trichloroethylene 0.5 Trichloroethylene 0.5 Trichloroephenol 400.0	Chromium	5.0	
p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	o-Cresol	200.0	
p-Cresol 200.0 Cresol 200.0 2-4-D 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.5 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	m-Cresol	200.0	
Cresol 200.0 2.4-D 10.0 10.0 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.4 1.0 1.0 1.0 1.0 1.0			
2-4-D 1,4-Dichlorobenzene 7.5 1,2-Dichloroethane 0.5 1,1-Dichloroethylene 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 0.5 Hexachloroethane 0.5 Lead 5.0 Lindane Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone Nitrobenzene 200.0 Nitrobenzene 2.0 Pentachloroephenol Pyridine Selenium Silver Toxaphene 0.5 Trichloroethylene 0.5 Trichloroephenol 10.0 Toxaphene 0.5 Tichloroephenol 10.5			
1,4-Dichloroethane 0.5 1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloroethane 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Z,4,5-Trichloroephenol 400.0			
1,1-Dichloroethylene 0.7 2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Z,4,5-Trichloroephenol 400.0	1.2 Dichloraethana	0.5	
2,4-dinitrotoluene 0.13 Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Endrin 0.02 Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Heptachlor (and its hydroxide) 0.008 Hexachlorobenzene 0.13 Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Hexachloro-1,3-butadiene 0.5 Hexachloroethane 3.0 Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	** - 11 - 1	0.12	
Hexachloroethane			
Lead 5.0 Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Lindane 0.4 Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Mercury 0.2 Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Methoxychlor 10.0 Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	Lindane	0.4	
Methyl ethyl ketone 200.0 Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	Mercury		
Nitrobenzene 2.0 Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Pentachloroephenol 100.0 Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Pyridine 5.0 Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	Pentachloroephenol	100.0	
Selenium 1.0 Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0	Pyridine	5.0	
Silver 5.0 Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Tetrachloroethylene 0.7 Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
Toxaphene 0.5 Trichlororethylene 0.5 2,4,5-Trichloroephenol 400.0			
2,4,5-Trichloroephenol 400.0			
2,4,5-Trichloroephenol 400.0	Trichlororethylene	0.5	
-, ·,·			
2.4.6-Trichloroephenol 2.0	2,4,5-Trichloroephenol	2.0	
2,4,5-TP (Silvex) 1.0			
Vinyl chloride 0.2			

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water) Members
WI Environmental Labs; Am. Chemical Soc.;
T.A.P.P.I.; WI Food Processors Assn.;
Wisc. Paper Council

Outagamie County Internal Use Only:

BC Customer

OC Customer

WC Customer

Outagamie County Recycling & Solid Waste Brown Outagamie Winnebago Counties SPECIAL WASTE DISPOSAL APPLICATION

A. Generator Information	E. Waste Information
Name Neenah Paper, Deenah Mill	Waste Name Paper Mill Sludge
Contact Person Steve Hoad Und	Process Used to Generate Waste Paper Making
Email Address Steven, haga lund @neenah.com	Waste Category Number
Phone Number 970 - 721-1065	Total Anticipated Waste Volume (include units) 3265 for Frequency of Disposal 4x / week
Site Address (where material is generated)	Name of Lab Performing Analysis Badger Labs
135 North Commercial St.	Date of Most Recent Analysis 8-1-16
Neenah, W1 54956	Physical State @ 25°C Solid
	Color Varies Odor Varies/non
	Comments
B. Billing Information	r-
(In order to be billed, you must fill out a credit application),	+
Name Neenah Paper - Accounts Payable	
Contact Person Jennifer Healy	*For all waste types, attach available pertinent documents, MSDSs,
Email Address Jenniter, healy a menal com	technical bulletins, etc. List attachments here:
Phone 920-738-8380	1/ 1/-
Fax Number 920 - 721-1332	Lab results
Billing Address	
1376 Kimberly Drine	
Neerah, WC 54956	
	F. Generator Warranty
	The generator warrants, represents, and certifies that this
C. Consultant Information	waste is not hazardous waste as specified by NR600 or
Name	40CFR261, that his material does not contain more than
Contact Person	50 ppm of PCB materials, and that this information is
Email Address	representative of the waste.
Phone NumberFax Number	
Fax Number	
Address	Generator's Signature Title Date
	Instructions:
D. Hauler Information ,	For Category A, B, and, C Wastes: Complete Section I
Name Vans Waste	
Contact Person Jeff Dander Heiden	For Category D Wastes: Complete Section II
Phone Number 920 - 687; 2632	For Category E Wastes: Compete Section III
Address N2061 Vandenbrock Road	
Kaukauna, Oi 54130	

Section I

For Category A, B, and C Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
% Solids	≥ 40% (A&B)	A
	≥ 20% (C)	36
% Free Liquids (paint	0%	7.4
filter test)		
Flash Point	> 140°F	7170
pH	$2.0 \le pH \le 12.5$	7.7
Total available sulfide	<500 mg/kg	36,4
Total available cyanide	<250 mg/kg	0.09
Arsenic	< 5.0	<0.00°
Barium	< 100.0	0.30
Cadmium	< 1.0	<0.01
Chromium	< 5.0	50,00
Lead	< 5.0	< 0.03
Mercury	< 0.2	< 0,000
Selenium	< 1.0	40,009
Silver	< 5.0	0.02
% Chlorine	< 1%	40.02
Phenol	< 2000	50.05
Benzene	< 0.5	ND
Carbon tetrachloride	< 0.5	ND
Chlorobenzene	< 100.0	ND
Chloroform	< 6.0	ND
Cresol	< 200.0	
1,4-Dichlorobenzene	< 7.5	ND
1,2-Dichloroethane	< 0.5	ND
1,1-Dichloroethylene	< 0.7	ND
2,4-Dinitrotoluene	< 0.3	ND
Hexachlorobenzene	< 0.13	ND
Hexachlorobutadiene	< 0.5	ND
Hexachloroethane	< 3.0	ND
Methyl ethyl ketone	< 200.0	
Nitrobenzene	< 2.0	NO
Pentachlorophenol	< 100.0	(1)
Pyridine	< 5.0	ND
Tetrachloroethylene	< 0.7	C'W'
Trichloroethylene	< 0.5	NI
2,4,5-Trichlorophenol	< 400.0	ND
2,4,6-Trichlorophenol	< 2.0	ND
Vinyl Chloride	< 0.2	107

For Category B and C Wastes, complete the following and attach laboratory report:

PCB (Arochlor 1016, 1221, 1232, 1242, 1248, 1254, 1260)

Section II

For Category D Wastes, complete the following and attach laboratory report:

Analytical Information

	Parameter	Acceptance Level	Lab Result
a.	All Soils		
	Lead	Total <100 mg/kg	
		or TCLP <5 mg/l	
b.	Gasoline or Dies	el	
	(analyze all parar	neters in a., plus the follow	ving):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Benzene	Total <10 mg/kg	
		Or TCLP < 0.5 mg/l	
c.	Waste Oil or Un	known Petroleum Waste	
	(analyze al param	eters in a., plus the follow	ring):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Cadmium	Total <20 mg/kg	
		Or TCLP <1 mg/l	

Section III

For Category E Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
pН	$2.0 \le pH \le 12.5$	
% Solids	≥ 20%	1
% Free liquids	0%	
TCLP metals		
Arsenic	< 5.0	
Barium	< 100.0	
Cadmium	< 1.0	
Chromium	< 5.0	
Lead	< 5.0	
Mercury	< 0.2	
Selenium	< 1.0	
Silver	< 5.0	
Total available sulfide	< 500 mg/kg	

Section IV

For Category F Wastes, include the following information and attach MSDS(s), technical bulletin(s), or other pertinent information regarding the waste stream. Indicate the waste type, the source of the waste stream, the reason for disposal, the physical state of the material, and describe the process from which the waste was generated.

ANALYTICAL REPORT

Badger Laboratories & Engineering, Inc.

Sample Delivery Group:

L848569

Samples Received:

07/21/2016

Project Number:

Description:

Report To:

Jeff Wagner

501 West Bell Street

Neenah, WI 54956

Entire Report Reviewed By: John V Howkins

John Hawkins

Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp: Cover Page	75
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
18555 L848569-01	5
18555 L848569-02	6
18556 L848569-03	7
18556 L848569-04	8
⁶ Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 9030B	10
Wet Chemistry by Method D93/1010A	11
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Polychlorinated Biphenyls (GC) by Method 8082	14
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	15
Gl: Glossary of Terms	17
⁸ Al: Accreditations & Locations	18
⁹ Sc: Chain of Custody	19

SAMPLE SUMMARY

ONE LAB, INATIONWIDE,

			Callaged to	Callantandatahinan	Received date/lime
18555 L848569-01 Solid			Collected by	Collected date/time 07/20/16 00:00	07/21/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Polychlorinated Biphenyls (GC) by Method 8082	WG891275	1.5	07/22/16 00:44	07/22/16 18:36	LKD
Total Solids by Method 2540 G-2011	WG892868	1	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	JLJ
			Collected by	Collected date/time 07/20/16 00:00	Received date/time
18555 L848569-02 Waste				07/20/10 00:00	07/21/10 09.00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/lime	date/time	
Preparation by Method 1311	WG892468	1	07/26/16 12:37	07/26/16 12:38	BG
Preparation by Method 1311	WG892919	1	07/27/16 10:32	07/27/16 10:33	BG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG893216	1	07/28/16 21:14	07/29/16 15:09	JF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG892961	1	07/28/16 00:59	07/28/16 00:59	ACG
Wet Chemistry by Method D93/1010A	WG891428	1	07/22/16 12:20	07/22/16 12:20	MZ
18556 L848569-03 Solid		9	Collected by	Collected date/time 07/20/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Polychlorinated Biphenyls (GC) by Method 8082	WG891275	1.5	07/22/16 00:44	07/22/16 18:48	LKD
Total Solids by Method 2540 G-2011	WG892868	1	07/27/16 09:17	07/27/16 09:27	MEL
Wet Chemistry by Method 9030B	WG893594	1	07/28/16 19:00	07/28/16 20:10	JLJ
18556 L848569-04 Waste			Collected by	Collected date/time 07/20/16 00:00	Received date/time 07/21/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Preparation by Method 1311	WG892468	1	07/26/16 12:37	07/26/16 12:38	BG
Preparation by Method 1311	WG892919	1	07/27/16 10:32	07/27/16 10:33	BG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG893216	1	07/28/16 21:14	07/29/16 15:32	SNR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG892961	1	07/28/16 03:15	07/28/16 03:15	ACG
Wet Chemistry by Method D93/1010A	WG891428	1	07/22/16 12:20	07/22/16 12:20	MZ

--

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John V Hr. Vin

John Hawkins

Technical Service Representative

SAMPLE RESULTS - 01

ONE LAB, NATIONWIDE,

Collected date/time: 07/20/16 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	l
Analyte Total Solids	% 39.8		<u>-</u> ×	date / tlme 07/27/2016 09:27	WG892868	1

Wet Chemistry by Method 9030B

	Result <u>Qualitier</u>	KUL	Dilution	Analysis	Batch	L
Analyte	mg/kg	mg/kg		date / time		F
Sulfide	36.4	25.0	1	07/28/2016 20:10	WG893594	L

Cn

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND	<u>J3</u>	0.0176	1.5	07/22/2016 18:36	WG891275
PCB 1221	ND		0.0269	1.5	07/22/2016 18:36	WG891275
PCB 1232	ND		0.0209	1.5	07/22/2016 18:36	WG891275
CB 1242	ND		0.0159	1.5	07/22/2016 18:36	WG891275
CB 1248	ND		0.0158	1.5	07/22/2016 18:36	WG891275
CB 1254	ND		0.0236	1.5	07/22/2016 18:36	WG891275
CB 1260	ND	<u>J3</u>	0.0248	1.5	07/22/2016 18:36	WG891275
(S) Decachloroblphenyl	59.0	_	10.0-143		07/22/2016 18:36	WG891275
(S) Tetrachloro-m-xylene	76.7		29.2-144		07/22/2016 18:36	WG891275

TCLP ZHE Extraction

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

L848569

7/27/2016 10:32:03 AM

7/26/2016 12:37:09 PM

Collected date/time: 07/20/16 00:00 Preparation by Method 1311

Qualifier Result Prep Batch Analyte date / time TCLP Extraction

WG892919 WG892468

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Deg. F			date / time	
Ignitability	DNI at 170 F		1	07/22/2016 12:20	WG891428

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	<u>Qualifier</u>	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Carbon tetrachloride	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Chlorobenzene	ND		0.0500	100	4	07/28/2016 00:59	WG892961
Chloroform	ND		0.250	6	1	07/28/2016 00:59	WG892961
1,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
1,1-Dichloroethene	ND		0.0500	0.70	1	07/28/2016 00:59	WG892961
2-Butanone (MEK)	ND		0.500	200	1	07/28/2016 00:59	WG892961
Tetrachloroethene	ND		0.0500	0.70	1	07/28/2016 00:59	WG892961
Trichloroethene	ND		0.0500	0.50	1	07/28/2016 00:59	WG892961
Vinyl chloride	ND		0.0500	0.20	1	07/28/2016 00:59	WG892961
(S) Toluene-d8	107		90.0-115	114		07/28/2016 00:59	WG892961
(S) Dibromofluoromethane	104		79.0-121	125		07/28/2016 00:59	WG892961
(S) a,a,a-Trifluorotoluene	105		90.4-116	114 =		07/28/2016 00:59	WG892961
(S) 4-Bromofluorobenzene	101		80.1-120	128		07/28/2016 00:59	WG892961

GI

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifler	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	07/29/2016 15:09	WG893216
2,4-Dinitrotoluene	ND		0.100	0.13	. 1	07/29/2016 15:09	WG893216
Hexachlorobenzene	ND		0.100	0.13	1	07/29/2016 15:09	WG893216
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	07/29/2016 15:09	WG893216
Hexachloroethane	ND		0.100	3	1	07/29/2016 15:09	WG893216
Nitrobenzene	ND		0.100	2	1	07/29/2016 15:09	WG893216
Pyridine	ND		0.100	5	1	07/29/2016 15:09	WG893216
3&4-Methyl Phenol	ND		0.100	400	1	07/29/2016 15:09	WG893216
2-Methylphenol	ND		0.100	200	1	07/29/2016 15:09	WG893216
Pentachlorophenol	ND	100 - 12	0.100	100	1 -	07/29/2016 15:09	WG893216
2,4,5-Trichlorophenol	ND		0.100	400	31	07/29/2016 15:09	WG893216
2,4,6-Trichlorophenol	ND		0.100	2	1	07/29/2016 15:09	WG893216
(S) 2-Fluorophenol	53.4		10.0-77.9	87		07/29/2016 15:09	WG893216
(S) Phenol-d5	36.8		5.00-70.1	.67		07/29/2016 15:09	WG893216
(S) Nitrobenzene-d5	64.3		21.8-123	120		07/29/2016 15:09	WG893216
(S) 2-Fluorobiphenyl	71.3		29.5-131	122		07/29/2016 15:09	WG893216
(S) 2,4,6-Tribromophenol	99.2		11.2-130	148		07/29/2016 15:09	WG893216
(S) p-Terphenyl-d14	87.6		29.3-137	149		07/29/2016 15:09	WG893216

SAMPLE RESULTS - 03

ONE LAB, NATIONWIDE,

Collected date/time: 07/20/16 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	38.5		1	07/27/2016 09:27	WG892868	

Wet Chemistry by Method 9030B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Sulfide	73.0		25.0	1	07/28/2016 20:10	WG893594

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			
PCB 1016	ND	J3	0.0176	1.5	07/22/2016 18:48	WG891275	 	
PCB 1221	ND		0.0269	1.5	07/22/2016 18:48	WG891275		1
PCB 1232	ND		0.0209	1,5	07/22/2016 18:48	WG891275		
PCB 1242	ND		0.0159	1.5	07/22/2016 18:48	WG891275		
PCB 1248	ND		0.0158	1.5	07/22/2016 18:48	WG891275		
PCB 1254	ND		0.0236	1.5	07/22/2016 18:48	WG891275		
PCB 1260	ND	<u>J3</u>	0.0248	1.5	07/22/2016 18:48	WG891275		
(S) Decachlorobiphenyl	67.3	_	10.0-143		07/22/2016 18:48	WG891275		
(S) Tetrachloro-m-xvlene	91.3		29.2-144		07/22/2016 18:48	WG891275		

SAMPLE RESULTS - 04 ONE LAB, MATIONWIDE,

Collected date/time: 07/20/16 00:00

Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction	-		7/27/2016 10:32:03 AM	WG892919
TCLP ZHE Extraction	35		7/26/2016 12:37:09 PM	WG892468

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dllution	Analysis	Batch
Analyte	Deg. F			date / time	
Ignitability	DNI at 170 F		1	07/22/2016 12:20	WG891428

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I		date / time	
Benzene	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
Carbon tetrachioride	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
Chlorobenzene	ND		0.0500	100	1	07/28/2016 03:15	WG892961
Chloroform	ND		0.250	6	1	07/28/2016 03:15	WG892961
I,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
,1-Dichloroethene	ND		0.0500	0.70	Ť	07/28/2016 03:15	WG892961
2-Butanone (MEK)	ND		0.500	200	1	07/28/2016 03:15	WG892961
etrachloroethene	ND		0.0500	0.70	1	07/28/2016 03:15	WG892961
richloroethene	ND		0.0500	0.50	1	07/28/2016 03:15	WG892961
/inyl chloride	ND		0.0500	0.20	1	07/28/2016 03:15	WG892961
(S) Toluene-d8	107		90.0-115	114		07/28/2016 03:15	WG892961
(S) Dibromofluoromethane	103		79.0-121	125		07/28/2016 03:15	WG892961
(S) a,a,a-Trifluorotoluene	105		90.4-116	114		07/28/2016 03:15	WG892961
(S) 4-Bromofluorobenzene	103		80.1-120	128		07/28/2016 03:15	WG892961

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	07/29/2016 15:32	WG893216
2,4-Dinitrotoluene	ND		0.100	0.13	1	07/29/2016 15:32	WG893216
Hexachlorobenzene	ND		0.100	0.13	1	07/29/2016 15:32	WG893216
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	07/29/2016 15:32	WG893216
-lexachloroethane	ND		0.100	3	1	07/29/2016 15:32	WG893216
Nitrobenzene	ND		0.100	2	1	07/29/2016 15:32	WG893216
Pyridine	ND		0.100	5	1	07/29/2016 15:32	WG893216
3&4-Methyl Phenol	ND		0.100	400	1	07/29/2016 15:32	WG893216
2-Methylphenol	ND		0.100	200	1	07/29/2016 15:32	WG893216
Pentachlorophenol	ND		0.100	-100	1	07/29/2016 15:32	WG893216
2,4,5-Trichlorophenol	ND		0.100	400	21	07/29/2016 15:32	WG893216
2,4,6-Trlchlorophenol	ND		0.100	2	1	07/29/2016 15:32	WG893216
(S) 2-Fluorophenol	44.9		10.0-77.9	87		07/29/2016 15:32	WG893216
(S) Phenol-d5	32.4		5.00-70.1	67		07/29/2016 15:32	WG893216
(S) Nitrobenzene-d5	53.8		21.8-123	120		07/29/2016 15:32	WG893216
(S) 2-Fluorobiphenyl	66.3		29.5-131	122		07/29/2016 15:32	WG893216
(S) 2,4,6-Tribromophenol	88.4		11.2-130	148		07/29/2016 15:32	WG893216
(S) p-Terphenyl-d14	85.6		29.3-137	149		07/29/2016 15:32	WG893216

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

L848569-01,03

Method Blank (MB)

_			
(MB) R3152777-1	07/27/16	09:27

Total Solids by Method 2540 G-2011

MB Result MB Qualifier MB MDL

Analyte **Total Solids**

0.000200

L848956-01 Original Sample (OS) • Duplicate (DUP)

(OS) L848956-01 07/27/16 09:27 • (DUP) R3152777-3 07/27/16 09:27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	67.2	67.5	1	0.498		5

Laboratory Control Sample (LCS)

(LCS) R3152777-2 07/27/16 09:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Wet Chemistry by Method 9030B

QUALITY CONTROL SUMMARY L848569-01.03

ONE LAB. NATIONWIDE.

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDI
Analyte	mg/kg		mg/kg	mg/kg
Sulfide	U		7.63	25.0

L848577-03 Original Sample (OS) • Duplicate (DUP)

(OS) L848577-03	07/28/16 20:10	· (DUP) WG893594-4	07/28/16 20:10
-----------------	----------------	--------------------	----------------

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Sutfide	61.0	66.0	1	7.87		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) WG893594-2	07/28/16 20:10 · (LCSD) WG893594-3 07/28/16	20:10

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Sulfide	100	79.0	72.8	79.0	72.8	70.0-130			8.17	20

Analyte Ignitability

QUALITY CONTROL SUMMARY 1848569-02,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method D93/1010A

L848569-02 Original Sample (OS) • Duplicate (DUP)

1	(OS) L848569-02	07/22/16 12:20 •	(DUP	WG891428-3	07/22/16 12:20

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Deg. F	Deg. F		%		%
 DNI at 170 F	DNI at 170 F	1	0.000		10

(LCS) WG891428-1	07/22/16 12:20 . /	LCSD) WG891428-2	07/22/16 12:20
(CCS) WGGS1426-1	0//22/10 12.20 • 1	LC3D) WG031420-2	0//22/10 12.20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	Deg. F	Deg. F	Deg. F	%	%	%			%	%
Ignitability	82.0	82.9	82.9	101	101	93.0-107	-		0.000	20

QUALITY CONTROL SUMMARY

ONE LAB_NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L848569-02,04

Method Blank (MB)

(MB) R3152874-3 07/27/10	6 23:02				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0167	0.0500	The state of the contract of the state of th
Carbon tetrachloride	U		0.0167	0.0500	
Chlorobenzene	U		0.0167	0.0500	
Chloroform	U		0.0833	0.250	
1,2-Dichloroethane	U		0.0167	0.0500	
1,1-Dichloroethene	U		0.0167	0.0500	
2-Butanone (MEK)	U		0.167	0.500	
Tetrachloroethene	U		0.0167	0.0500	
Trichloroethene	U		0.0167	0.0500	
Vinyl chloride	U		0.0167	0.0500	
(S) Toluene-d8	108			90.0-115	
(S) Dibromofluoromethane	102			79.0-121	
(S) a,a,a-Trifluorotoluene	105			90.4-116	
(S) 4-Bromofluorobenzene	103			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0228	0.0227	91.2	90.9	73.0-122			0.300	20
Carbon tetrachloride	0.0250	0.0243	0.0235	97.2	93.9	70.9-129			3.48	20
Chlorobenzene	0.0250	0.0250	0.0246	99.8	98.6	79.7-122			1.24	20
Chloroform	0.0250	0.0235	0.0236	94.1	94.5	73.2-125			0.390	20
1,2-Dichloroethane	0.0250	0.0251	0.0253	100	101	65.3-126			0.890	20
1,1-Dichloroethene	0.0250	0.0240	0.0239	95.8	95.8	60.6-133			0.0200	20
2-Butanone (MEK)	0.125	0.126	0.124	101	98.9	46.4-155			1.74	20
Tetrachloroethene	0.0250	0.0242	0.0244	96.7	97.5	73.5-130			0.900	20
Trichloroethene	0.0250	0.0251	0.0248	101	99.1	79.5-121			1.52	20
Vinyl chloride	0.0250	0.0264	0.0261	105	105	61.5-134			0.900	20
(S) Toluene-d8				107	106	90.0-115				
(S) Dibromofluoromethane				107	105	79.0-121				
(S) a.a.a-Trifluorotoluene				105	106	90.4-116				
(S) 4-Bromofluorobenzene				102	101	80.1-120				

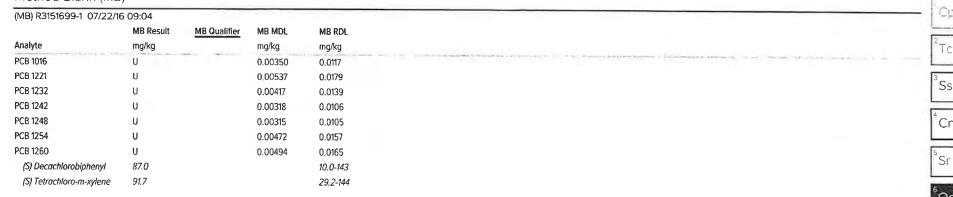
QUALITY CONTROL SUMMARY 1848569-02.04

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L848569-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Benzene	1.25	ND	1.23	1.29	98.1	103	1	58.6-133			4.96	20	
Carbon tetrachloride	1.25	ND	1.22	1.34	97.9	107	1	60.6-139			8.78	20	
Chlorobenzene	1.25	ND	1.36	1.42	109	114	1	70.1-130			4.57	20	
Chloroform	1.25	ND	1.28	1.35	102	108	1	66.1-133			5.08	20	
1,2-Dichloroethane	1.25	ND	1.34	1.39	107	111	1	60.7-132			3.94	20	
1,1-Dichloroethene	1.25	ND	1.30	1.36	104	109	1	48.8-144			4.47	20	
2-Butanone (MEK)	6.25	ND	4.95	5.23	74.9	79.3	1	45.0-156			5.47	20.8	
Tetrachloroethene	1.25	ND	1.33	1.38	106	111	- 1	57.4-141			3.92	20	
Trichloroethene	1.25	ND	1.36	1.42	109	114	1	48.9-148			4.13	20	
Vinyl chloride	1.25	ND	1.28	1.36	102	109	1	44.3-143			6.01	20	
(S) Toluene-d8					108	107		90.0-115					
(S) Dibromofluoromethane					106	105		79.0-121					
(S) a,a,a-Trifluorotoluene					106	104		90.4-116					
(S) 4-Bromofluorobenzene					101	101		80 1-120					


QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L848569-01.03

Method Blank (MB)

Polychlorinated Biphenyls (GC) by Method 8082

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3151699-2 07/22	/16 09:16 • (LCSC	D) R3151699-3	07/22/16 09:2	19							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	8
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	A
PCB 1260	0.167	0.124	0.166	74.5	99.6	46.5-120	A1100	J3	28.8	27	 _
PCB 1016	0.167	0.111	0.150	66.5	89.7	46.3-117		J3	29,8	27.5	⁹ S
(S) Decachlorobiphenyl				89.7	100	10.0-143		_			
(S) Tetrachloro-m-xylene				96.8	102	29.2-144					

L848452-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L848452-01 07/22/	16 19:00 • (MS) R	3151699-4 07/	22/16 19:13 •	(MSD) R3151699	9-5 07/22/16	19:25						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1260	0.167	ND	0.139	0.147	83.2	88.0	1	24.6-127			5.67	20
PCB 1016	0.167	ND	0.180	0.215	86.2	103	1	23.9-147			18.0	25.8
(S) Decachlorobiphenyl					66.4	74.2		10.0-143				
(S) Tetrachloro-m-xylene					84.4	87.0		29.2-144				

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L848569-02,04

0112

Method Blank (MB)

(MB) R3153267-3 07/29/	16 12:25					Cp
	MB Result	MB Qualifier	MB MDL	MB RDL		F2
Analyte	mg/l		mg/l	mg/l		[‡] Tc
1,4-Dichlorobenzene	U		0.0333	0.100	to the first the second	
2,4-Dinitrotoluene	U		0.0333	0.100		3 Ss
Hexachlorobenzene	u		0.0333	0,100		35
Hexachloro-1,3-butadiene	U		0.0333	0.100		[a
Hexachloroethane	U		0.0333	0.100		Cn
Nitrobenzene	U		0.0333	0.100		
Pyridine	U		0.0333	0.100		⁵ Sr
2-Methylphenol	U		0.0333	0.100		31
3&4-Methyl Phenol	U		0.0333	0.100		GURAN
Pentachlorophenol	U		0.0333	0.100		[€] Qc
2,4,5-Trichlorophenol	U		0.0333	0.100		
2,4,6-Trichlorophenol	U		0.0333	0.100		GI
(S) Nitrobenzene-d5	58.2			21.8-123		Gi
(S) 2-Fluorobiphenyl	72.2			29.5-131		a
(S) p-Terphenyl-d14	83.1			29.3-137		Al
(S) Phenol-d5	34.8			5.00-70.1		L
(S) 2-Fluorophenol	50.0			10.0-77.9		°Sc
(S) 2,4,6-Tribromophenol	80.7			11.2-130		30

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits <u>L</u>	CS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
,4-Dichlorobenzene	0.0500	0.0293	0.0318	58.7	63.6	21.0-89.4			7.97	32.6
,4-Dinitrotoluene	0.0500	0.0423	0.0426	84.7	85.3	31.2-105			0.660	22
lexachlorobenzene	0.0500	0.0412	0.0444	82.4	88.8	38.5-116			7.45	20.1
lexachloro-1,3-butadiene	0.0500	0.0365	0.0394	73.0°	78.7	16.1-104			7.52	31.2
lexachloroethane	0.0500	0.0267	0.0300	53.5	60.1	16.5-89.8			11.6	30.7
litrobenzene	0.0500	0.0287	0.0325	_57.4	65.0	31.4-106			12.5	25.7
yridine	0.0500	0.00859	0.00948	17.2	19.0	13.5-58.9			9.83	32.5
-Methylphenol	0.0500	0.0267	0.0284	53.4	56.9	26.4-86.9			6.29	26.5
&4-Methyl Phenol	0.0500	0.0296	0.0317	59.2	63.5	27,9-92.0			7.02	27
entachlorophenol	0.0500	0.0352	0.0376	70.4	75.1	10.0-97.4			6.45	35.1
,4,5-Trichlorophenol	0.0500	0.0417	0.0445	83.5	89.1	34.9-112			6.51	23.9
,4,6-Trichlorophenol	0.0500	0.0389	0.0435	77.8	87.1	29.8-107			11.3	24.1
(S) Nitrobenzene-d5				67.1	70.8	21.8-123				
(S) 2-Fluorobiphenyl				<i>77.8</i>	80.3	29.5-131				
(S) p-Terphenyl-d14				90.1	91.9	29.3-137				

(S) p-Terphenyl-d14

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

(S) Phenol-d5

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L848569-02,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3153267-1 07/29/	16 11:15 • (LCSD)	R3153267-2	07/29/16 11:38							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
(S) Phenol-d5	1.4.4			37.2	39.8	5.00-70.1	4			entire direction. In the last of a present of the contract of
(S) 2-Fluorophenol				52.1	58.0	10.0-77.9				
(S) 2,4,6-Tribromophenol				100	101	11,2-130				

L849237-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	ND	0.278	0.271	55.6	54.3	1	14.0-104		-	2.34	36.4
2,4-Dinitrotoluene	0.500	ND	0.414	0.402	82.8	80.4	1	16.2-135			2.93	20.6
Hexachlorobenzene	0.500	ND	0.423	0.411	84.6	82.3	1	31.9-135			2.84	20
Hexachloro-1,3-butadiene	0.500	ND	0.353	0.328	70.6	65.5	1	15.7-109			7.47	37.6
Hexachloroethane	0.500	ND	0.257	0.256	51.3	51.2	1	10.4-105			0.230	40
Nitrobenzene	0.500	ND	0.275	0.269	54.9	53.7	1	23.1-121			2.26	29
Pyridine	0.500	ND	0.0989	0.103	19.8	20.5	1	10.0-77.8			3.74	38.8
2-Methylphenol	0.500	ND	0.257	0.252	51.4	50.5	1	10.0-133			1.74	40
3&4-Methyl Phenol	0.500	ND	0.295	0.288	59.0	57.6	1	17.4-100			2.49	27.7
Pentachlorophenol	0.500	ND	0.375	0.375	75.0	74.9	1	10.0-108			0.0700	40
2,4,5-Trichlorophenol	0.500	ND	0.415	0.421	83.0	84.3	1	30.6-120			1.53	33.8
2,4,6-Trichlorophenol	0.500	ND	0.390	0.409	78.0	81.8	1	19.1-114			4.66	29.9
(S) Nitrobenzene-d5					62.0	<i>57.7</i>		21.8-123				
(S) 2-Fluorobiphenyl					72.2	69.0		29.5-131				

82.8

34.6

48.0

98.2

87.8

36.3

49.2

99.6

29.3-137

5.00-70.1

10.0-77.9

11.2-130

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD_	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description
J3	The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

ONE LAB. NATIONWIDE.

Ss

Sr

Qс

G1

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location, One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CH OICE**.
*Not all certifications held by the laboratory are applicable to the results reported in the atlached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina ²	41
Georgla	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
ldaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana.	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginla	109
Minnesota	047-999-395	Washington	C1915
Misslssippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		
hird Party & Fede	eral Accreditations		
	461.01		0789
A2LA – ISO 17025⁵ 1	461.02	DOD 14	61.01

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁴ Accreditation not applicable

Our Locations

Canada

EPA-Crypto

1461.01

TN00003

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office, ESC Lab Sciences performs all testing at our central laboratory.

USDA

S-67674

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

NEENAH PAPER INC-NEENAH MILL 135 N COMMERCIAL ST NEENAH, WI 54956-

Attn: MR. STEVEN HAGGLUND

Report Number: Report Date: Sampled By: 16008170 8/10/2016 Client

Emailed:

8/10/16

PO#:

333242966

Samples:

2

Sample Number:

46018555

Description:

NEENAH SLUDGE

Sample Date:

7/20/2016

Date Received:

7/20/2016

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
CHLORINE	<0.02	%	0.02	0.02		SW-846-5050	08/04/16	
CYANIDE, TOTAL	0.098	ppm	0.086	0.286	12	EPA335.4	07/25/16	
CYANIDE-AM. TO CL2	0.098	ppm	0.086	0.286	12	SM4500CN-G	07/26/16	
FLASH POINT	SEE ATTAC	CHED ESC R	EPORT					
FREE LIQUIDS	0.0	%	0	0		SW 846 9095	08/03/16	
METALS DIGESTION	DONE		0	0		SM3030E	07/22/16	
PCB, TOTAL	SEE ATTAC	CHED ESC R	EPORT					
PHENOL, TOTAL	<0.05	mg/l	0.05	0.17	1	EPA420.4	08/08/16	
pH-LAB	7.7	S.U.	0	0		SW846-90450	07/21/16	
SULFIDE	SEE ATTAC	CHED ESC R	EPORT					
TCLP ARSENIC	< 0.005	mg/l	0.005	0.017	5	SM3113B	07/26/16	
TCLP BARIUM	0.30	mg/l	0.03	0.08	1	SM3111D	07/28/16	
TCLP CADMIUM	< 0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TCLP CHROMIUM	< 0.02	mg/l	0.02	0.06	1	SM3111B	07/27/16	
TCLP EXTRACTION	DONE		0	0		SW846-1311	07/22/16	
TCLP LEAD	< 0.03	mg/l	0.03	0.10	1	SM3111B	07/27/16	
TCLP MERCURY	< 0.0002	mg/l	0.0002	0.0008	1	SM3112B	07/26/16	
TCLP ORGANICS	SEE ATTAC	CHED ESC R	EPORT					
TCLP SELENIUM	< 0.009	mg/l	0.009	0.030	5	SM3113B	07/26/16	
TCLP SILVER	0.02	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TOTAL SOLIDS	36.0	%	0.010	0.010		SM2540B	07/25/16	

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number:

46018556

Description:

APPLETON SLUDGE

Sample Date:

7/20/2016

Date Received:

7/20/2016

Parameter	Results	Units	LOD	LOQ	Dil.	Method	Analyzed	Codes
CHLORINE	<0.02	%	0.02	0.02		SW-846-5050	08/04/16	
CYANIDE, TOTAL	<0.086	ppm	0.086	0.286	12	EPA335.4	07/25/16	
CYANIDE-AM. TO CL2	< 0.086	ppm	0.086	0.286	12	SM4500CN-G	07/25/16	
FLASH POINT	SEE ATTAC	CHED ESC R	EPORT					
FREE LIQUIDS	0.0	%	0	0		SW 846 9095	08/03/16	
METALS DIGESTION	DONE		0	0		SM3030E	07/22/16	
PCB, TOTAL	SEE ATTAC	HED ESC R	EPORT					
PHENOL, TOTAL	0.06	mg/l	0.05	0.17	1	EPA420.4	08/08/16	
pH-LAB	7.0	S.U.	0	0		SW846-90450	07/21/16	
SULFIDE	SEE ATTAC	HED ESC R	EPORT					
TCLP ARSENIC	< 0.005	mg/l	0.005	0.017	5	SM3113B	07/26/16	
TCLP BARIUM	0.17	mg/l	0.03	0.08	1	SM3111D	07/28/16	
TCLP CADMIUM	< 0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TCLP CHROMIUM	<0.02	mg/l	0.02	0.06	1	SM3111B	07/27/16	
TCLP EXTRACTION	DONE		0	0		SW846-1311	07/22/16	
TCLP LEAD	< 0.03	mg/l	0.03	0.10	1	SM3111B	07/27/16	
TCLP MERCURY	< 0.0002	mg/l	0.0002	0.0008	1	SM3112B	07/26/16	
TCLP ORGANICS	SEE ATTAC	HED ESC R	EPORT					
TCLP SELENIUM	< 0.009	mg/l	0.009	0.030	5	SM3113B	07/26/16	
TCLP SILVER	<0.01	mg/l	0.01	0.03	1	SM3111B	07/27/16	
TOTAL SOLIDS	39.5	%	0.010	0.010		SM2540B	07/25/16	

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

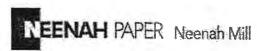
JMW:rt

2

CHEMISTS **ENGINEERS**

BADGER LABORATORIES & ENGINEERING, INC. 501 WEST BELL STREET - NEENAH, WISCONSIN 54956-4868 - EST. 1966

(920) 729-1100 - Fax (920) 729-4945 - 1-800-776-7196


16008170

SAMPLE RECEIPT FORM

COMPANY: NAME: ADDRESS: FAX/PHONE/EMAIL P.O. #: PROJECT/SITE: REPORT & BILL TO ADDITIONAL REPO	:	lno		Jap			Normal Other TAT* *REQUIRES PRIOR APPROVAL				R LA		SAMPLE TYPE: Groundwater Lab Filtered Wastewater Field Filtered WPDES Grab Cooling Water Composite Drinking Water Flow Proportional Solid Waste Time Proportional Oil Other								
	SAMPLE	DATE	BL:&E	BL&E		CONT		DE	LIVER	Y METI	IOD		F		RVATIC	ON					
CUSTOMER SAMPLE ID	DATE/TIME	REC'D	REPORT#	SAMPLE #	TEM	AINER S	Y/N	BLAE	CLIENT	UP8	OTHER	PIF	PIL	NON- PRES	H2SO4	HNO3	NAOH	OTHER	ANALYTIÇAL REQUESTS	lot-	1 ok
		7/20	340	18538		-3	4		4					3					(es)		1
			8170	WAST	-	- 3	T		4			7.1		5					797	-	+
			91 1	MUDER	-		1		-					\vdash		-				_	+
			-		-			-			_				_						
			-		L																
																					1
2													J.								+
							9 1													\dashv	+
	7												-				-	-			1
					-	-	-			-											
	11																				
		CH	IAIN OI	- CUSTO	חכ	YRF	-CC	JBL	1												
FILLED IN BY CU SAMPLED BY: DATE/TIME SAMPLED: RELINQUISHED BY: Temperature over		yli	_			FILLE RECEIVE DATE/THE LOGGED	D IN ED BY ME RE	BYE	ADG			-		SB							

^{*} PIF= Preserved in field.

^{*} EP= If pH was not correct, extra preservation was added until correct pH was achieved; H2SO4/HNO3 adjusted to pH <2.0; NaOH >12.0 * PIL≈ Preserved in lab.

NEENAH PAPER WWTP SAMPLE CHAIN OF CUSTODY RECORD

SAMPLE(S) SOURCE INFORMATION	
NEENAH PAPER CONTACT:	STEVEN HAGGLUND
ADDRESS:	NEENAH PAPER INC NEENAH MI
	135 NORTH COMMERCIAL STREET
	P. O. BOX 2003
	NEENAH, WISCONSIN, 54957-2003

CONTACT PHONE NUMER:

(920) 721-1065 WWTP OPERATOR PHONE NUMBER:

(920) 721-1049

678-784-7261

PURCHASE ORDER:

FAX NUMBER:

355 43050 Exp. Exp.

Daily 7am - 3pm

DESTINATION/TESTING LAB INFORMATION

LAB NAME AND ADDRESS:

BADGER LABS AND ENGINEERING

501 WEST BELL STREET

NEENAH, WISCONSIN 54957-1392

LAB PHONE NUMBER:

(920) 729-1100

LAB CONTACT PERSON: JEFF WAGNER

			Samp	le Type		Sample ID		
Sampled by: Signature	Date	Time	Grab	Comp	Preservation	(must match sample label)	Analyte	
Ataloghi	72016	10:30	X		None	Neenah Sludge	TCLP	
15-lf-y/0	7-20-16	11:10	х		None	Appleton Sludge	TCLP	
	-1				1			

Relinquished by (signature)	Date:	Time:	
Atalystal	7-20-16	12:15	Neenah Paper

Delivered to: (signature)	Date:	Time:	
(4) Chone	7-20-16	12:15	Badger Labs

RETURN THIS FORM WITH TEST RESULTS

BADGER LABORATORIES & ENGINEERING RE

501 WEST BELL STREET . NEENAH, WISCONSIN 54956-4868 . EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

MAXIMUM CONCENTRATION OF CONTAMINANTS FOR TOXICITY CHARACTERISTIC

Contaminant	Regulatory Level (mg/l.)
3	
Arsenic	5.0
Barium	100.0
Benzene	0.5
Cadmium	1.0
Carbon tetrachloride	0.5
Chlordane	0.03
Chlorobenzene	100.0
Chloroform	6.0
Chromium	5.0
o-Cresol	200.0
m-Cresol	200.0
p-Cresol	200.0
Cresol	200.0
2-4-D	10.0
1,4-Dichlorobenzene	7.5
1,2-Dichloroethane	0.5
1,1-Dichloroethylene	0.7
2,4-dinitrotoluene	0.13
Endrin	0.02
Heptachlor (and its hydroxide)	0.008
Hexachlorobenzene	0.13
Hexachloro-1,3-butadiene	0.5
Hexachloroethane	3.0
Lead	5.0
Lindane	0.4
Mercury	0.2
Methoxychlor	10.0
Methyl ethyl ketone	200.0
Nitrobenzene	2.0
Pentachloroephenol	100.0
Pyridine	5.0
Selenium	1.0
Silver	5.0
Tetrachloroethylene	0.7
Toxaphene	0.5
Taiahlararathulana	0.5
Trichlororethylene	400.0
2,4,5-Trichloroephenol	2.0
2,4,6-Trichloroephenol	1.0
2,4,5-TP (Silvex)	0.2
Vinyl chloride	0.2 Members
WI DNR Certified Lab #445023150	WI Environmental Labs; Am. Chemical Soc.; T.A.P.P.I.; WI Food Processors Assn.;
WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water)	Wisc. Paper Council

February 24, 2017

Mandy Peterson Veolia ES Industrial Services 501 Eastman Ave Green Bay, WI 54302

RE: Project: PAPER FINES TESTING

Pace Project No.: 40145698

Dear Mandy Peterson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 15, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Cindy Varga

cindy.varga@pacelabs.com

Condy K Vargo

Project Manager

Enclosures

cc: Jim Delvoye, Proctor & Gamble

CERTIFICATIONS

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680

California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

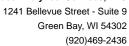
North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

Green Bay Certification IDs


1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40145698001	PAPER FINES	Solid	02/15/17 11:30	02/15/17 11:55

(920)469-2436

SAMPLE ANALYTE COUNT

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40145698001	PAPER FINES	EPA 8082	BLM	10	PASI-G
		EPA 6010	DLB	10	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 8270	RJN	16	PASI-G
		EPA 8260	HNW	13	PASI-G
		ASTM D2974-87	BTH	1	PASI-G
		EPA 1010	DEY	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 9095	DEY	1	PASI-G
		EPA 420.4	KEO	1	PASI-M
		EPA 9012	DAW	1	PASI-G

ANALYTICAL RESULTS

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

Sample: PAPER FINES Lab ID: 40145698001Collected: 02/15/17 11:30 Received: 02/15/17 11:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	A 8082 Prepai	ration Meth	od: EP	A 3541			
PCB-1016 (Aroclor 1016)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	12674-11-2	
PCB-1221 (Aroclor 1221)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	11104-28-2	
PCB-1232 (Aroclor 1232)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	11141-16-5	
PCB-1242 (Aroclor 1242)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	53469-21-9	
PCB-1248 (Aroclor 1248)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	12672-29-6	
PCB-1254 (Aroclor 1254)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	11097-69-1	
PCB-1260 (Aroclor 1260)	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	11096-82-5	
PCB, Total	<79.3	ug/kg	159	79.3	1	02/16/17 11:22	02/16/17 20:08	1336-36-3	
Surrogates		3 3							
Tetrachloro-m-xylene (S)	73	%	63-130		1	02/16/17 11:22	02/16/17 20:08	877-09-8	
Decachlorobiphenyl (S)	57	%	48-130		1	02/16/17 11:22	02/16/17 20:08	2051-24-3	
6010 MET ICP, TCLP	Analytical	Method: EPA	A 6010 Prepai	ration Meth	od: EP	A 3010			
	-		: EPA 1311; 0						
Arsenic	<0.042	mg/L	0.12	0.042	1	02/21/17 14:37	02/22/17 10:35	7440-38-2	
Barium	0.037J	mg/L	0.075	0.025	1		02/22/17 10:35		
Cadmium	<0.0066	mg/L	0.025	0.0066	1		02/22/17 10:35		
Chromium	<0.013	mg/L	0.050	0.013	1		02/22/17 10:35		
Copper	<0.031	mg/L	0.10	0.031	1		02/22/17 10:35		
Lead	<0.022	mg/L	0.065	0.022	1		02/22/17 10:35		
Nickel	< 0.013	mg/L	0.050	0.013	1		02/22/17 10:35		
Selenium	<0.083	mg/L	0.25	0.083	1		02/22/17 10:35		
Silver	<0.017	mg/L	0.050	0.017	1		02/22/17 10:35		
Zinc	0.11J	mg/L	0.20	0.047	1		02/22/17 10:35		
		•					02/22/17 10:00	7440 00 0	
7470 Mercury, TCLP	-		7470 Prepai			A 7470			
	Leachate	Method/Date	: EPA 1311; 0		00				
Mercury	<0.13	ug/L	0.42	0.13	1	02/23/17 11:05	02/24/17 08:48	7439-97-6	
8270 MSSV TCLP Sep Funnel	Analytical	Method: EPA	8270 Prepai	ration Meth	od: EP	A 3510			
	Leachate	Method/Date	: EPA 1311; 0	2/20/17 00:	00				
1,4-Dichlorobenzene	<19.4	ug/L	50.0	19.4	1	02/21/17 08:15	02/21/17 16:59	106-46-7	
2,4-Dinitrotoluene	<10	ug/L	50.0	10	1	02/21/17 08:15	02/21/17 16:59	121-14-2	
Hexachloro-1,3-butadiene	<18.2	ug/L	100	18.2	1	02/21/17 08:15	02/21/17 16:59	87-68-3	
Hexachlorobenzene	<5.7	ug/L	50.0	5.7	1	02/21/17 08:15	02/21/17 16:59	118-74-1	
Hexachloroethane	<14.8	ug/L	50.0	14.8	1	02/21/17 08:15	02/21/17 16:59	67-72-1	
2-Methylphenol(o-Cresol)	<9.6	ug/L	50.0	9.6	1	02/21/17 08:15	02/21/17 16:59	95-48-7	
3&4-Methylphenol(m&p Cresol)	<12.8	ug/L	50.0	12.8	1		02/21/17 16:59		
Nitrobenzene	<10.3	ug/L	50.0	10.3	1	02/21/17 08:15	02/21/17 16:59	98-95-3	
Pentachlorophenol	<7.5	ug/L	100	7.5	1	02/21/17 08:15	02/21/17 16:59	87-86-5	
Pyridine	<14.6	ug/L	50.0	14.6	1	02/21/17 08:15	02/21/17 16:59	110-86-1	
2,4,5-Trichlorophenol	<7.6	ug/L	50.0	7.6	1	02/21/17 08:15	02/21/17 16:59	95-95-4	
2,4,6-Trichlorophenol	<10.5	ug/L	50.0	10.5	1	02/21/17 08:15	02/21/17 16:59	88-06-2	
Surrogates Nitrobenzene-d5 (S)	87	%	43-130		1	02/21/17 08:15	02/21/17 16:59	4165-60-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

Sample: PAPER FINES Lab ID: 40145698001 Collected: 02/15/17 11:30 Received: 02/15/17 11:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV TCLP Sep Funnel	•	Method: EPA	•			A 3510			
	Leachate	Method/Date:	EPA 1311; 0	2/20/17 00:	00				
Surrogates									
2-Fluorobiphenyl (S)	80	%	41-130		1		02/21/17 16:59		
Phenol-d6 (S)	37	%	15-130		1	02/21/17 08:15	02/21/17 16:59		
2,4,6-Tribromophenol (S)	119	%	42-140		1	02/21/17 08:15	02/21/17 16:59	118-79-6	
8260 MSV TCLP	Analytical	Method: EPA	8260 Leach	ate Method	/Date: I	EPA 1311; 02/20/1	7 00:00		
Benzene	<5.0	ug/L	10.0	5.0	10		02/22/17 15:56	71-43-2	
2-Butanone (MEK)	<29.8	ug/L	200	29.8	10		02/22/17 15:56	78-93-3	
Carbon tetrachloride	<5.0	ug/L	10.0	5.0	10		02/22/17 15:56	56-23-5	
Chlorobenzene	<5.0	ug/L	10.0	5.0	10		02/22/17 15:56	108-90-7	
Chloroform	<25.0	ug/L	50.0	25.0	10		02/22/17 15:56	67-66-3	
1,2-Dichloroethane	<1.7	ug/L	10.0	1.7	10		02/22/17 15:56	107-06-2	
1,1-Dichloroethene	<4.1	ug/L	10.0	4.1	10		02/22/17 15:56	75-35-4	
Tetrachloroethene	<5.0	ug/L	10.0	5.0	10		02/22/17 15:56	127-18-4	
Trichloroethene	<3.3	ug/L	10.0	3.3	10		02/22/17 15:56	79-01-6	
Vinyl chloride	<1.8	ug/L	10.0	1.8	10		02/22/17 15:56	75-01-4	
Surrogates									
Toluene-d8 (S)	97	%	70-130		10		02/22/17 15:56		
4-Bromofluorobenzene (S)	97	%	70-130		10		02/22/17 15:56		
Dibromofluoromethane (S)	100	%	70-130		10		02/22/17 15:56	1868-53-7	
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	68.5	%	0.10	0.10	1		02/15/17 17:26		
1010 Flashpoint,Closed Cup	Analytical	Method: EPA	1010						
Flashpoint	>210	deg F			1		02/20/17 15:46		
9040 pH	Analytical	Method: EPA	9040						
рН	7.4	Std. Units	0.10	0.010	1		02/21/17 08:45		1q,H6
9095 Paint Filter Liquid Test	Analytical	Method: EPA	9095						
Free Liquids	Pass	no units			1		02/21/17 11:23		
420.4 Phenolics, Total	Analytical	Method: EPA	420.4 Prepa	ration Meth	od: EP	PA 420.4			
Phenol	5.1J	ug/L	11.3	3.4	1	02/23/17 09:15	02/24/17 13:44	108-95-2	В
9012 Cyanide, Total	Analytical	Method: EPA	9012 Prepai	ration Metho	od: EP/	A 9012A			
Cyanide	0.62J	mg/kg	1.5	0.45	1	02/22/17 09:40	02/22/17 13:10	57-12-5	В

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248920

Analysis Method:

EPA 7470

QC Batch Method: EPA 7470 Analysis Description:

< 0.13

7470 Mercury TCLP

Associated Lab Samples: 40145698001

METHOD BLANK: 1470352

Matrix: Water

Associated Lab Samples:

40145698001

Blank Result

Reporting

0.42

Parameter

Units

ug/L

Units

Units

ug/L

Units

Limit

Analyzed

02/24/17 08:20

Qualifiers

METHOD BLANK:

1469072

Matrix: Water

Associated Lab Samples:

40145698001

Blank Result Reporting

Limit

Analyzed

Qualifiers

Mercury

Mercury

Parameter

< 0.13 ug/L

0.42 02/24/17 08:52

METHOD BLANK:

1469390 Associated Lab Samples:

40145698001

Blank Result Reporting Limit

Analyzed

Qualifiers

Mercury

< 0.13

Matrix: Water

0.42 02/24/17 09:20

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

1470353

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury

ug/L

5

MSD

Spike

Conc.

4.5

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1470354

1470355

MSD

MS

MSD

93

Max

Mercury

Mercury

Parameter

Parameter

Units Result ug/L 0.41J Spike Conc. 5

MS

MS Result 5 5.2

% Rec Result 5.1 96

4.5

90

% Rec

% Rec **RPD** Limits

RPD Qual 3 20

MATRIX SPIKE SAMPLE:

1470356

Units

ug/L

40145633005

MS

MS

% Rec

85-115

Date: 02/24/2017 04:24 PM

40145714001 Result 0.00014J mg/L

Spike Conc.

5

Result

% Rec

88

Limits Qualifiers

85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(920)469-2436

QUALITY CONTROL DATA

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE SAMPLE:	1470357	40145632003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	ug/L	<0.13	5	4.7	94	85-115	
MATRIX SPIKE SAMPLE:	1470358						
WINTER OF THE OF THE ELE	1170000	40145698001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	ug/L	<0.13		4.9	96	85-115	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248763 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 40145698001

METHOD BLANK: 1469668 Matrix: Water

Associated Lab Samples: 40145698001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	< 0.0083	0.025	02/22/17 10:02	
Barium	mg/L	< 0.0050	0.015	02/22/17 10:02	
Cadmium	mg/L	< 0.0013	0.0050	02/22/17 10:02	
Chromium	mg/L	< 0.0025	0.010	02/22/17 10:02	
Copper	mg/L	< 0.0063	0.020	02/22/17 10:02	
Lead	mg/L	< 0.0043	0.013	02/22/17 10:02	
Nickel	mg/L	< 0.0026	0.010	02/22/17 10:02	
Selenium	mg/L	< 0.017	0.050	02/22/17 10:02	
Silver	mg/L	< 0.0033	0.010	02/22/17 10:02	
Zinc	mg/L	<0.0093	0.040	02/22/17 10:02	

METHOD BLANK: 1469070 Matrix: Solid

Associated Lab Samples: 40145698001

Date: 02/24/2017 04:24 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	02/22/17 10:40	
Barium	mg/L	< 0.025	0.075	02/22/17 10:40	
Cadmium	mg/L	< 0.0066	0.025	02/22/17 10:40	
Chromium	mg/L	< 0.013	0.050	02/22/17 10:40	
Copper	mg/L	< 0.031	0.10	02/22/17 10:40	
Lead	mg/L	< 0.022	0.065	02/22/17 10:40	
Nickel	mg/L	<0.013	0.050	02/22/17 10:40	
Selenium	mg/L	<0.083	0.25	02/22/17 10:40	
Silver	mg/L	< 0.017	0.050	02/22/17 10:40	
Zinc	mg/L	< 0.047	0.20	02/22/17 10:40	

LABORATORY CONTROL SAMPLE:	1469669					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	.5	0.46	92	80-120	
Barium	mg/L	.5	0.48	97	80-120	
Cadmium	mg/L	.5	0.47	95	80-120	
Chromium	mg/L	.5	0.49	97	80-120	
Copper	mg/L	.5	0.49	98	80-120	
Lead	mg/L	.5	0.47	93	80-120	
Nickel	mg/L	.5	0.47	93	80-120	
Selenium	mg/L	.5	0.45	91	80-120	
Silver	mg/L	.25	0.24	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

Parameter

LABORATORY CONTROL SAMPLE: 1469669

Spike LCS LCS % Rec
Units Conc. Result % Rec Limits

Zinc mg/L .5 0.49 98 80-120

MATRIX SPIKE SAMPLE:	1469670						
		40145714001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.3	92	75-125	
Barium	mg/L	0.096	2.5	2.5	98	75-125	
Cadmium	mg/L	<0.0066	2.5	2.4	95	75-125	
Chromium	mg/L	< 0.013	2.5	2.4	97	75-125	
Copper	mg/L	< 0.031	2.5	2.5	98	75-125	
Lead	mg/L	< 0.022	2.5	2.3	93	75-125	
Nickel	mg/L	0.58	2.5	2.9	91	75-125	
Selenium	mg/L	<0.083	2.5	2.3	93	75-125	
Silver	mg/L	< 0.017	1.2	1.2	99	75-125	
Zinc	mg/L	5.3	2.5	7.6	92	75-125	

MATRIX SPIKE & MATRIX SPIK	E DUPLICA	TE: 14696	71		1469672							
			MS	MSD								
	4	0145632003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	<0.042	2.5	2.5	2.3	2.3	94	92	75-125	2	20	
Barium	mg/L	0.22	2.5	2.5	2.7	2.6	100	97	75-125	3	20	
Cadmium	mg/L	<0.0066	2.5	2.5	2.5	2.4	99	95	75-125	3	20	
Chromium	mg/L	< 0.013	2.5	2.5	2.5	2.4	99	96	75-125	3	20	
Copper	mg/L	< 0.031	2.5	2.5	2.6	2.5	102	99	75-125	3	20	
Lead	mg/L	< 0.022	2.5	2.5	2.4	2.3	95	92	75-125	3	20	
Nickel	mg/L	0.049J	2.5	2.5	2.4	2.3	95	91	75-125	4	20	
Selenium	mg/L	<0.083	2.5	2.5	2.4	2.3	95	92	75-125	3	20	
Silver	mg/L	< 0.017	1.2	1.2	1.3	1.2	102	99	75-125	3	20	
Zinc	mg/L	205	2.5	2.5	214	213	330	292	75-125	0	20	P6

MATRIX SPIKE SAMPLE:	1469673						
_		40145633005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 mg/L	<0.042	2.5	2.3	92	75-125	
Barium	mg/L	0.23	2.5	2.7	99	75-125	
Cadmium	mg/L	<0.0066	2.5	2.4	96	75-125	
Chromium	mg/L	< 0.013	2.5	2.4	97	75-125	
Copper	mg/L	< 0.031	2.5	2.5	100	75-125	
Lead	mg/L	< 0.022	2.5	2.3	92	75-125	
Nickel	mg/L	0.015J	2.5	2.3	92	75-125	
Selenium	mg/L	<0.083	2.5	2.3	93	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE SAMPLE:	1469673						
		40145633005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Silver	 mg/L	<0.017	1.2	1.3	100	75-125	
Zinc	mg/L	<0.047	2.5	2.5	97	75-125	

MATRIX SPIKE SAMPLE:	1469674						
		40145698001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 mg/L	<0.042	2.5	2.2	89	75-125	
Barium	mg/L	0.037J	2.5	2.4	96	75-125	
Cadmium	mg/L	<0.0066	2.5	2.3	93	75-125	
Chromium	mg/L	< 0.013	2.5	2.4	97	75-125	
Copper	mg/L	< 0.031	2.5	2.5	98	75-125	
Lead	mg/L	< 0.022	2.5	2.3	91	75-125	
Nickel	mg/L	< 0.013	2.5	2.3	92	75-125	
Selenium	mg/L	<0.083	2.5	2.3	92	75-125	
Silver	mg/L	< 0.017	1.2	1.2	97	75-125	
Zinc	mg/L	0.11J	2.5	2.5	98	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248719 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 40145698001

METHOD BLANK: 1469432 Matrix: Water

Associated Lab Samples: 40145698001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<0.41	1.0	02/22/17 09:12	
1,2-Dichloroethane	ug/L	<0.17	1.0	02/22/17 09:12	
2-Butanone (MEK)	ug/L	<3.0	20.0	02/22/17 09:12	
Benzene	ug/L	< 0.50	1.0	02/22/17 09:12	
Carbon tetrachloride	ug/L	< 0.50	1.0	02/22/17 09:12	
Chlorobenzene	ug/L	< 0.50	1.0	02/22/17 09:12	
Chloroform	ug/L	<2.5	5.0	02/22/17 09:12	
Tetrachloroethene	ug/L	< 0.50	1.0	02/22/17 09:12	
Trichloroethene	ug/L	< 0.33	1.0	02/22/17 09:12	
Vinyl chloride	ug/L	<0.18	1.0	02/22/17 09:12	
4-Bromofluorobenzene (S)	%	96	70-130	02/22/17 09:12	
Dibromofluoromethane (S)	%	99	70-130	02/22/17 09:12	
Toluene-d8 (S)	%	99	70-130	02/22/17 09:12	

METHOD BLANK: 1469073 Matrix: Solid

Associated Lab Samples: 40145698001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	10.0	02/22/17 12:12	
1,2-Dichloroethane	ug/L	<1.7	10.0	02/22/17 12:12	
2-Butanone (MEK)	ug/L	<29.8	200	02/22/17 12:12	
Benzene	ug/L	<5.0	10.0	02/22/17 12:12	
Carbon tetrachloride	ug/L	<5.0	10.0	02/22/17 12:12	
Chlorobenzene	ug/L	<5.0	10.0	02/22/17 12:12	
Chloroform	ug/L	<25.0	50.0	02/22/17 12:12	
Tetrachloroethene	ug/L	<5.0	10.0	02/22/17 12:12	
Trichloroethene	ug/L	<3.3	10.0	02/22/17 12:12	
Vinyl chloride	ug/L	<1.8	10.0	02/22/17 12:12	
4-Bromofluorobenzene (S)	%	96	70-130	02/22/17 12:12	
Dibromofluoromethane (S)	%	100	70-130	02/22/17 12:12	
Toluene-d8 (S)	%	98	70-130	02/22/17 12:12	

METHOD BLANK: 1469074 Matrix: Solid

Associated Lab Samples: 40145698001

Date: 02/24/2017 04:24 PM

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiers1,1-Dichloroetheneug/L<4.1</td>10.002/22/17 11:49

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

METHOD BLANK: 1469074 Matrix: Solid

Associated Lab Samples: 40145698001

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2-Dichloroethane	ug/L	<1.7	10.0	02/22/17 11:49	
2-Butanone (MEK)	ug/L	<29.8	200	02/22/17 11:49	
Benzene	ug/L	<5.0	10.0	02/22/17 11:49	
Carbon tetrachloride	ug/L	<5.0	10.0	02/22/17 11:49	
Chlorobenzene	ug/L	<5.0	10.0	02/22/17 11:49	
Chloroform	ug/L	<25.0	50.0	02/22/17 11:49	
Tetrachloroethene	ug/L	<5.0	10.0	02/22/17 11:49	
Trichloroethene	ug/L	<3.3	10.0	02/22/17 11:49	
Vinyl chloride	ug/L	<1.8	10.0	02/22/17 11:49	
4-Bromofluorobenzene (S)	%	97	70-130	02/22/17 11:49	
Dibromofluoromethane (S)	%	99	70-130	02/22/17 11:49	
Toluene-d8 (S)	%	100	70-130	02/22/17 11:49	

LABORATORY CONTROL SAMPLE:	1469433					
	11.5	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	50	50.9	102	70-130	
1,2-Dichloroethane	ug/L	50	50.7	101	70-130	
Benzene	ug/L	50	53.7	107	60-135	
Carbon tetrachloride	ug/L	50	52.7	105	70-138	
Chlorobenzene	ug/L	50	51.1	102	70-130	
Chloroform	ug/L	50	49.8	100	70-130	
Tetrachloroethene	ug/L	50	51.7	103	70-138	
Trichloroethene	ug/L	50	52.0	104	70-130	
Vinyl chloride	ug/L	50	52.8	106	49-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Dibromofluoromethane (S)	%			102	70-130	
Toluene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	1469437						
		40145632001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/L	<4.1	500	516	103	68-136	
1,2-Dichloroethane	ug/L	<1.7	500	507	101	70-130	
2-Butanone (MEK)	ug/L	762		740			
Benzene	ug/L	<5.0	500	540	108	57-138	
Carbon tetrachloride	ug/L	<5.0	500	535	107	70-138	
Chlorobenzene	ug/L	<5.0	500	500	100	70-130	
Chloroform	ug/L	<25.0	500	500	100	70-130	
Tetrachloroethene	ug/L	<5.0	500	511	102	70-148	
Trichloroethene	ug/L	<3.3	500	526	105	70-131	
Vinyl chloride	ug/L	<1.8	500	534	107	49-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE SAMPLE:	1469437						
		40145632001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Bromofluorobenzene (S)					100	70-130	
Dibromofluoromethane (S)	%				101	70-130	
Toluene-d8 (S)	%				98	70-130	
MATRIX SPIKE SAMPLE:	1469438						
		40145698001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	 ug/L	<4.1	500	513	103	68-136	
1,2-Dichloroethane	ug/L	<1.7	500	514	103	70-130	
2-Butanone (MEK)	ug/L	<29.8		<29.8			
Benzene	ug/L	<5.0	500	540	108	57-138	
Carbon tetrachloride	ug/L	<5.0	500	534	107	70-138	
Chlorobenzene	ug/L	<5.0	500	514	103	70-130	
Chloroform	ug/L	<25.0	500	500	100	70-130	
Tetrachloroethene	ug/L	<5.0	500	513	103	70-148	
Trichloroethene	ug/L	<3.3	500	522	104	70-131	
Vinyl chloride	ug/L	<1.8	500	526	105	49-133	
4-Bromofluorobenzene (S)	%				102	70-130	
Dibromofluoromethane (S)	%				102	70-130	
Toluene-d8 (S)	%				100	70-130	
MATRIX SPIKE SAMPLE:	1469439						
		40145714001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
1,1-Dichloroethene	ug/L	<0.0041 mg/L	500	511	102	68-136	
1,2-Dichloroethane	ug/L	<0.0017 mg/L	500	505	101	70-130	
2-Butanone (MEK)	ug/L	<0.030 mg/L		<29.8			
Benzene	ug/L	<0.0050 mg/L	500	530	106	57-138	
Carbon tetrachloride	ug/L	<0.0050 mg/L	500	515	103	70-138	
Chlorobenzene	ug/L	<0.0050 mg/L	500	498	100	70-130	
Chloroform	ug/L	<0.025 mg/L	500	489	98	70-130	
Tetrachloroethene	ug/L	<0.0050 mg/L	500	499	100	70-148	
Trichloroethene	ug/L	<0.0033 mg/L	500	516	103	70-131	
Vinyl chloride	ug/L	<0.0018 mg/L	500	524	105	49-133	
4-Bromofluorobenzene (S)	%				101	70-130	
					400		
Dibromofluoromethane (S)	% %				102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 14694	40		1469441							
			MS	MSD								
	4	0145766001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethene	ug/L	<4.1	500	500	513	524	103	105	68-136	2	20	
1,2-Dichloroethane	ug/L	<1.7	500	500	512	504	102	101	70-130	2	20	
2-Butanone (MEK)	ug/L	<29.8			<29.8	<29.8					20	
Benzene	ug/L	<5.0	500	500	540	545	108	109	57-138	1	20	
Carbon tetrachloride	ug/L	<5.0	500	500	526	533	105	107	70-138	1	20	
Chlorobenzene	ug/L	<5.0	500	500	510	511	102	102	70-130	0	20	
Chloroform	ug/L	<25.0	500	500	500	503	100	101	70-130	1	20	
Tetrachloroethene	ug/L	<5.0	500	500	515	514	103	103	70-148	0	20	
Trichloroethene	ug/L	<3.3	500	500	518	528	104	106	70-131	2	20	
Vinyl chloride	ug/L	<1.8	500	500	531	538	106	108	49-133	1	20	
4-Bromofluorobenzene (S)	%						102	103	70-130			
Dibromofluoromethane (S)	%						102	104	70-130			
Toluene-d8 (S)	%						100	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

QC Batch: 248480 Analysis Method: EPA 8082
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

Associated Lab Samples: 40145698001

METHOD BLANK: 1468263 Matrix: Solid

Associated Lab Samples: 40145698001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1221 (Aroclor 1221)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1232 (Aroclor 1232)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1242 (Aroclor 1242)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1248 (Aroclor 1248)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1254 (Aroclor 1254)	ug/kg	<25.0	50.0	02/16/17 16:22	
PCB-1260 (Aroclor 1260)	ug/kg	<25.0	50.0	02/16/17 16:22	
Decachlorobiphenyl (S)	%	78	48-130	02/16/17 16:22	
Tetrachloro-m-xylene (S)	%	70	63-130	02/16/17 16:22	

LABORATORY CONTROL SAMPLE:	1468264					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<25.0			
PCB-1221 (Aroclor 1221)	ug/kg		<25.0			
PCB-1232 (Aroclor 1232)	ug/kg		<25.0			
PCB-1242 (Aroclor 1242)	ug/kg		<25.0			
PCB-1248 (Aroclor 1248)	ug/kg		<25.0			
PCB-1254 (Aroclor 1254)	ug/kg		<25.0			
PCB-1260 (Aroclor 1260)	ug/kg	500	392	78	55-130	
Decachlorobiphenyl (S)	%			80	48-130	
Tetrachloro-m-xylene (S)	%			72	63-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE: 14682	65		1468266							
Parameter	4 Units	0145663015 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<31.1			<31.1	<31.1					20	
PCB-1221 (Aroclor 1221)	ug/kg ug/kg	<31.1			<31.1	<31.1					20	
PCB-1232 (Aroclor 1232)	ug/kg	<31.1			<31.1	<31.1					20	
PCB-1242 (Aroclor 1242)	ug/kg	<31.1			<31.1	<31.1					20	
PCB-1248 (Aroclor 1248)	ug/kg	<31.1			<31.1	<31.1					20	
PCB-1254 (Aroclor 1254)	ug/kg	<31.1			<31.1	<31.1					20	
PCB-1260 (Aroclor 1260)	ug/kg	<31.1	622	622	477	493	77	79	40-130	3	20	
Decachlorobiphenyl (S)	%						74	77	48-130			
Tetrachloro-m-xylene (S)	%						74	77	63-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248695 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 40145698001

METHOD BLANK: 1469374 Matrix: Water

Associated Lab Samples: 40145698001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
- arameter				Analyzeu	
1,4-Dichlorobenzene	ug/L	<3.9	10.0	02/21/17 13:22	
2,4,5-Trichlorophenol	ug/L	<1.5	10.0	02/21/17 13:22	
2,4,6-Trichlorophenol	ug/L	<2.1	10.0	02/21/17 13:22	
2,4-Dinitrotoluene	ug/L	<2.0	10.0	02/21/17 13:22	
2-Methylphenol(o-Cresol)	ug/L	<1.9	10.0	02/21/17 13:22	
3&4-Methylphenol(m&p Cresol)	ug/L	<2.6	10.0	02/21/17 13:22	
Hexachloro-1,3-butadiene	ug/L	<3.6	20.0	02/21/17 13:22	
Hexachlorobenzene	ug/L	<1.1	10.0	02/21/17 13:22	
Hexachloroethane	ug/L	<3.0	10.0	02/21/17 13:22	
Nitrobenzene	ug/L	<2.1	10.0	02/21/17 13:22	
Pentachlorophenol	ug/L	<1.5	20.0	02/21/17 13:22	
Pyridine	ug/L	<2.9	10.0	02/21/17 13:22	
2,4,6-Tribromophenol (S)	%	125	42-140	02/21/17 13:22	
2-Fluorobiphenyl (S)	%	94	41-130	02/21/17 13:22	
Nitrobenzene-d5 (S)	%	101	43-130	02/21/17 13:22	
Phenol-d6 (S)	%	39	15-130	02/21/17 13:22	

METHOD BLANK: 1469071 Matrix: Water

Associated Lab Samples: 40145698001

Date: 02/24/2017 04:24 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	<19.4	50.0	02/21/17 18:04	
2,4,5-Trichlorophenol	ug/L	<7.6	50.0	02/21/17 18:04	
2,4,6-Trichlorophenol	ug/L	<10.5	50.0	02/21/17 18:04	
2,4-Dinitrotoluene	ug/L	<10	50.0	02/21/17 18:04	
2-Methylphenol(o-Cresol)	ug/L	<9.6	50.0	02/21/17 18:04	
3&4-Methylphenol(m&p Cresol)	ug/L	<12.8	50.0	02/21/17 18:04	
Hexachloro-1,3-butadiene	ug/L	<18.2	100	02/21/17 18:04	
Hexachlorobenzene	ug/L	<5.7	50.0	02/21/17 18:04	
Hexachloroethane	ug/L	<14.8	50.0	02/21/17 18:04	
Nitrobenzene	ug/L	<10.3	50.0	02/21/17 18:04	
Pentachlorophenol	ug/L	<7.5	100	02/21/17 18:04	
Pyridine	ug/L	<14.6	50.0	02/21/17 18:04	
2,4,6-Tribromophenol (S)	%	106	42-140	02/21/17 18:04	
2-Fluorobiphenyl (S)	%	91	41-130	02/21/17 18:04	
Nitrobenzene-d5 (S)	%	91	43-130	02/21/17 18:04	
Phenol-d6 (S)	%	32	15-130	02/21/17 18:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: PAPER FINES TESTING

LABORATORY CONTROL SAMPLE: 1469375

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

Parameter Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
1,4-Dichlorobenzene	ug/L	50	35.3		42-130		
2,4,5-Trichlorophenol	ug/L	50 50	48.4	97	70-130		
2,4,6-Trichlorophenol	ug/L	50	51.2	102	70-130		
2,4-Dinitrotoluene	-	50 50	56.8	114	70-130 70-130		
2,4-Dillitotoluerie 2-Methylphenol(o-Cresol)	ug/L ug/L	50 50	36.5	73	57-130		
	-	50	31.8	64	47-130		
3&4-Methylphenol(m&p Cresol) Hexachloro-1,3-butadiene	ug/L	50 50	37.0	74	46-130		
Hexachlorobenzene	ug/L		45.6		70-130		
Hexachloroethane	ug/L	50		91	70-130 37-130		
	ug/L	50 50	36.2	72	62-130		
Nitrobenzene	ug/L	50	44.2	88			
Pentachlorophenol	ug/L	50	43.4	87	50-130		
Pyridine	ug/L	50	17.3	35	10-130		
2,4,6-Tribromophenol (S)	%			118	42-140		
2-Fluorobiphenyl (S)	%			90	41-130		
Nitrobenzene-d5 (S)	%			91	43-130		
Phenol-d6 (S)	%			36	15-130		
MATRIX SPIKE SAMPLE:	1469376						
		40145714001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
I,4-Dichlorobenzene	ug/L	<0.019 mg/L	250	152	61	26-130	
2,4,5-Trichlorophenol	ug/L	<0.0076 mg/L	250	283	113	55-130	
2,4,6-Trichlorophenol	ug/L	<0.011 mg/L	250	294	117	56-130	
2,4-Dinitrotoluene	ug/L	<0.010 mg/L	250	322	129	69-130	
2-Methylphenol(o-Cresol)	ug/L	<0.0096 mg/L	250	192	77	40-130	
3&4-Methylphenol(m&p Cresol)	ug/L	<0.013 mg/L	250	175	70	35-130	
Hexachloro-1,3-butadiene	ug/L	<0.018 mg/L	250	183	73	45-130	
Hexachlorobenzene	ug/L	<0.0057 mg/L	250	247	99	70-130	
Hexachloroethane	ug/L	<0.015 mg/L	250	157	63	34-130	
Nitrobenzene	ug/L	<0.010 mg/L	250	222	89	62-130	
Pentachlorophenol	ug/L	<0.0075 mg/L	250	242	97	28-138	
Pyridine	ug/L	<0.015 mg/L	250	101	40	10-130	
2,4,6-Tribromophenol (S)	%			.51	130	42-140	
2-Fluorobiphenyl (S)	%				95	41-130	
Nitrobenzene-d5 (S)	%				94	43-130	
Phenol-d6 (S)	%				38	15-130	
MATRIX SPIKE SAMPLE:	1469377	40145632002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	<484	250	<484	66	26-130	
2,4,5-Trichlorophenol	ug/L	<191	250	237J	95	55-130	
2,4,6-Trichlorophenol	ug/L	<263	250	268J	107	56-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE SAMPLE:	1469377						
		40145632002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylphenol(o-Cresol)	ug/L	353J	250		91	40-130	
3&4-Methylphenol(m&p Cresol)	ug/L	<319	250	<319	70	35-130	
Hexachloro-1,3-butadiene	ug/L	<454	250	<454	73	45-130	
Hexachlorobenzene	ug/L	<143	250	238J	95	70-130	
Hexachloroethane	ug/L	<370	250	<370	66	34-130	
Nitrobenzene	ug/L	<256	250	<256	87	62-130	
Pentachlorophenol	ug/L	<188	250	849J	340	28-138 I	И 6
Pyridine	ug/L	<364	250	<364	53	10-130	
2,4,6-Tribromophenol (S)	%				108	42-140	
2-Fluorobiphenyl (S)	%				88	41-130	
Nitrobenzene-d5 (S)	%				95	43-130	
Phenol-d6 (S)	%				45	15-130	
MATRIX SPIKE SAMPLE:	1469378						
WATER OF THE GAWN EE.	1400010	40145633005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
							Guamon
1,4-Dichlorobenzene	ug/L	<19.4	250	170	68	26-130	
2,4,5-Trichlorophenol	ug/L	<7.6	250	279	112	55-130	
2,4,6-Trichlorophenol	ug/L	<10.5	250	294	117	56-130	
2,4-Dinitrotoluene	ug/L	<10	250	308	123	69-130	
2-Methylphenol(o-Cresol)	ug/L	<9.6	250	194	78	40-130	
3&4-Methylphenol(m&p Cresol)	ug/L	<12.8	250	174	70	35-130	
Hexachloro-1,3-butadiene	ug/L	<18.2	250	188	75	45-130	
Hexachlorobenzene	ug/L	<5.7	250	226	90	70-130	
Hexachloroethane	ug/L	<14.8	250	169	67	34-130	
Nitrobenzene	ug/L	<10.3	250	224	90	62-130	
Pentachlorophenol	ug/L	<7.5	250	226	90	28-138	
Pyridine	ug/L	<14.6	250	130	52	10-130	
2,4,6-Tribromophenol (S)	%				113	42-140	
2-Fluorobiphenyl (S)	%				89	41-130	
Nitrobenzene-d5 (S)	%				91	43-130	
Phenol-d6 (S)	%				36	15-130	
MATRIX SPIKE SAMPLE:	1469379						
		40145698001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
,4-Dichlorobenzene	ug/L	<19.4	250	192	77	26-130	
2,4,5-Trichlorophenol	ug/L	<7.6	250	294	118	55-130	
2,4,6-Trichlorophenol	ug/L	<10.5	250	292	117	56-130	
2,4-Dinitrotoluene	ug/L	<10	250	315	126	69-130	
2-Methylphenol(o-Cresol)	ug/L	<9.6	250	205	82	40-130	
3&4-Methylphenol(m&p Cresol)	ug/L	<12.8	250	189	76	35-130	
Hexachloro-1,3-butadiene	ug/L	<18.2	250	212	85	45-130	
Hexachlorobenzene	ug/L	<5.7	250	237	95	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

MATRIX SPIKE SAMPLE:	1469379		Spike	MS	MS	% Rec	
		40145698001					
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Hexachloroethane	 ug/L	<14.8	250	201	80	34-130	
Nitrobenzene	ug/L	<10.3	250	234	94	62-130	
Pentachlorophenol	ug/L	<7.5	250	231	93	28-138	
Pyridine	ug/L	<14.6	250	74.3	30	10-130	
2,4,6-Tribromophenol (S)	%				132	42-140	
2-Fluorobiphenyl (S)	%				93	41-130	
Nitrobenzene-d5 (S)	%				98	43-130	
Phenol-d6 (S)	%				38	15-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Max

10

(920)469-2436

QUALITY CONTROL DATA

8.3

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Percent Moisture

Date: 02/24/2017 04:24 PM

QC Batch: 248423 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40145698001

SAMPLE DUPLICATE: 1468064 40145662001 Dup

Parameter Units Result Result **RPD** RPD Qualifiers % 8.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248629 Analysis Method: EPA 1010

QC Batch Method: EPA 1010 Analysis Description: 1010 Flash Point, Closed Cup

Associated Lab Samples: 40145698001

LABORATORY CONTROL SAMPLE: 1469172

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Flashpoint deg F 80.3

LABORATORY CONTROL SAMPLE: 1469197

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Flashpoint deg F 81.5

SAMPLE DUPLICATE: 1469340

Parameter Units Result Result RPD RPD Qualifiers

Flashpoint deg F >210 >210

SAMPLE DUPLICATE: 1469341

Date: 02/24/2017 04:24 PM

Parameter Units 40145851001 Dup Max Result RPD Qualifiers

Flashpoint deg F >210 >210

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248716
QC Batch Method: EPA 9040

Analysis Method: EPA 9040 Analysis Description: 9040 pH

Associated Lab Samples: 40145698001

SAMPLE DUPLICATE: 1469428

 Parameter
 Units
 40145812001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 pH
 Std. Units
 7.4
 7.4
 1
 20 H6

SAMPLE DUPLICATE: 1469429

Date: 02/24/2017 04:24 PM

40145792001 Dup Max RPD RPD Parameter Units Result Result Qualifiers рΗ Std. Units 7.6 7.6 0 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

EPA 9095

Project: PAPER FINES TESTING

Pace Project No.: 40145698

QC Batch: 248737 Analysis Method:

QC Batch Method: EPA 9095 Analysis Description: 9095 PAINT FILTER LIQUID TEST

Associated Lab Samples: 40145698001

SAMPLE DUPLICATE: 1469502

Date: 02/24/2017 04:24 PM

40145766001 Dup Max

Parameter Units Result Result RPD RPD Qualifiers

Free Liquids no units Pass Pass

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

EPA 420.4

420.4 Phenolics

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

QC Batch: 461219 Analysis Method:
QC Batch Method: EPA 420.4 Analysis Description:

Associated Lab Samples: 40145698001

METHOD BLANK: 2522309 Matrix: Water

Associated Lab Samples: 40145698001

Parameter Units Blank Reporting
Result Limit Analyzed Qualifiers

Phenol ug/L 4.9J 11.3 02/24/17 13:35

LABORATORY CONTROL SAMPLE: 2522310

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenol ug/L 250 230 92 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2522311 2522312

MS MSD 1282794003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 90-110 20 M3 Phenol ug/L 250 250 32.4 5.9J 12 1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2522313 2522314

MS MSD 10379540001 MS MSD MS Spike Spike MSD % Rec Max Limits RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec RPD Qual Phenol ug/L ND 250 250 260 248 102 97 90-110 5 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Analysis Method:

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Cyanide

Date: 02/24/2017 04:24 PM

QC Batch: 248779

QC Batch Method: EPA 9012A

Associated Lab Samples: 40145698001

Analysis Description: 9012 Cyanide

EPA 9012

METHOD BLANK: 1469738 Matrix: Solid

Associated Lab Samples: 40145698001

 Parameter
 Units
 Blank Reporting Result
 Limit
 Analyzed
 Qualifiers

 mg/kg
 0.17J
 0.40
 02/22/17 13:02

LABORATORY CONTROL SAMPLE: 1469739

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide mg/kg 3.0 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1469740 1469741

MS MSD 10379473001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Cyanide ND 3.2 3.2 2.8 80 80-120 10 20 mg/kg 3.1 90

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: PAPER FINES TESTING

Pace Project No.: 40145698

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay
PASI-M Pace Analytical Services - Minneapolis

WORKORDER QUALIFIERS

WO: 40145698

[1] 420.4 Phenols was performed using the TCLP Leach.

SAMPLE QUALIFIERS

Sample: 40145698001

[1] Sample container used for ZHE had headspace

ANALYTE QUALIFIERS

Date: 02/24/2017 04:24 PM

1q Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred befroe analysis.

B Analyte was detected in the associated method blank.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PAPER FINES TESTING

Pace Project No.: 40145698

Date: 02/24/2017 04:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40145698001	PAPER FINES	EPA 3541	248480	EPA 8082	248482
40145698001	PAPER FINES	EPA 3010	248763	EPA 6010	248822
40145698001	PAPER FINES	EPA 7470	248920	EPA 7470	248972
40145698001	PAPER FINES	EPA 3510	248695	EPA 8270	248770
40145698001	PAPER FINES	EPA 8260	248719		
40145698001	PAPER FINES	ASTM D2974-87	248423		
10145698001	PAPER FINES	EPA 1010	248629		
40145698001	PAPER FINES	EPA 9040	248716		
40145698001	PAPER FINES	EPA 9095	248737		
40145698001	PAPER FINES	EPA 420.4	461219	EPA 420.4	461376
40145698001	PAPER FINES	EPA 9012A	248779	EPA 9012	248841

			7							UPPER	MITHW	ESTRE	GION		Page 1	of	
	Please Print Clearly)		-		7								WI: 920-469-2436		-	,	_ 5
Company Name: Branch/Location:	Veolia Westland, MI		1	/ #	ace A	nalyti	cal®	W.						L	101490	Rec	Page 29 of 40
	1.		1 /		W16	w.paceleb:	1.00m	11	NW	J*			Quote #:				J a
Project Contact:	Mandy Peterson		-		HAI	NO		ne.	TO	nv			Mail To Contact:				
Phone:	(920) 857 - 4824	<u>† </u>	┨ ┌──	<u> </u>	<u> NAI</u>		vation Cod			UI				mandy.	peterson (2 veolia .	مت
Project Number:			A=No		CL C=H2S	04 D=HN	03 E=DI	Water F		d G=Na	юн		Mail To Company:				\dashv
Project Name:	Paper Fines Test	109	H≃So	dium Bisulfa	ate Solution	l=Sodi	um Thiosul	tate J=	Other				Mail To Address:				
Project State:		J	FILTEI (YES		AIN V	N											
Sampled By (Print)	: Mandy Peterson		PRESER (COL		Pick Letter								Invoice To Contact:	mandy.	peterson	2 veolia.	Com
Sampled By (Sign)		`			994								Invoice To Company:	Veolia			
PO #:		tegulatory Program:											Invoice To Address:	6060 N	. Hix Roa	٦.	
Data Package O			trix Codes		Requ	٥								Westlum	d MI	t8185	
(biliable) EPA Leve	el III Chiyour sample B = (billable) C =	= Air = Biota = Charcoal	W = Water DW = Drinkir GW = Groun	d Water		10 C C P	3						Invoice To Phone:	(920)8	57-485	24	
EPA Leve	S TO THE SECOND S	= Oil = Soil = Sludge	SW = Surfac WW = Waste WP = Wipe		Analyses								CLIENT	LAB C	OMMENTS		<u>#</u>
PACE LAB #	CLIENT FIELD ID	DATE	TIME	MATRIX			٦						COMMENTS	(Lab l	Jse Only)		
001 Pap	er Fines (1 Liter)	2/15/1	711:30am			/							1-11/19	1-4	$\Omega(\alpha)^+$		
	er Fines (4 oz)		7 [1.30am			1/							Ú		J		
1,04	ich Files e i OZJ	17.13/13	71.0.3000			1											
			1.				1	1						<u> </u>			
		 					1	 									_
		†					+	†									
								 									
							1	 									
		<u> </u>	1														
· · · · · · · · · · · · · · · · · · ·								†									
								1									
		 												<u> </u>	····		
			1			_		†						1			
Rush Turnaro	ound Time Requested - Prelims	S Reii	nquished By:	, ,			Date/Time:		l	Receiv/ed	Bv: \		Date/Time:		PACE P	Project No.	00000000
	subject to approval/surcharge)		rassoli	Deter	(Non		117	11:55		4		Person	Yau 2161	7 1195	40149	2088	
Dal	te Needed:	Reli	nquished By				Date/Time:			Received	Ву:		Date/Time:		1017 2	2010	
	sh Results by (complete what you wa		nguished By:				Date/Time:			Received	Bv:		Date/Time:	<u>,</u>	Receipt Temp =	25	°C
Email #1: Email #2:		- Inem	nquianau by.			'							233.7710		Sample	Receipt pH	-
Telephone:		Reli	nquished By:				Date/Time:			Received	Ву:		Date/Time:			Adjusted	
Fax:																ustody Seal	
Sample	s on HOLD are subject to	Reli	nquished By:				Date/Time:			Received	Ву:		Date/Time:		1	Not Present	
special pr	icing and release of liability														Intact /	Not Intact	

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Client Name: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Project #	WO#:4	0145698
Courier: Fed Ex F UPS Client F Pac	e Other:				
Tracking #:					
Custody Seal on Cooler/Box Present:	<i>L</i> .	s intact	∵ 厂 yes 厂 no	40145698	
Custody Seal on Samples Present: yes		s intact	: 「yes no		The state of School September 1997 is a september 1997 in the sept
Packing Material: Bubble Wrap Bubble					
Thermometer Used SKUU Cooler Temperature Uncorr: 25 /Corr:	Type of Ice		Blue Dry None		ice, cooling process has begun
Temp Blank Present:				「no 「	Person examining contents:
Temp should be above freezing to 6°C for all sample exc Frozen Biota Samples should be received ≤ 0°C.	ept Biota.		Comments:		Date: 2 1511 Initials:
Chain of Custody Present:	Øes □no	□n/a	1.		
Chain of Custody Filled Out:	XVes □No	□n/a	2.	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Relinquished:	¥¥es □No				
Sampler Name & Signature on COC:	Dryes □No	□n/a		·	
Samples Arrived within Hold Time:	Daves □No	□n/a			
- VOA Samples frozen upon receipt	l □Yes □No		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes TXNo	□n/a	†		
Rush Turn Around Time Requested:	□Yes □	□N/A			
Sufficient Volume:	Zwes □No	□N/A			
Correct Containers Used:	©27es □No	□N/A			
-Pace Containers Used:		□N/A	J.		
-Pace IR Containers Used:	□Yes □No				
Containers Intact:	TiPes □No	□N/A	10		
Filtered volume received for Dissolved tests	□Yes □No				
Sample Labels match COC:	□Yes ဩAo			20-1-1-100-0	
	nies rimo	⊔N/A	12. NO COLLE	2ct time	
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.			—		<u> </u>
(Non-Compliance noted in 13.)	☐Yes ☐No	DOM	13. T HNO3	Г H2SO4 Г	NaOH NaOH +ZnAct
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No				
(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)					
exceptions: VOA, coliform, TOC, TOX, TOH, D&G, WIDROW, Phenolics, OTHER:	□Yes चिNo			ab Std #ID of reservative	Date/ Time:
Headspace in VOA Vials (>6mm):	□Yes □No	DXWA	14.		
Trip Blank Present:	□Yes DiNo	□n/a	15.		
Trip Blank Custody Seals Present	□Yes □No	□ Ω Ω/A			
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution: Person Contacted:		Det-7		necked, see attache	ed form for additional comments
Comments/ Resolution:		Date/T	mile:		
					,
Project Manager Review:				Date:	\$/ts/17

Analytical Report

Cindy Varga Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302 February 21, 2017

RE: Green Bay

Paper Fines Testing / 40145698

Dear Cindy Varga:

Enclosed are the analytical reports for the EMT Work Order listed. Also included with this analytical report is a copy of the chain of custody associated with these samples. If you have any questions, please contact me.

Sincerely,

Arminta Priddy
Project Manager

847.967.6666 apriddy@emt.com

Approved for release: 2/21/2017 4:03:09PM

Approved by,

Work Order: 17B0590

Matthew Gregory Technical Manager

The contents of this report apply to the sample(s) analyzed. No duplication is allowed except in its entirety. Detection and Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

State of Wisconsin Dept of Natural Resources, Cert No. 999888890

Table of Contents

Cover Letter	1
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Dates Report	6
Quality Control	7
Certified Analyses	8
List of Certifications	8
Qualifiers and Definitions	9
Chain of Custody	10

Sample Summary

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PAPER FINES	17B0590-01	Solid	02/15/17 11:30	02/16/17 09:30

Case Narrative

Client: Pace Analytical Services, Inc. Date: 02/21/2017

Project: Green Bay

Paper Fines Testing / 40145698

Work Order: 17B0590

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Sample results only relate to the sample(s) received at the laboratory and analytes of interest tested.

Work Order: 17B0590

The samples were received on 02/16/17 09:30. The samples arrived in good condition and properly preserved. The temperature of the

cooler at receipt was

 $\begin{array}{cc} \underline{\text{Cooler}} & \underline{\text{Temp } C^\circ} \\ \text{Default Cooler} & 3.3 \end{array}$

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

WET Chemistry

Method 2540G_TS%, 17B0590-01: Analysis was performed by Pace so no associated qc results.

Client Sample Results

Client: Pace Analytical Services, Inc.

Project: Green Bay

Paper Fines Testing / 40145698

Work Order: 17B0590

Client Sample ID: PAPER FINES

Report Date: 02/21/2017

Collection Date: 02/15/2017 11:30

Matrix: Solid

Lab ID: 17B0590-01

			EMT Reporting				Date/Time						
Analyses		Result	Limit	Qual	Units	MDL	Analyzed	Batch	Analyst	DF			
Wet Chemistry													
Ī	lethod: SM2540	G											
Total Solids		68.5	0.100		% (Percent)	0.00700	02/20/17 13:26	B7B0680	MLB	1			
	Method: SW9030B/SW9034/SM4500-S2 F												
Sulfide, total		23.0	29.2	J	mg/Kg dry	4.96	02/21/17 14:42	B7B0732	SK2	1			

Report Date: 02/21/2017

8100 N. Austin Avenue Morton Grove, IL 60053-3203 P 847.967.6666 800.246.0663 F 847.967.6735 www.emt.com

Dates Report

Client: Pace Analytical Services, Inc.

Project: Green Bay

Paper Fines Testing / 40145698

Work Order: 17B0590

					Leached				
Sample ID	Client Sample ID	Collection	Matrix	Test Name	Prep Date	Prep Date	Analysis Date	Batch ID	Sequence
17B0590-01	PAPER FINES	02/15/17	Solid	Total Solids / Percent Moisture		02/20/17 13:25	02/20/17 13:26	B7B0680	
				Sulfide (S2), Total		02/21/17 11:00	02/21/17 14:42	B7B0732	

Quality Control

Client: Pace Analytical Services, Inc.

Project: Green Bay

Paper Fines Testing / 40145698

Work Order: 17B0590

Report Date: 02/21/2017

Matrix: Solid

Wet Chemistry

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	DF
Batch: B7B0732											
Blank (B7B0732-BLK1)				Prepared	: 02/21/201	7 11:00	Analyzed: 0	2/21/2017	14:42		
Sulfide, total	< 3.40	20.0	mg/Kg wet								1
LCS (B7B0732-BS1)				Prepared	: 02/21/201	7 11:00	Analyzed: 0	2/21/2017	14:42		
Sulfide, total	163	20.0	mg/Kg wet	175.2		93.2	80-120				1
Duplicate (B7B0732-DUP1)		Source: 17	B0590-01	Prepared	: 02/21/201	7 11:00	Analyzed: 0	2/21/2017	14:42		
Sulfide, total	23.0	29.2	mg/Kg dry		23.0			0.00	14.1	J	1

Certified Analyses included in this Report

Analyte	CAS#	Certifications
SM2540G in Solid		
Total Solids	Moist	WDNR
SW9030B/SW9034/SM4500-S2 F in Solid		
Sulfide, total	18496-25-8	DoD,ILEPA,WDNR

List of Certifications

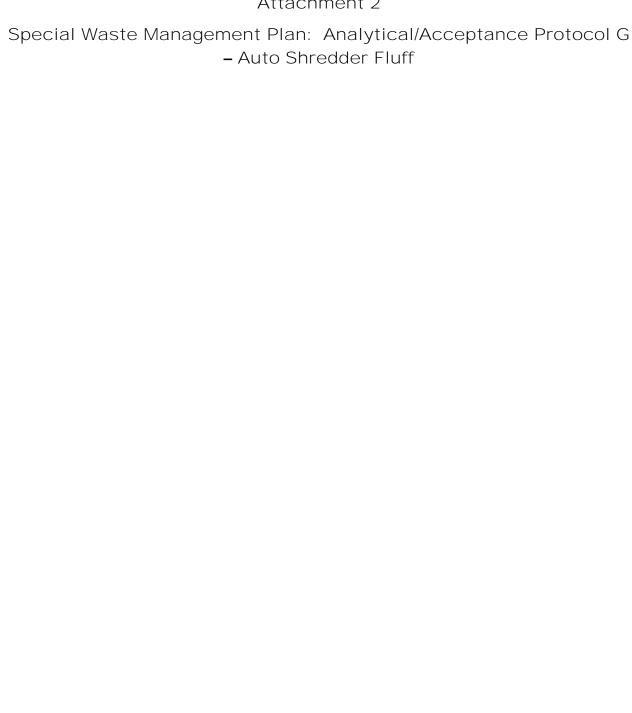
Code	Description	Number	Expires
AKDEC	State of Alaska, Dept. Environmental Conservation	UST-105	07/16/2017
CPSC	US Consumer Product Safety Commission, Accredited by PJLA Lab No. 1050	L14-56	04/30/2018
DoD	Department of Defense, Accredited by PJLA	L14-55	04/30/2018
ILEPA	State of Illinois, NELAP Accredited Lab No. 100256	003674	07/27/2017
ISO	ISO/IEC 17025, Accredited by PJLA	L14-56	04/30/2018
LELAP	State of Louisiana, NELAP Accredited Lab No. 171344	05015	06/30/2017
WDNR	State of Wisconsin Dept of Natural Resources	999888890	08/31/2017

Qualifiers and Definitions

Item	Description
J %Rec	Estimated Value Percent Recovery

Chain of Custody

17B0590 PM: Arminta Priddy Pace Analytical Services, Inc. Green Bay



Work	order: 40145698	Workorder Name	: PAPE	ER FINES TEST	ING			Results Requested By: 3/1/2017 17605					
Repor	/ Invoice To	Su	bcontract To				Requested Analysis						
Green Bay, WI 54302 Phone (920)469-2436 Email: cindy.varga@pacelabs.com				AT, Inc 00 North Austi orton Grove, II									
State	of Sample Origin: V	VI LOD/LOQ			1	-	Containers	9					
Item	Sample ID	Collect Date/Time	Lab ID	Matrix	Unpreserved	4 oz jar		sulfide			LAB USE ONLY		
1	PAPER FINES	2/15/2017 11:3	30 401456	98001 Solid	1			X			OH.		
2					010						1		
3											- 1		
4											17 TO 18		
5											*		
			3 %		- /8		The Automotive Automot	XEE	130	Comments			
Trans	ers Released By	Da		Received By			Date/Tir	ne					
1	Bl Steet	Dae a	15/17 1600			4							
2		T											
3				Soly			2/16/	77	30				
Cool	er Temperature on Re	eceipt 3,3 °C	Custody		N	F	Received o		Y or N	Samples	Intact (Y or N		

Table of Contents

Wednes'day, February 15, 2017 1:20:33 PM

Attachment 2

Brown County South Landfill

Analytical Protocol/Acceptance Criteria Protocol G

Testing protocols for auto shredder fluff.

Analytical Parameter	Acceptance Criteria
TCLP metals cadmium lead mercury	TCLP <1.0 mg/L TCLP <5.0 mg/L TCLP <0.2 mg/L
PCB (Arochlor 1216, 1221, 1232, 1242, 1249, 1254, 1260)	<50mg/kg
ASTM Water Leach or TCLP PCBs	Not Applicable

Note: Physical testing of materials to be considered for use as ADC or other beneficial uses will be required. Meeting the minimum testing requirements does not relieve the generator of the responsibility to determine whether their waste is hazardous. Brown County reserves the right to request additional information in order to evaluate the waste stream for disposal.

Testing requirements summary:

- Perform testing on a semi-annual basis, according to the methods listed in the WDNR publication PUB-WA-1699 2014, Condition 16. Specifically, ten samples of each source of ASR shall be collected over a five-day period. Each sample shall be obtained by removing a shovel full of fluff from the conveyor once an hour for a four-hour period in the morning and then again for another four-hour period in the afternoon for a typical 8-hour production cycle. If the production cycle is typically less than 8-hours, then sampling should consist of a minimum of 3 hours of production. Each day's sampling shall be composited into a single sample. The resulting daily sample shall be coned and quartered until 10 gallons of fluff remain. Each 10-gallon sample shall be coned and quartered into two five-gallon samples. The samples shall be stored in sealed containers made of inert material until they are analyzed in a laboratory.
- Three samples for each testing round will need to be randomly selected and analyzed for TCLP lead, cadmium, and mercury, as well as total PCBs. If any of the samples are above a regulatory/acceptance limit, then the seven additional collected samples need to be analyzed for the exceeding parameter. The

results from the analyzed samples are to be averaged to determine the test result for each sampling event. If the average result of the sampling event exceeds the regulatory/acceptance limit, additional sampling must be performed immediately under the same protocol for the exceeding parameter.

- A rolling average from the last 5 sampling events needs to be reported and compared to the regulatory limit. If the rolling average exceeds 80% of the regulatory limit, then the material is not acceptable.
- On an annual basis, one sample of auto shredder fluff from each source shall be subject to the ASTM D 3987-85 water leach test and the leaching fluid shall be analyzed for dissolved PCBs using an analytical method with a level of detection <10 micrograms per liter. TCLP PCB analysis may be used in place of the water leach test.

Attachment 3 Boiler/Fly Ash Sources

☐ OC Customer ☐ WC Customer

Outagamie County Recycling & Solid Waste Brown Outagamie Winnebago Counties SPECIAL WASTE DISPOSAL APPLICATION

A. Generator Information Name Expera Specially Solutions Contact Person Ton Emond Email Address tom. Emond @ expera.com Phone Number 715-369-4160 Site Address (where material is generated) 515 West Davenport St.	Frequency of Disposal South Trees your Name of Lab Performing Analysis Nate of Most Recent Analysis 2018					
	Physical State @ 25°C SOIL Color Gray Odor 10 ne Comments					
B. Billing Information						
(In order to be billed, you must fill out a credit application) Name Expera Specialty Solutions LLC Contact Person Folcy Van 055 Email Address 1010. Vanoss e expera com Phone 920 - 766 - 8608 Fax Number Billing Address Accounts Payade	*For all waste types, attach available pertinent documents, MSDSs, technical bulletins, etc. Listlattachments here:					
P.O. Box 600 WI 54130						
C. Consultant Information Name Contact Person Email Address Phone Number Fax Number Address	The generator warrants, represents, and certifies that this waste is not hazardous waste as specified by NR600 or 40CFR261, that his material does not contain more than 50 ppm of PCB materials, and that this information is representative of the waste. The state of the waste. Generator's Signature Title Date					
	Instructions:					
Name Contact Person Phone Number Address	For Category A, B, and, C Wastes: Complete Section I For Category D Wastes: Complete Section II For Category E Wastes: Compete Section III					
Outagamie County Internal Use Only: BC Customer						

Section I

For Category A, B, and C Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
% Solids	≥ 40% (A&B)	> 80°0
	≥ 20% (C)	
% Free Liquids (paint	0%	
filter test)		0/0
Flash Point	> 140°F	>220
pН	$2.0 \le pH \le 12.5$	9.2
Total available sulfide	<500 mg/kg	ND
Total available cyanide	<250 mg/kg	ND
Arsenic	< 5.0	ND
Barium	< 100.0	0.22
Cadmium	< 1.0	0,005
Chromium	< 5.0	ND
Lead	< 5.0	ND
Mercury	< 0.2	CIV
Selenium	< 1.0	ND
Silver	< 5.0	<u> </u>
% Chlorine	< 1%	<0.1
Phenol	< 2000	NA
Benzene	< 0.5	CN
Carbon tetrachloride	< 0.5	GN
Chlorobenzene	< 100.0	ND
Chloroform	< 6.0	CIN
Cresol	< 200.0	ND
1,4-Dichlorobenzene	< 7.5	CIN
1,2-Dichloroethane	< 0.5	CIN
1,1-Dichloroethylene	< 0.7	ND
2,4-Dinitrotoluene	< 0.3	CN
Hexachlorobenzene	< 0.13	ND
Hexachlorobutadiene	< 0.5	ND
Hexachloroethane	< 3.0	ND
Methyl ethyl ketone	< 200.0	ND
Nitrobenzene	< 2.0	ND
Pentachlorophenol	< 100.0	NO
Pyridine	< 5.0	NQ
Tetrachloroethylene	< 0.7	ND
Trichloroethylene	< 0.5	CIN
2,4,5-Trichlorophenol	< 400.0	ND
2,4,6-Trichlorophenol	< 2.0	ND
Vinyl Chloride	< 0.2	ND

For Category B and C Wastes, complete the following and attach laboratory report:

PCB (Arochlor 1016, 1221, 1232, 1242, 1248, 1254, 1260)

Section II

For Category D Wastes, complete the following and attach laboratory report:

Analytical Information

	Parameter	Acceptance Level	Lab Result
а.	All Soils		
	Lead	Total <100 mg/kg	
		or TCLP <5 mg/l	
b.	Gasoline or Di	esel	
	(analyze all par	ameters in a., plus the follow	ving):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Benzene	Total <10 mg/kg	
		Or TCLP < 0.5 mg/l	
c.	Waste Oil or U	Jnknown Petroleum Waste	
	(analyze al para	meters in a., plus the follow	ring):
	DRO	<2000 ppm	
or	GRO	<2000 ppm	
	Cadmium	Total <20 mg/kg	
		Or TCLP <1 mg/l	

Section III

For Category E Wastes, complete the following and attach laboratory report:

Analytical Information

Parameter	Acceptance Level (mg/l)	Lab Result
pН	$2.0 \le pH \le 12.5$	
% Solids	≥ 20%	
% Free liquids TCLP metals	0%	
Arsenic	< 5.0	
Barium	< 100.0	
Cadmium	< 1.0	
Chromium	< 5.0	
Lead	< 5.0	
Mercury	< 0.2	
Selenium	< 1.0	
Silver	< 5.0	
Total available sulfide	< 500 mg/kg	

Section IV

For Category F Wastes, include the following information and attach MSDS(s), technical bulletin(s), or other pertinent information regarding the waste stream. Indicate the waste type, the source of the waste stream, the reason for disposal, the physical state of the material, and describe the process from which the waste was generated.

ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460 WDATCP Laboratory Certification No. 105-330

Stoman Rhult

EPA Laboratory ID No. WI00034

Printed: 08/14/18 Page 1 of 1

> **NLS Project:** 302347

NLS Customer: 29247

Fax: 715 369 4293 Phone: 715 369 4160

PO # 6249687 OS

Expera Specialty Solutions (Rhinelander) Client:

Analytical Laboratory and Environmental Services

400 North Lake Avenue - Crandon, WI 54520

Attn: Tom Emond 515 West Davenport Street Rhinelander, WI 54501 3300

Project: Fly Ash

Fly Ash NLS ID: 1064005 COC: 212785:1 Matrix: MS

Collected: 06/26/18 13:20 Received: 06/27/18

NORTHERN LAKE SERVICE, INC.

Ph: (715)-478-2777 Fax: (715)-478-3060

Parameter Result Units Dilution LOD LOQ Analyzed Method Lab TCLP Extraction yes 07/09/18 SW846 1311 721026460 TCLP Zero Head Space Extraction ves 07/09/18 SW846 1311 721026460

TCLP Fly Ash NLS ID: 1064006

COC: 212785:1 Matrix: EX

Collected: 07/10/18 08:30 Received: 07/10/18

Parameter	Result	Units	Dilution	LOD	LOQ	Analyzed	Method	Lab
Arsenic, tot. recoverable on extract as As by ICP	ND	ug/L	10	49*	160*	07/12/18	SW846 6010	721026460
Barium, tot. recoverable on extract as Ba by ICP	220	ug/L	10	12*	40*	07/12/18	SW846 6010	721026460
Cadmium, tot. recoverable on extract as Cd by ICP	[5.4]	ug/L	10	1.9	6.1	07/12/18	SW846 6010	721026460
Chromium, tot. recoverable on extract as Cr by ICP	ND	ug/L	10	8.3	28	07/12/18	SW846 6010	721026460
Lead, tot. recoverable on extract as Pb by ICP	ND	ug/L	10	43	140	07/12/18	SW846 6010	721026460
Mercury by CVAA	ND	ug/L	1	0.47	1.5	07/14/18	EPA 245.1. Rev 3	721026460
Selenium, tot. recoverable on extract as Se by ICP	ND	ug/L	10	120	400	07/12/18	SW846 6010	721026460
Silver, tot, recoverable on extract as Ag by ICP	ND	ug/L	10	8.1	27	07/12/18	SW846 6010	
Metals digestion - tot. recov.ICP	ves		10	0.		07/11/18	SW846 3005M	721026460
TCLP VOC by EPA Method 8260B	see attached					07/10/18	SW846 8260	721026460
Organics Extraction (TCLP) Pest/PCB	ves					07/10/18	SW846 3500	721026460
Organics Extraction (Herbicides)	ves				_			721026460
Acid/Base Extraction for GC/MS	ves					07/13/18	SW846 8151	632021390
Semi-Volatiles TCLP by EPA Method 8270C	see attached			_		07/17/18	SW846 3510C	721026460
TCLP Pesticides						07/27/18	SW846 8270	721026460
TCLP Herbicides	see attached					07/19/18	SW846 8081	721026460
TOLI TIEIDICIGES	see attached					07/31/18	SW846 8151A	632021390

Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution and/or solids content.

ND = Not Detected (< LOD) DWB = Dry Weight Basis

LOD = Limit of Detection %DWB = (mg/kg DWB) / 10000

LOQ = Limit of Quantitation

NA = Not Applicable

MCL = Maximum Contaminant Levels for Drinking Water Samples. Shaded results indicate >MCL.

1000 ug/L = 1 mg/L

Reviewed by:

Authorized by: R. T. Krueger President

ANALYTICAL RESULTS: TCLP Organochlorine Pesticides by GC Customer: Expera Specialty Solutions (Rhinelander) NLS Pro NLS Project: 302347 PO # 6249687 OS

Project Description: Fly Ash

Project Title: Template: OCTCLPW Printed: 08/14/2018 17:01

ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
Gamma-BHC	ND	ug/L	1	0.0018	0.0058	
Chlordane	ND	ug/L	1	0.013	0.043	
Endrin	ND	ug/L	1	0.0017	0.0058	
Heptachlor	ND	ug/L	1	0.0019	0.0063	
Heptachlor Epoxide	ND	ug/L		0.0020	0.0066	
Methoxychlor	ND	ug/L	1	0.0033	0.011	
Toxaphene	ND	ug/L	1	0.18	0.58	
DBC (SURR)	90%	-3:-	1	5.10	0.00	- 0

Page 1 of 1

S = This compound is a surrogate used to evaluate the quality control of a method.

ANALYTICAL RESULTS: VOC's by P&T/GCMS - TCLP - (VarSat3)
Customer: Expera Specialty Solutions (Rhinelander)
Project Description: Fly Ash NLS Project: 302347 PO # 6249687 OS

Project Title: Template: SAT3TCLP Printed: 08/14/2018 17:01

NALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
enzene	ND	ug/L	1	0.19	0.69	11018
arbon Tetrachloride	ND	ug/L	1	0.19	0.66	
hlorobenzene	ND	ug/L	-	0.19	0.56	
hioroform	ND	ug/L	1	0.17	0.60	
.4-Dichlorobenzene	ND	ug/L	1	0.17	0.76	
,2-Dichloroethane	ND	ug/L	- 1	0.19		
1-Dichloroethene	ND	ug/L		0.19	0.69	
etrachloroethene	ND ND	ug/L			0.57	
richloroethene	ND ND	ug/L	- 1	0.17	0.58	
invl chloride	ND ND		1	0.24	0.84	
lethyl ethyl ketone	ND ND	ug/L		0.16	0.57	
ibromofluoromethane (SURR)	99%	ug/L		0.50	1.8	
oluene-d8 (SURR)			1			S
	103%		1			S
-Bromo-4-Fluorobenzene (SURR) OTES APPLICABLE TO THIS ANALYSIS:	106%		11			

Page 1 of 1

NOTES APPLICABLE TO THIS ANALYSIS:

S = This compound is a surrogate used to evaluate the quality control of a method.

ANALYTICAL RESULTS: Semi-Volatile Organic TCLP Compounds by GC/MS Customer: Expera Specialty Solutions (Rhinelander)

NLS Project: 302347 PO # 6249687 OS

Page 1 of 1

Project Description: Fly Ash

Project Title: Template: SVTCLP Printed: 08/14/2018 17:01

Sample: 1064006 TCLP Fly Ash Collected: 07/10/18 Anal	yzed: 07/27/18 - Analytes: 12				Notes:	HX
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
Pyridine	ND	ug/L	2	1.0	3.3	Note
2-Methylphenol (o-Cresol)	ND	ug/L	2	1.8	6.9	
3 & 4-Methylphenol (m/p-Cresol)	ND	ug/L	2	3.1	10	
Nitrobenzene	ND	ug/L	2	1.2	4.0	
1,4-Dichlorobenzene	ND	ug/L	2	1.8	6.1	
2,4,6-Trichlorophenol	ND	ug/L	2	1.4	4.8	
2,4,5-Trichlorophenol	ND	ug/L	2	1.8	5.9	
2,4-Dinitrotoluene	ND	ug/L	2	1.9	6.4	
Hexachlorobutadiene	ND	ug/L	2	1.1	3.5	
Hexachloroethane	ND	ug/L	2	2.3	7.6	
Hexachlorobenzene	ND	ug/L	2	1.4	4.6	
Pentachlorophenol	ND	ug/L	2	2.3	7.4	
2-Fluorophenol (SURR)	41%	ug/L	2	2.3	7.4	
Phenol-d5 (SURR)	26%		2			S
Nitrobenzene-d5 (SURR)	75%		2			S
2-Fluorobiphenyl (SURR)	77%		2			S
2,4,6-Tribromophenol (SURR)	103%		2			S
Terphenyl-d14 (SURR)	66%		2			S

NOTES APPLICABLE TO THIS ANALYSIS:

S = This compound is a surrogate used to evaluate the quality control of a method.

HX = A dilution was required due to complex sample matrix.

IV = Initial extract is 500 mL.

ANALYTICAL RESULTS: Chlorinated Herbicides by EPA 8151

NLS Project: 302347 PO # 6249687 OS

Customer: Expera Specialty Solutions (Rhinelander)
Project Description: Fly Ash
Project Title: Template: DAV815 Template: DAV8151S Printed: 08/14/2018 17:01

Sample: 1064006 TCLP Fly Ash Collected: 07/10/18 Analy.	zed: 07/31/18 - Analytes: 2					
ANALYTE NAME	RESULT	UNITS	DIL	LOD	LOQ	Note
2,4-D	ND	ug/L	200	10	34	
2,4,5-TP (Silvex)	ND	ug/L	200	4.0	16	
DCAA (SURR)	80.2%	-	1	1.0	10	•
NOTES APPLICABLE TO THIS ANALYSIS:						3

Page 1 of 1

S = This compound is a surrogate used to evaluate the quality control of a method.

AMPLE COLLECTION AND CHAIN OF EXPERS Specialty Solutions ADDRESS 515 W. Davenport St 54501 CITY STATE ZIP	Wisconsin DNR cert iD 721026460 (Cran) / 268533760 (Wauk) Wisconsin DATCP ID 105-000330 (Cran) / 105-000479 (Wauk)	NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue • Crandon, WI 54520-1298 Tel: (715) 478-2777 • Fax: (715) 478-3060
PROJECT DESCRIPTION / NO. PROJECT DESCRIPTION / NO. PLY ASh DNR FID # DNR LICENSE # CONTACT Ray a Chown and 715-369-4174 PURCHASE ORDER NO. FAX	SW = surface water WW = waste water GW = groundwater DW = drinking water	BOXES BELOW: Indicate Y or N If GW Sample is field filtered. Indicate G or C if WW Sample is Grab or Composite.
2018 Blanket TEM NO. SAMPLEID COLL DATE 1. Wayous Fly Ash 6/26/18	TIME (George and Taylor)	NO. 212 COLLECTION REMARKS (i.e. DNR Weil ID #)
2. Fly Ash 6/26/18 3. 006 TP 6/26/18 5. 00	1:20.pm Other	
6. GATE 7. WE		
9.		
	CUSTODY SEAL NO. (IF ANY) DBY (signature)	DATE/TIME REPORT TO ATE/TIME DATE/TIME
ISPATCHED BY (signature) METHOD ECEIVED AT NLS BY (signature) DATE/TIME	OF TRANSPORT	DATE/TIME INVOICE TO
OOLER # 10/27	OTHER INFORMATION	TEMP.
RESERVATIVE: N = nitric acid OH = sodium hydroxide Z = zinc acetate HA = hydrochloric & ascorbic acid m = methanol H = bydrochloric acid 1. TO MEET REGULATORY REQUIREMENTS, THIS FORM MACORTANT: 2. PLEASE USE ONE LINE PER SAMPLE, NOT PER BOTTLE	LITY NUMBER E-MAIL ADDRESS Kayla - Chownard	

ORIGINAL COPY

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Waste Management - Antigo

1715 Deleglise Antigo, WI 54409 Project: Wausau Mosinee Paper

Project Number: MW61373 Project Manager: Marie Jaszewski Lab ID: BQB0103

Reported: 02/23/07 16:04

General Chemistry

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Flyash 61373 (BQB0103-01) Waste (S)	Sampled: 92/15/07 00:00	Received	l: 02/16/07 0:	9:08					
Percent Chlorine	ND	0.100	%	I	7020342	02/23/07	02/23/07	ASTMD808^	
Flashpoint	>220 °F		°۶	9	7020340	02/23/07	02/23/07	ASTM D92-85	
Free Liquid	No sample flowed.		N/A	10	7020294	02/21/07	02/21/07	9095A	
pH	3.31		pH Units	u .	7020290	02/21/07	02/21/07	EPA 9045C	G26
Reactive Cyanide	ND	0.130	mg/kg wet	11	7020218	02/16/07	02/19/07	EPA 9014 Ch 7	G33
Reactive Sulfide	ND	6.50	4		7020219	02/16/07	02/16/07	EPA 9034 Ch 7	G33
Total Solids	99.9	0.100	% by Weight	**	7020319	02/22/07	02/23/07	EPA 160,3^^	G25
Specific Gravity	1.48		g/ml	**	7020341	02/23/07	02/23/07	ASTM D854-83^^	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the cham of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Jim Knapp

April 20, 2019

David Bender WI DoA, Div of Facilities Development 101 East Wilson St P.O Box 7866 Madison, WI 53707

RE: Project: UW-Oshkosh Coal Ash Pace Project No.: 40185584

Dear David Bender:

Enclosed are the analytical results for sample(s) received by the laboratory on April 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christopher Hyska christopher.hyska@pacelabs.com

Chuskpher Hyska

(920)469-2436 Project Manager

Enclosures

cc: Jerome Jansen, WI Department of Administration

CERTIFICATIONS

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

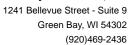
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157


Federal Fish & Wildlife Permit #: LE51774A-0

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40185584001	Coal Ash	Solid	04/09/19 09:00	04/10/19 10:50

SAMPLE ANALYTE COUNT

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40185584001	Coal Ash	EPA 6010	TXW	7	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 8270	RJN	17	PASI-G
		EPA 8260	LAP	13	PASI-G
		ASTM D2974-87	JAK	1	PASI-G
		EPA 1010	DEY	1	PASI-G
		EPA 9045	ALY	1	PASI-G
		EPA 9076	CEH	1	PASI-A
		EPA 9095	DEY	1	PASI-G
		EPA 9014	PAS	1	PASI-PA
		SM 4500S2F-00	PAS	1	PASI-PA

ANALYTICAL RESULTS

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

Sample: Coal Ash Lab ID: 40185584001 Collected: 04/09/19 09:00 Received: 04/10/19 10:50 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP, TCLP	•		A 6010 Prepa			A 3010				
	Leachate I	Method/Date	e: EPA 1311; 0	4/15/19 13:	36					
Arsenic	<0.042	mg/L	0.12	0.042	1	04/17/19 13:43	04/19/19 10:40	7440-38-2		
Barium	0.60	mg/L	0.075	0.025	1	04/17/19 13:43	04/19/19 10:40	7440-39-3		
Cadmium	0.073	mg/L	0.025	0.0066	1	04/17/19 13:43	04/19/19 10:40	7440-43-9		
Chromium	0.17	mg/L	0.050	0.013	1	04/17/19 13:43	04/19/19 10:40	7440-47-3	1q	
Lead	1.0	mg/L	0.098	0.030	1	04/17/19 13:43	04/19/19 10:40	7439-92-1	·	
Selenium	< 0.061	mg/L	0.25	0.061	1	04/17/19 13:43	04/19/19 10:40	7782-49-2		
Silver	<0.017	mg/L	0.050	0.017	1	04/17/19 13:43	04/19/19 10:40	7440-22-4		
7470 Mercury, TCLP	Analytical	Method: EP	A 7470 Prepa	ration Meth	od: EP	A 7470				
	Leachate Method/Date: EPA 1311; 04/15/19 13:36									
Mercury	<0.000084	mg/L	0.00028	0.000084	1	04/16/19 12:00	04/17/19 11:13	7439-97-6		
8270 MSSV TCLP Sep Funnel	Analytical	Method: EP	A 8270 Prepa	ration Meth	od: EP	A 3510				
•			e: EPA 1311; 0							
1,4-Dichlorobenzene	<0.019	mg/L	0.062	0.019	1	04/17/19 07:40	04/18/19 14:47	106-46-7		
2,4-Dinitrotoluene	< 0.0079	mg/L	0.026	0.0079	1	04/17/19 07:40	04/18/19 14:47	121-14-2		
Hexachloro-1,3-butadiene	< 0.025	mg/L	0.082	0.025	1	04/17/19 07:40	04/18/19 14:47	87-68-3		
Hexachlorobenzene	<0.017	mg/L	0.056	0.017	1	04/17/19 07:40	04/18/19 14:47	118-74-1		
Hexachloroethane	< 0.027	mg/L	0.089	0.027	1	04/17/19 07:40	04/18/19 14:47	67-72-1		
2-Methylphenol(o-Cresol)	<0.0087	mg/L	0.029	0.0087	1	04/17/19 07:40	04/18/19 14:47	95-48-7		
3&4-Methylphenol(m&p Cresol)	<0.016	mg/L	0.052	0.016	1	04/17/19 07:40	04/18/19 14:47			
Nitrobenzene	<0.015	mg/L	0.048	0.015	1	04/17/19 07:40	04/18/19 14:47	98-95-3		
Pentachlorophenol	<0.014	mg/L	0.048	0.014	1	04/17/19 07:40	04/18/19 14:47	87-86-5		
Phenol	<0.0060	mg/L	0.020	0.0060	1	04/17/19 07:40	04/18/19 14:47	108-95-2		
Pyridine	<0.018	mg/L	0.060	0.018	1	04/17/19 07:40	04/18/19 14:47	110-86-1		
2,4,5-Trichlorophenol	<0.0084	mg/L	0.028	0.0084	1	04/17/19 07:40	04/18/19 14:47	95-95-4		
2,4,6-Trichlorophenol	<0.021	mg/L	0.070	0.021	1	04/17/19 07:40	04/18/19 14:47	88-06-2		
Surrogates Nitrobenzene-d5 (S)	79	%	51-108		1	04/17/19 07:40	04/18/19 14:47	4165-60-0		
2-Fluorobiphenyl (S)	75	%	47-105		1	04/17/19 07:40				
2,4,6-Tribromophenol (S)	86	%	57-131		1	04/17/19 07:40	04/18/19 14:47			
Phenol-d6 (S)	35	%	18-120		1		04/18/19 14:47			
8260 MSV TCLP	Analytical	Method: EP	A 8260 Leach	ate Method	/Date:	EPA 1311; 04/15/1	9 13:36			
Benzene	<0.0050	mg/L	0.010	0.0050	10		04/17/19 08:38	71-43-2		
2-Butanone (MEK)	< 0.030	mg/L	0.20	0.030	10		04/17/19 08:38	78-93-3		
Carbon tetrachloride	<0.0050	mg/L	0.010	0.0050	10		04/17/19 08:38	56-23-5		
Chlorobenzene	<0.0050	mg/L	0.010	0.0050	10		04/17/19 08:38			
Chloroform	<0.025	mg/L	0.050	0.025	10		04/17/19 08:38	67-66-3		
1,2-Dichloroethane	<0.0017	mg/L	0.010	0.0017	10		04/17/19 08:38	107-06-2		
1,1-Dichloroethene	< 0.0041	mg/L	0.010	0.0041	10		04/17/19 08:38	75-35-4		
Tetrachloroethene	<0.0050	mg/L	0.010	0.0050	10		04/17/19 08:38			
Trichloroethene	< 0.0033	mg/L	0.010	0.0033	10		04/17/19 08:38			
Vinyl chloride	<0.0018	mg/L	0.010	0.0018	10		04/17/19 08:38	75-01-4		

ANALYTICAL RESULTS

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

Sample: Coal Ash Lab ID: 40185584001 Collected: 04/09/19 09:00 Received: 04/10/19 10:50 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV TCLP	Analytical	Method: EPA	8260 Leach	ate Method	/Date: E	EPA 1311; 04/15/1	9 13:36				
Surrogates											
Toluene-d8 (S)	98	%	70-130		10		04/17/19 08:38	2037-26-5			
4-Bromofluorobenzene (S)	88	%	70-130		10		04/17/19 08:38				
Dibromofluoromethane (S)	110	%	70-130		10		04/17/19 08:38	1868-53-7			
Percent Moisture	Analytical	Analytical Method: ASTM D2974-87									
Percent Moisture	1.2	%	0.10	0.10	1		04/10/19 19:31				
1010 Flashpoint,Closed Cup	Analytical	Analytical Method: EPA 1010									
Flashpoint	>200	deg F			1		04/15/19 14:22		2q		
9045 pH Soil	Analytical	Method: EPA	9045								
pH at 25 Degrees C	4.09	Std. Units	0.100	0.0100	1		04/16/19 10:07		H6		
9076 Total Chlorine	Analytical	Method: EPA	9076								
Chlorine, Total	<0.010	%	0.010	0.010	1		04/20/19 03:06	7782-50-5	N2		
9095 Paint Filter Liquid Test	Analytical	Method: EPA	9095								
Free Liquids	Pass	no units			1		04/12/19 16:00				
733C S Reactive Cyanide	Analytical	Method: EPA	9014 Prepai	ration Meth	od: SW	-846 7.3.3.2					
Cyanide, Reactive	<0.40	mg/kg	1.0	0.40	1	04/18/19 17:35	04/18/19 18:23				
734S Reactive Sulfide	Analytical	Method: SM 4	1500S2F-00	Preparation	Metho	od: SW-846 7.3.4.	2				
Sulfide, Reactive	<10.1	mg/kg	10.1	10.1	1	04/18/19 17:35	04/18/19 17:39				

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318544

QC Batch Method: EPA 7470 Analysis Method:

EPA 7470

Analysis Description:

7470 Mercury TCLP

METHOD BLANK: 1851229

Associated Lab Samples:

Matrix: Water

mg/L

Units

mg/L

Associated Lab Samples:

40185584001

40185584001

Blank Result

Reporting

0.00028

0.00028

Parameter Units

< 0.000084

Limit Analyzed

04/17/19 10:26

04/17/19 11:03

Qualifiers

METHOD BLANK:

1850647

Matrix: Water

Associated Lab Samples:

Parameter

40185584001

Blank

Reporting

Result < 0.000084 Limit Analyzed

Qualifiers

Mercury

Mercury

Matrix: Water

Matrix: Water

Associated Lab Samples:

METHOD BLANK:

40185584001

Blank

Reporting

Parameter

Units

Result

Limit Analyzed Qualifiers

Mercury

< 0.000084 mg/L

0.00028 04/17/19 11:17

METHOD BLANK:

1850651 Associated Lab Samples:

40185584001

Blank

Reporting

Parameter

Parameter

Parameter

Date: 04/20/2019 10:39 AM

Units

Result

Limit

Analyzed

Qualifiers

Mercury

< 0.000084 mg/L

0.00028

04/17/19 11:24

LABORATORY CONTROL SAMPLE:

1851230

Units

mg/L

40185566002

Result

<0.28 ug/L

Spike Conc.

0.005

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury

1851231

1851232

0.0053

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

0.0060

106

119

Mercury

Units

mg/L

MS Spike

Conc.

0.005

MSD Spike Conc.

0.005

MS MSD Result Result

0.0060

MS % Rec

MSD % Rec

119

% Rec Max Limits **RPD** 85-115

RPD 20 M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qual

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

MATRIX SPIKE SAMPLE:	1851234						
		40185698001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	mg/L	<0.000084	0.005	0.0053	105	85-115	

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318672 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 40185584001

METHOD BLANK: 1851881 Matrix: Water

Associated Lab Samples: 40185584001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	0.014J	0.025	04/19/19 10:28	
Barium	mg/L	< 0.0050	0.015	04/19/19 10:28	
Cadmium	mg/L	< 0.0013	0.0050	04/19/19 10:28	
Chromium	mg/L	< 0.0025	0.010	04/19/19 10:28	
Lead	mg/L	< 0.0059	0.020	04/19/19 10:28	
Selenium	mg/L	< 0.012	0.050	04/19/19 10:28	
Silver	mg/L	< 0.0033	0.010	04/19/19 10:28	

METHOD BLANK: 1851242 Matrix: Solid

Associated Lab Samples: 40185584001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	0.013J	0.025	04/19/19 11:04	
Barium	mg/L	< 0.0050	0.015	04/19/19 11:04	
Cadmium	mg/L	< 0.0013	0.0050	04/19/19 11:04	
Chromium	mg/L	< 0.0025	0.010	04/19/19 11:04	
Lead	mg/L	0.012J	0.020	04/19/19 11:04	
Selenium	mg/L	< 0.012	0.050	04/19/19 11:04	
Silver	mg/L	< 0.0033	0.010	04/19/19 11:04	

METHOD BLANK: 1851604 Matrix: Solid

Associated Lab Samples: 40185584001

Date: 04/20/2019 10:39 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	0.059J	0.12	04/19/19 10:50	
Barium	mg/L	< 0.025	0.075	04/19/19 10:50	
Cadmium	mg/L	< 0.0066	0.025	04/19/19 10:50	
Chromium	mg/L	< 0.013	0.050	04/19/19 10:50	
Lead	mg/L	< 0.030	0.098	04/19/19 10:50	
Selenium	mg/L	<0.061	0.25	04/19/19 10:50	
Silver	mg/L	< 0.017	0.050	04/19/19 10:50	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

METHOD BLANK: 1851653 Matrix: Solid

Associated Lab Samples: 40185584001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	0.048J	0.12	04/19/19 10:45	
Barium	mg/L	< 0.025	0.075	04/19/19 10:45	
Cadmium	mg/L	< 0.0066	0.025	04/19/19 10:45	
Chromium	mg/L	0.016J	0.050	04/19/19 10:45	
Lead	mg/L	< 0.030	0.098	04/19/19 10:45	
Selenium	mg/L	< 0.061	0.25	04/19/19 10:45	
Silver	mg/L	< 0.017	0.050	04/19/19 10:45	

LABORATORY CONTROL SAMPLE:	1851882					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	0.5	0.48	96	80-120	
Barium	mg/L	0.5	0.51	102	80-120	
Cadmium	mg/L	0.5	0.51	101	80-120	
Chromium	mg/L	0.5	0.50	101	80-120	
Lead	mg/L	0.5	0.51	102	80-120	
Selenium	mg/L	0.5	0.49	98	80-120	
Silver	mg/L	0.25	0.25	99	80-120	

MATRIX SPIKE & MATRIX SF	PIKE DUPLICA	TE: 18518	83		1851884							
			MS	MSD								
	4	0185510001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.077J	2.5	2.5	2.4	2.4	91	94	75-125	3	20	
Barium	mg/L	0.27	2.5	2.5	2.8	2.7	100	98	75-125	2	20	
Cadmium	mg/L	0.014J	2.5	2.5	2.5	2.5	100	100	75-125	0	20	
Chromium	mg/L	< 0.013	2.5	2.5	2.5	2.5	99	99	75-125	1	20	
Lead	mg/L	0.043J	2.5	2.5	2.5	2.4	97	96	75-125	2	20	
Selenium	mg/L	< 0.061	2.5	2.5	2.5	2.6	99	101	75-125	2	20	
Silver	mg/L	<0.017	1.2	1.2	1.3	1.3	101	100	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318487 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 40185584001

METHOD BLANK: 1850997 Matrix: Water

Associated Lab Samples: 40185584001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	mg/L	<0.00041	0.0010	04/16/19 15:18	
1,2-Dichloroethane	mg/L	< 0.00017	0.0010	04/16/19 15:18	
2-Butanone (MEK)	mg/L	< 0.0030	0.020	04/16/19 15:18	
Benzene	mg/L	< 0.00050	0.0010	04/16/19 15:18	
Carbon tetrachloride	mg/L	< 0.00050	0.0010	04/16/19 15:18	
Chlorobenzene	mg/L	< 0.00050	0.0010	04/16/19 15:18	
Chloroform	mg/L	< 0.0025	0.0050	04/16/19 15:18	
Tetrachloroethene	mg/L	< 0.00050	0.0010	04/16/19 15:18	
Trichloroethene	mg/L	< 0.00033	0.0010	04/16/19 15:18	
Vinyl chloride	mg/L	< 0.00018	0.0010	04/16/19 15:18	
4-Bromofluorobenzene (S)	%	88	70-130	04/16/19 15:18	
Dibromofluoromethane (S)	%	105	70-130	04/16/19 15:18	
Toluene-d8 (S)	%	95	70-130	04/16/19 15:18	

METHOD BLANK: 1850652 Matrix: Solid

Associated Lab Samples: 40185584001

		Blank	Reporting		0 ""
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	mg/L	< 0.0041	0.010	04/16/19 15:40	
1,2-Dichloroethane	mg/L	< 0.0017	0.010	04/16/19 15:40	
2-Butanone (MEK)	mg/L	< 0.030	0.20	04/16/19 15:40	
Benzene	mg/L	< 0.0050	0.010	04/16/19 15:40	
Carbon tetrachloride	mg/L	< 0.0050	0.010	04/16/19 15:40	
Chlorobenzene	mg/L	< 0.0050	0.010	04/16/19 15:40	
Chloroform	mg/L	< 0.025	0.050	04/16/19 15:40	
Tetrachloroethene	mg/L	< 0.0050	0.010	04/16/19 15:40	
Trichloroethene	mg/L	< 0.0033	0.010	04/16/19 15:40	
Vinyl chloride	mg/L	<0.0018	0.010	04/16/19 15:40	
4-Bromofluorobenzene (S)	%	90	70-130	04/16/19 15:40	
Dibromofluoromethane (S)	%	110	70-130	04/16/19 15:40	
Toluene-d8 (S)	%	98	70-130	04/16/19 15:40	

Date: 04/20/2019 10:39 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	mg/L	0.05	0.054	108	73-150	
1,2-Dichloroethane	mg/L	0.05	0.053	106	75-140	
Benzene	mg/L	0.05	0.054	109	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

LABORATORY CONTROL SAMPL	LE: 1850998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	mg/L	0.05	0.057	113	70-130	
Chlorobenzene	mg/L	0.05	0.054	109	70-130	
Chloroform	mg/L	0.05	0.054	108	74-136	
Tetrachloroethene	mg/L	0.05	0.054	107	70-130	
Trichloroethene	mg/L	0.05	0.053	105	70-130	
Vinyl chloride	mg/L	0.05	0.045	90	51-120	
4-Bromofluorobenzene (S)	%			95	70-130	
Dibromofluoromethane (S)	%			107	70-130	
Toluene-d8 (S)	%			101	70-130	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 18510	-		1851080							
			MS	MSD					a. -			
		10185566002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethene	mg/L	<10.0 ug/L	0.5	0.5	0.55	0.59	109	119	73-153	8	20	
1,2-Dichloroethane	mg/L	<10.0 ug/L	0.5	0.5	0.57	0.59	113	119	75-140	4	20	
Benzene	mg/L	<10.0 ug/L	0.5	0.5	0.57	0.58	114	117	70-130	2	20	
Carbon tetrachloride	mg/L	<10.0 ug/L	0.5	0.5	0.59	0.62	118	124	70-130	5	20	
Chlorobenzene	mg/L	<10.0 ug/L	0.5	0.5	0.57	0.55	114	111	70-130	3	20	
Chloroform	mg/L	<50.0 ug/L	0.5	0.5	0.56	0.56	111	113	74-136	1	20	
Tetrachloroethene	mg/L	<10.0 ug/L	0.5	0.5	0.54	0.54	108	108	70-130	0	20	
Trichloroethene	mg/L	<10.0 ug/L	0.5	0.5	0.56	0.55	111	111	70-130	1	20	
Vinyl chloride	mg/L	<10.0 ug/L	0.5	0.5	0.49	0.48	99	97	41-129	2	20	
4-Bromofluorobenzene (S)	%						95	94	70-130			
Dibromofluoromethane (S)	%						103	116	70-130			
Toluene-d8 (S)	%						101	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318606 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 40185584001

METHOD BLANK: 1851621 Matrix: Water

Associated Lab Samples: 40185584001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.0038	0.012	04/17/19 15:05	
2,4,5-Trichlorophenol	mg/L	< 0.0017	0.0056	04/17/19 15:05	
2,4,6-Trichlorophenol	mg/L	< 0.0042	0.014	04/17/19 15:05	
2,4-Dinitrotoluene	mg/L	< 0.0016	0.0053	04/17/19 15:05	
2-Methylphenol(o-Cresol)	mg/L	< 0.0017	0.0058	04/17/19 15:05	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.0031	0.010	04/17/19 15:05	
Hexachloro-1,3-butadiene	mg/L	< 0.0049	0.016	04/17/19 15:05	
Hexachlorobenzene	mg/L	< 0.0034	0.011	04/17/19 15:05	
Hexachloroethane	mg/L	< 0.0053	0.018	04/17/19 15:05	
Nitrobenzene	mg/L	< 0.0029	0.0097	04/17/19 15:05	
Pentachlorophenol	mg/L	< 0.0029	0.0096	04/17/19 15:05	
Phenol	mg/L	< 0.0012	0.0040	04/17/19 15:05	
Pyridine	mg/L	< 0.0036	0.012	04/17/19 15:05	
2,4,6-Tribromophenol (S)	%	85	57-131	04/17/19 15:05	
2-Fluorobiphenyl (S)	%	74	47-105	04/17/19 15:05	
Nitrobenzene-d5 (S)	%	83	51-108	04/17/19 15:05	
Phenol-d6 (S)	%	36	18-120	04/17/19 15:05	

METHOD BLANK: 1850648 Matrix: Water

Associated Lab Samples: 40185584001

Date: 04/20/2019 10:39 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	04/17/19 23:45	
2,4,5-Trichlorophenol	mg/L	< 0.0084	0.028	04/17/19 23:45	
2,4,6-Trichlorophenol	mg/L	< 0.021	0.070	04/17/19 23:45	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	04/17/19 23:45	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	0.029	04/17/19 23:45	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	04/17/19 23:45	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	04/17/19 23:45	
Hexachlorobenzene	mg/L	< 0.017	0.056	04/17/19 23:45	
Hexachloroethane	mg/L	< 0.027	0.089	04/17/19 23:45	
Nitrobenzene	mg/L	< 0.015	0.048	04/17/19 23:45	
Pentachlorophenol	mg/L	< 0.014	0.048	04/17/19 23:45	
Phenol	mg/L	< 0.0060	0.020	04/17/19 23:45	
Pyridine	mg/L	<0.018	0.060	04/17/19 23:45	
2,4,6-Tribromophenol (S)	%	85	57-131	04/17/19 23:45	
2-Fluorobiphenyl (S)	%	74	47-105	04/17/19 23:45	
Nitrobenzene-d5 (S)	%	78	51-108	04/17/19 23:45	
Phenol-d6 (S)	%	34	18-120	04/17/19 23:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

METHOD BLANK: 1850650 Matrix: Water

Associated Lab Samples: 40185584001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	04/18/19 00:07	
2,4,5-Trichlorophenol	mg/L	<0.0084	0.028	04/18/19 00:07	
2,4,6-Trichlorophenol	mg/L	< 0.021	0.070	04/18/19 00:07	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	04/18/19 00:07	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	0.029	04/18/19 00:07	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	04/18/19 00:07	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	04/18/19 00:07	
Hexachlorobenzene	mg/L	< 0.017	0.056	04/18/19 00:07	
Hexachloroethane	mg/L	< 0.027	0.089	04/18/19 00:07	
Nitrobenzene	mg/L	< 0.015	0.048	04/18/19 00:07	
Pentachlorophenol	mg/L	< 0.014	0.048	04/18/19 00:07	
Phenol	mg/L	< 0.0060	0.020	04/18/19 00:07	
Pyridine	mg/L	<0.018	0.060	04/18/19 00:07	
2,4,6-Tribromophenol (S)	%	86	57-131	04/18/19 00:07	
2-Fluorobiphenyl (S)	%	71	47-105	04/18/19 00:07	
Nitrobenzene-d5 (S)	%	75	51-108	04/18/19 00:07	
Phenol-d6 (S)	%	34	18-120	04/18/19 00:07	

LABORATORY CONTROL SAMPLE:	1851622					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	0.05	0.034	68	57-120	
2,4,5-Trichlorophenol	mg/L	0.05	0.042	85	59-124	
2,4,6-Trichlorophenol	mg/L	0.05	0.041	81	64-125	
2,4-Dinitrotoluene	mg/L	0.05	0.047	93	70-132	
2-Methylphenol(o-Cresol)	mg/L	0.05	0.036	71	45-107	
3&4-Methylphenol(m&p Cresol)	mg/L	0.05	0.032	65	39-130	
Hexachloro-1,3-butadiene	mg/L	0.05	0.033	65	63-107	
Hexachlorobenzene	mg/L	0.05	0.047	94	70-124	
Hexachloroethane	mg/L	0.05	0.030	60	50-130	
Nitrobenzene	mg/L	0.05	0.045	91	70-130	
Pentachlorophenol	mg/L	0.05	0.037	74	61-113	
Phenol	mg/L	0.05	0.020	40	25-120	
Pyridine	mg/L	0.05	0.019	37	10-78	
2,4,6-Tribromophenol (S)	%			83	57-131	
2-Fluorobiphenyl (S)	%			79	47-105	
Nitrobenzene-d5 (S)	%			84	51-108	
Phenol-d6 (S)	%			37	18-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

MATRIX SPIKE SAMPLE:	1851623						
		40185510001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	<18.8 ug/L	0.25	0.19	75	55-120	
2,4,5-Trichlorophenol	mg/L	<8.4 ug/L	0.25	0.24	94	26-124	
2,4,6-Trichlorophenol	mg/L	<21.1 ug/L	0.25	0.23	92	29-125	
2,4-Dinitrotoluene	mg/L	<7.9 ug/L	0.25	0.25	101	32-143	
2-Methylphenol(o-Cresol)	mg/L	<8.7 ug/L	0.25	0.23	92	25-107	
3&4-Methylphenol(m&p Cresol)	mg/L	<15.6 ug/L	0.25	0.20	81	21-130	
Hexachloro-1,3-butadiene	mg/L	<24.6 ug/L	0.25	0.18	74	63-109	
Hexachlorobenzene	mg/L	<16.9 ug/L	0.25	0.24	97	57-124	
Hexachloroethane	mg/L	<26.6 ug/L	0.25	0.17	69	50-130	
Nitrobenzene	mg/L	<14.5 ug/L	0.25	0.23	94	23-147	
Pentachlorophenol	mg/L	<14.3 ug/L	0.25	0.22	86	10-200	
Phenol	mg/L	<6.0 ug/L	0.25	0.11	44	20-120	
Pyridine	mg/L	<17.9 ug/L	0.25	0.12	48	10-78	
2,4,6-Tribromophenol (S)	%				95	57-131	
2-Fluorobiphenyl (S)	%				82	47-105	
Nitrobenzene-d5 (S)	%				89	51-108	
Phenol-d6 (S)	%				40	18-120	

MATRIX SPIKE SAMPLE:	1851624						
		40185736001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	 mg/L	<0.019	0.25	0.19	77	55-120	
2,4,5-Trichlorophenol	mg/L	<0.0084	0.25	0.24	94	26-124	
2,4,6-Trichlorophenol	mg/L	<0.021	0.25	0.24	95	29-125	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.25	0.25	99	32-143	
2-Methylphenol(o-Cresol)	mg/L	<0.0087	0.25	0.21	84	25-107	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.25	0.20	80	21-130	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.25	0.19	76	63-109	
Hexachlorobenzene	mg/L	< 0.017	0.25	0.24	97	57-124	
Hexachloroethane	mg/L	< 0.027	0.25	0.18	72	50-130	
Nitrobenzene	mg/L	< 0.015	0.25	0.24	95	23-147	
Pentachlorophenol	mg/L	< 0.014	0.25	0.21	82	10-200	
Phenol	mg/L	< 0.0060	0.25	0.11	45	20-120	
Pyridine	mg/L	<0.018	0.25	0.12	46	10-78	
2,4,6-Tribromophenol (S)	%				96	57-131	
2-Fluorobiphenyl (S)	%				81	47-105	
Nitrobenzene-d5 (S)	%				93	51-108	
Phenol-d6 (S)	%				40	18-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 317991 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40185584001

SAMPLE DUPLICATE: 1848813

Date: 04/20/2019 10:39 AM

		40185530001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	5.0	5.2	4	10	

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318348 Analysis Method: EPA 1010

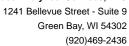
QC Batch Method: EPA 1010 Analysis Description: 1010 Flash Point, Closed Cup

Associated Lab Samples: 40185584001

LABORATORY CONTROL SAMPLE: 1850642

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers


Flashpoint deg F 83.0

SAMPLE DUPLICATE: 1850893

Date: 04/20/2019 10:39 AM

10470465008 Dup Max
Parameter Units Result RepD RPD Qualifiers

Flashpoint deg F >200 >200

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318498 Analysis Method: EPA 9045
QC Batch Method: EPA 9045 Analysis Description: 9045 pH

Associated Lab Samples: 40185584001

SAMPLE DUPLICATE: 1851021

Date: 04/20/2019 10:39 AM

40185682001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 6.44 pH at 25 Degrees C Std. Units 2 5 H6,PI 6.60

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 318216 Analysis Method: EPA 9095

QC Batch Method: EPA 9095 Analysis Description: 9095 PAINT FILTER LIQUID TEST

Associated Lab Samples: 40185584001

METHOD BLANK: 1850066 Matrix: Solid

Associated Lab Samples: 40185584001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Free Liquids no units Fail 04/12/19 15:38

LABORATORY CONTROL SAMPLE: 1850067

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Free Liquids no units Pass

SAMPLE DUPLICATE: 1850068

Date: 04/20/2019 10:39 AM

40185693001 Dup Max
Parameter Units Result Result RPD RPD Qualifiers

Free Liquids no units Pass Pass

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 338818 Analysis Method: EPA 9014

QC Batch Method: SW-846 7.3.3.2 Analysis Description: 733C Reactive Cyanide

Associated Lab Samples: 40185584001

METHOD BLANK: 1649268 Matrix: Solid

Associated Lab Samples: 40185584001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Cyanide, Reactive mg/kg <0.40 1.0 04/18/19 18:13

LABORATORY CONTROL SAMPLE: 1649269

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide, Reactive mg/kg 99.2 < 0.40 0 0-8

SAMPLE DUPLICATE: 1649270

Date: 04/20/2019 10:39 AM

Parameter Units Result Result RPD Apply RPD Qualifiers

Cyanide, Reactive mg/kg 1.0 U <0.40 20

SM 4500S2F-00

734S Reactive Sulfide

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

QC Batch: 338819 Analysis Method:
QC Batch Method: SW-846 7.3.4.2 Analysis Description:

Associated Lab Samples: 40185584001

METHOD BLANK: 1649271 Matrix: Solid

Associated Lab Samples: 40185584001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfide, Reactive mg/kg <10 10 04/18/19 17:39

LABORATORY CONTROL SAMPLE: 1649272

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 20 Sulfide, Reactive mg/kg 199 39.7 0-52

SAMPLE DUPLICATE: 1649273

Date: 04/20/2019 10:39 AM

ParameterUnitsResult Result RPDMax Result RPDQualifiersSulfide, Reactivemg/kg10 U<10</td>20

QUALIFIERS

Project: UW-Oshkosh Coal Ash

40185584 Pace Project No.:

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A	Pace Analytical Services - Asheville
PASI-G	Pace Analytical Services - Green Bay
PASI-PA	Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 04/20/2019 10:39 AM

1q Analyte was detected in the associated leach blank at a cor	ncentration of 0.016 mg/L.
--	----------------------------

Use of method EPA 1010A for flash point analysis on solid samples is for informational purposes only. It is the user's 2q

responsibility to verify the acceptance of this data for intended use.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A N2

complete list of accreditations/certifications is available upon request.

Ы The precision between the sample and the duplicate sample exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: UW-Oshkosh Coal Ash

Pace Project No.: 40185584

Date: 04/20/2019 10:39 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40185584001	Coal Ash	EPA 3010	318672	EPA 6010	318808
40185584001	Coal Ash	EPA 7470	318544	EPA 7470	318603
40185584001	Coal Ash	EPA 3510	318606	EPA 8270	318695
40185584001	Coal Ash	EPA 8260	318487		
40185584001	Coal Ash	ASTM D2974-87	317991		
40185584001	Coal Ash	EPA 1010	318348		
40185584001	Coal Ash	EPA 9045	318498		
40185584001	Coal Ash	EPA 9076	470604		
40185584001	Coal Ash	EPA 9095	318216		
40185584001	Coal Ash	SW-846 7.3.3.2	338818	EPA 9014	338981
40185584001	Coal Ash	SW-846 7.3.4.2	338819	SM 4500S2F-00	338979

- V. W	(Pl	ase P	rint Clearly)									1	y	UPPER	MIDW	EST R	<u>EGION</u>		Page 1	of 1 %
Company Na	me:	UW-Osl	hkosh				15		_		• (B)	îAV		MN: 6	12-607-	1700	WI: 920-469-2436	(-(01855	QM 27
Branch/Locat	ion:	Oshkosi	h			/		2 ace	Ana	lytic	al "	U						COC No.	(0(0))	of 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Project Conta	ıct:	Dan Bie	se			/			www.pe	iceiaos.c	om						Quote #:	00058681		۵
Phone:		(920) 42	24-4484	··			C	HA	IN	OF	C	US'	TO	DY			Mail To Contact:	David Bend	ler	
Project Numb	er:	-				A=No	.,,,,,	HCL C=			tion Cod	es	F=Methar		NaOH		Mail To Company:	Division of	Facilities Devel	opment
Project Name	:	UW-Osl	hkosh Coal Ash				dium Bisul				n Thiosul		≃Other				Mail To Address:	PO Box 78		
Project State:	:	WI						Y/N	N	N	N	N	N	N	N			Madison, W	/I 53707	
Sampled By (Print):	DAN	i3iESE			PRESER	VATION	Pick Letter	Α	Α	Α	Α	Α	Α	Α		Invoice To Contact:	David Bend	der	
Sampled By (Then	uls Been			,	·						٦ţ				Invoice To Company:	Division of	Facilities Devel	opment
PO #:		N/A		_	- 1			este	S				poir		8		Invoice To Address:	101 E Wils	on St. PO Box 7	7866
Data Packa		tions	MS/MSD		Matr				/leta				-last	_	_					
•	able) A Level	,,, E				DW = Drinkir			ZA V	න	ပ္လ	ao		e, pł	Sulfic		Invoice To Phone:	608-266-27	731	
		- 1	NOT needed on	O = Oil		SW = Surfac	e Water	alyse	22	Š	SV(orin	-iqui	istur	ive (D 61 #
PACE LAB#		CLIEN	your sample	SI = Sludge	COLLE	CTION	MATRIX	Ä	CLP	다.	占	5	ree l	, Mo	eact		}	1		
<u>σ</u> 5\		CLILI	TILLD ID	Di	ATE	TIME				 	 						JOHN LITTO	/		
())(5			 ^`	 ^`									
							ļ													
	,,																			

											<u> </u>									
Rush Tu	urnarou	nd Time	e Requested - Preli	ms	Relino	quished By:	<u> </u>			, Da	ate/Time:	002	l	Received	By:	L	Date/Time:	L	PACE Pro	ject No.
(Rush		WI																		
Transmit Pro				want):	Kenno	NAC			(al id	15	105		Neceive)	N (V)	X	h ulialis	(050)	0 0	0 17 0-
Email #1:					Relino	quished By:				Da	te/Time:	V	<u></u>	Received	By:	<u></u>		*		\mathcal{L}
Email #2:																				
Telephone:					Relino	quished By:				Da	ate/Time:									
Fax:	Samples	on HOLD -	ere subject to		Relina	nuished Bur				De	ate/Time			Receiver	f Bv:		Date/Time·			
					I AIR IC	quisited by:					ALGE HITTE.			, tocolvec	. o _j .		Date: Tille.		Intact / No	
																			Version 6.0, 06/14/06	

Face Alialytical Scivices, LL 1241 Bellevue Street, Suite Green Bay, W№ 5430

Client Name: Project # All containers needing preservation have been checked and noted below: a Yes a No AN/A Initial when Date/ completed: Time: Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted):

	-				ninsk med					Lub	2007	ווחקונ	Juper.				Lai	Olu n	10 01	prese	ivalio	ii (ii pi	i auju	isteu)					1	neteu.		THITE.	
		de la companya de la		Glass		Actions					Plast	ic					Vi	als				Jars		1	enera	al	Vials (>6mm) *	H <u>\$2</u>	VaOH+Zn Act pH ≥9	1≥12	152	adjusted	Volume (mL)
Pace Lab#	AG10	AG1H	AG4S	AG40	AG5U	AG2S	везп	BP1U	BP2N	BP2Z	врзи	врзс	BP3N	BP3S	DG9A	DG9T	VG9U	V G9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	N U	VOA Via	H2SO4 pH ≤2	NaOH+Z	NaOH pH ≥12	HNO3 pH <2	pH after adjusted	(1112)
001	l																																2.5 / 5 / 10
002																																	2.5 / 5 / 10
003																																	2.5 / 5 / 10
004																																	2.5 / 5 / 10
005																								Ī									2.5 / 5 / 10
006																																	2.5 / 5 / 10
007																																	2.5 / 5 / 10
008																																	2.5 / 5 / 10
009																																	2.5 / 5 / 10
010																																	2.5 / 5 / 10
011							2000000																										2.5 / 5 / 10
012																																	2.5 / 5 / 10
013							\$1000 English										911-70-0-00000																2.5/5/10
014																																	2.5/5/10
015									20-24/2012/09/20																								2.5 / 5 / 10
016																																	2.5 / 5 / 10
017																																	2.5 / 5 / 10
018																																	2.5/5/10
019	The Contract of the Contract o																																2.5 / 5 / 10
020																																	DESCRIPTION OF ANY STREET, STR
UZU																																	2.5 / 5 / 10

Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: Headspace in VOA Vials (>6mm): "Yes "No "N/A *If yes look in headspace column"

AG1U	1 liter amber glass	BP1U	1 liter plastic unpres	DG9A	40 mL amber ascorbic	JGFU	4 oz amber jar unpres
AG1H	1 liter amber glass HCL	BP2N	500 mL plastic HNO3	DG9T	40 mL amber Na Thio	WGFU	4 oz clear jar unpres
AG4S	125 mL amber glass H2SO4	BP2Z	500 mL plastic NaOH, Znact	VG9U	40 mL clear vial unpres	WPFU	4 oz plastic jar unpres
AG4U	120 mL amber glass unpres	BP3U	250 mL plastic unpres	VG9H	40 mL clear vial HCL		
AG5U	100 mL amber glass unpres	ВР3С	250 mL plastic NaOH	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG2S	500 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9D	40 mL clear vial DI	ZPLC	ziploc bag
BG3U	250 mL clear glass unpres	BP3S	250 mL plastic H2SO4			GN:	

Pace Analytical " 1241 Bellevue Street, Green Bay, WI 54302

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: F-GB-C-031-Rev.07 Document Revised: 25Apr2018

Issuing Authority: Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

		Project #:		
Client Name: UW O Shkoch		,	WO# : 40	185584
Courier: CS Logistics Fed Ex Spe	edee AUPS I W	/altco	MOH · 40	102204
Client Pace Other:	avaluation			
Tracking #: 17.5763/203			40185584	11 88 813
Custody Seal on Cooler/Box Present: ye		_ yes no	Communication of the second process and the second interest of the second secon	
Custody Seal on Samples Present: Fyes	*	T yes T no		
Packing Material:	ubble Bags 📗 None	Other		
Thermometer Used SR - VV	Type of Ice: Wet	Blue Dry Mone	Samples on ice, cool	ing process has begun
Cooler Temperature Uncorr: 12 /Corr				
Temp Blank Present: yes no	Biological T	lissue is Frozen:	-	on examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.			Date:	
Chain of Custody Present:	√☐Ŷes ☐No ☐N/A	1.		<u> VVJ</u>
Chain of Custody Filled Out:			e.ta.	GUAYIDIA
Chain of Custody Relinquished:	Yes ONO ON/A		-Him	GAN 910-N
Sampler Name & Signature on COC:	Yes ONo ON/A			
Samples Arrived within Hold Time:	⊠Yes □No	5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes □No	6.		
Rush Turn Around Time Requested:	□Yes ☑No	7.		
Sufficient Volume:		8.		
For Analysis: ☐ Yes ☐ No MS/M	SD: □Yes ÆNo □N/A			
Correct Containers Used:	∠ Yes □No	9.		
-Pace Containers Used:	Yes ONO ON/A			
-Pace IR Containers Used:	□Yes □No √□N/A			
Containers Intact:	☐Yes ☐No	10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N/A	11.		
Sample Labels match COC:	□Yes ☑No □N/A	12. 10 "Dan F	Biese" 4/a/19@	0900
-Includes date/time/ID/Analysis Matrix:				abalona
Гrip Blank Present:	□Yes □No □N/A	13.		
Ггір Blank Custody Seals Present	□Yes □No ☑N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:	5		checked, see attached form fo	or additional comments
Person Contacted: Comments/ Resolution:	Date/T	ime:		
Client wased Vi	shell on Du	molo V	KO (MIN)	toder Dol
				1 4019
	/		//	/ / -
Project Manager Review:	/		Date: $\frac{9}{2}$	1119

October 25, 2018

MARK METCALF WEC Business Services, LLC. PO BOX 19800 700 NORTH ADAMS Green Bay, WI 543079004

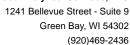
RE: Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Dear MARK METCALF:

Enclosed are the analytical results for sample(s) received by the laboratory on October 12, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Brian Basten brian.basten@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Patrick Ahrens, WEC Business Services, LLC. Jeff Dykhuis, WEC Business Services, LLC. Tom Jansen, WE Energies

CERTIFICATIONS

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302

Florida/NELAP Certification #: E87948 Illinois Certification #: 200050

Kentucky UST Certification #: 82 Louisiana Certification #: 04168

Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9

USDA Soil Permit #: P330-17-00091

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 9526

Washington Certification #: C868
West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

Wyoming Certification #: 8TMS-L

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001

Texas Certification #: T104704529-14-1

Wisconsin Certification #: 405132750

Wisconsin DATCP Certification #: 105-444

USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

North Carolina Wastewater Certification #: 40

South Carolina Certification #: 99030001

Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40177595001	WESTON 4 FLY ASH	Solid	10/12/18 00:00	10/12/18 13:02

SAMPLE ANALYTE COUNT

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40177595001	WESTON 4 FLY ASH	EPA 6010	TXW	7	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 8270	RJN	17	PASI-G
		EPA 8260	HNW	13	PASI-G
		ASTM D2974-87	JXS	1	PASI-G
		EPA 1010	DEY	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 9076	MJP	1	PASI-A
		EPA 9095	DDY	1	PASI-G
		SM 2710F	DEY	1	PASI-G
		EPA 9014	PAS	1	PASI-PA
		SM4500S2F-00	PAS	1	PASI-PA

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 6010

Description: 6010 MET ICP, TCLP

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 7470

Description: 7470 Mercury, TCLP

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

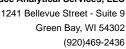
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


QC Batch: 303426

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10451259001,40177385001,40177395001,40177480001,40177541001,40177595001,40177596001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1772293)
 - Mercury

Additional Comments:

PROJECT NARRATIVE

WESTON COAL FLY ASH-LF ACCEPTA Project:

Pace Project No.: 40177595

Method: **EPA 8270**

Description: 8270 MSSV TCLP Sep Funnel Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 303829

S0: Surrogate recovery outside laboratory control limits.

• LCS (Lab ID: 1775444) • 2,4,6-Tribromophenol (S) • MS (Lab ID: 1775445)

2,4,6-Tribromophenol (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 303829

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40177480001,40177505001,40177506001,40177621001,40177838001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

• MS (Lab ID: 1775447)

Hexachloroethane

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 8270

Description: 8270 MSSV TCLP Sep Funnel **Client:** WEC Business Services, LLC.

Date: October 25, 2018

QC Batch: 303829

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40177480001,40177505001,40177506001,40177621001,40177838001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

NitrobenzenePentachlorophenol

Additional Comments:

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 8260 Description: 8260 MSV TCLP

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 1010

Description: 1010 Flashpoint, Closed Cup **Client:** WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 1010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 303161

2q: Use of method EPA 1010A for flash point analysis on solid samples is for informational purposes only. It is the user's responsibility to verify the acceptance of this data for intended use.

- WESTON 4 FLY ASH (Lab ID: 40177595001)
 - Flashpoint

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 9040 Description: 9040 pH

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 9040. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H6: Analysis initiated outside of the 15 minute EPA required holding time.

• WESTON 4 FLY ASH (Lab ID: 40177595001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 303308

1q: Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before analysis.

- WESTON 4 FLY ASH (Lab ID: 40177595001)
 - pH at 25 Degrees C

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 9076

Description: 9076 Total Chlorine

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 9076. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 437300

N2: The lab does not hold NELAC/TNI accreditation for this parameter.

- MS (Lab ID: 2405201)
 - · Chlorine, Total
- MSD (Lab ID: 2405202)
 - Chlorine, Total
- WESTON 4 FLY ASH (Lab ID: 40177595001)
 - · Chlorine, Total

241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 9095

Description: 9095 Paint Filter Liquid Test **Client:** WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 9095. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

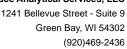
The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

WESTON COAL FLY ASH-LF ACCEPTA Project:

Pace Project No.: 40177595

Method: SM 2710F **Description:** Specific Gravity

Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for SM 2710F. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

(920)469-2436

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: EPA 9014

Description: 733C S Reactive Cyanide **Client:** WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for EPA 9014. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SW-846 7.3.3.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

(920)469-2436

PROJECT NARRATIVE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Method: SM4500S2F-00
Description: 734S Reactive Sulfide
Client: WEC Business Services, LLC.

Date: October 25, 2018

General Information:

1 sample was analyzed for SM4500S2F-00. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SW-846 7.3.4.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

Sample: WESTON 4 FLY ASH Lab ID: 40177595001 Collected: 10/12/18 00:00 Received: 10/12/18 13:02 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, TCLP	Analytical	Method: EP	A 6010 Prepa	ration Metho	od: EP/	A 3010			
	Leachate I	Method/Date	e: EPA 1311; 1	0/15/18 14:	35				
Arsenic	<0.042	mg/L	0.12	0.042	1	10/17/18 06:44	10/18/18 12:04	7440-38-2	
Barium	0.69	mg/L	0.075	0.025	1	10/17/18 06:44	10/18/18 12:04	7440-39-3	
Cadmium	<0.0066	mg/L	0.025	0.0066	1	10/17/18 06:44	10/18/18 12:04	7440-43-9	
Chromium	0.081	mg/L	0.050	0.013	1	10/17/18 06:44	10/18/18 12:04	7440-47-3	
Lead	< 0.030	mg/L	0.098	0.030	1	10/17/18 06:44	10/18/18 12:04	7439-92-1	
Selenium	<0.061	mg/L	0.25	0.061	1	10/17/18 06:44	10/18/18 12:04	7782-49-2	
Silver	<0.017	mg/L	0.050	0.017	1	10/17/18 06:44	10/18/18 12:04	7440-22-4	
470 Mercury, TCLP	Analytical	Method: EP	A 7470 Prepa	ration Metho	od: EP/	A 7470			
	Leachate I	Method/Date	e: EPA 1311; 1	0/15/18 14:	35				
Mercury	0.00038	mg/L	0.00028	0.000084	1	10/17/18 07:20	10/17/18 13:06	7439-97-6	MO
3270 MSSV TCLP Sep Funnel	Analytical	Method: EP	A 8270 Prepa	ration Metho	od: EP	A 3510			
	Leachate I	Method/Date	e: EPA 1311; 1	0/15/18 14:	35				
1,4-Dichlorobenzene	<0.019	mg/L	0.062	0.019	1	10/22/18 07:35	10/22/18 17:17	106-46-7	
2,4-Dinitrotoluene	< 0.0079	mg/L	0.026	0.0079	1	10/22/18 07:35	10/22/18 17:17	121-14-2	
Hexachloro-1,3-butadiene	<0.025	mg/L	0.082	0.025	1	10/22/18 07:35	10/22/18 17:17	87-68-3	
Hexachlorobenzene	<0.017	mg/L	0.056	0.017	1	10/22/18 07:35	10/22/18 17:17	118-74-1	
Hexachloroethane	<0.027	mg/L	0.089	0.027	1	10/22/18 07:35	10/22/18 17:17	67-72-1	
2-Methylphenol(o-Cresol)	<0.0087	mg/L	0.029	0.0087	1	10/22/18 07:35	10/22/18 17:17	95-48-7	
8&4-Methylphenol(m&p Cresol)	<0.016	mg/L	0.052	0.016	1	10/22/18 07:35	10/22/18 17:17		
Nitrobenzene	<0.015	mg/L	0.048	0.015	1	10/22/18 07:35	10/22/18 17:17	98-95-3	
Pentachlorophenol	<0.014	mg/L	0.048	0.014	1	10/22/18 07:35	10/22/18 17:17	87-86-5	
Phenol	<6.0	ug/L	20.0	6.0	1	10/22/18 07:35	10/22/18 17:17	108-95-2	
Pyridine	<0.018	mg/L	0.060	0.018	1	10/22/18 07:35	10/22/18 17:17	110-86-1	
2,4,5-Trichlorophenol	<0.0084	mg/L	0.028	0.0084	1	10/22/18 07:35	10/22/18 17:17	95-95-4	
2,4,6-Trichlorophenol	<0.021	mg/L	0.070	0.021	1	10/22/18 07:35	10/22/18 17:17	88-06-2	
Surrogates	0.5	0/	EC 100		4	10/22/19 07:25	10/22/10 17:17	44 GE GO O	
Nitrobenzene-d5 (S)	85 86	% %	56-120 54-122		1 1	10/22/18 07:35 10/22/18 07:35	10/22/18 17:17 10/22/18 17:17		
2-Fluorobiphenyl (S)	122	%	58-134		1	10/22/18 07:35	10/22/18 17:17		
2,4,6-Tribromophenol (S) Phenol-d6 (S)	33	%	16-120		1		10/22/18 17:17		
3260 MSV TCLP	Analytical	Method: EP	A 8260 Leach	ate Method	Date:	EPA 1311; 10/15/1	8 14:35		
Benzene	<0.0050	mg/L	0.010	0.0050	10		10/16/18 20:04	71-43-2	
2-Butanone (MEK)	<0.030	mg/L	0.20	0.030	10		10/16/18 20:04		
Carbon tetrachloride	<0.0050	mg/L	0.010	0.0050	10		10/16/18 20:04		
Chlorobenzene	<0.0050	mg/L	0.010	0.0050	10		10/16/18 20:04		
Chloroform	<0.025	mg/L	0.050	0.025	10		10/16/18 20:04		
1,2-Dichloroethane	< 0.0017	mg/L	0.010	0.0017	10		10/16/18 20:04		
1,1-Dichloroethene	<0.0041	mg/L	0.010	0.0041	10		10/16/18 20:04		
Tetrachloroethene	<0.0050	mg/L	0.010	0.0050	10		10/16/18 20:04		
Trichloroethene	<0.0033	mg/L	0.010	0.0033	10		10/16/18 20:04		
Vinyl chloride	<0.0018	mg/L	0.010	0.0018	10		10/16/18 20:04		

ANALYTICAL RESULTS

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

Sample: WESTON 4 FLY ASH Lab ID: 40177595001 Collected: 10/12/18 00:00 Received: 10/12/18 13:02 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV TCLP	Analytical	Method: EPA	8260 Leach	ate Method	/Date: E	PA 1311; 10/15/	18 14:35		
Surrogates Toluene-d8 (S) 4-Bromofluorobenzene (S) Dibromofluoromethane (S)	106 98 96	% % %	70-130 70-130 70-130		10 10 10		10/16/18 20:04 10/16/18 20:04 10/16/18 20:04	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	27.4	%	0.10	0.10	1		10/12/18 17:53		
1010 Flashpoint,Closed Cup	Analytical	Method: EPA	1010						
Flashpoint	>200	deg F			1		10/15/18 12:02		2q
9040 pH	Analytical	Method: EPA	9040						
pH at 25 Degrees C	11.4	Std. Units	0.10	0.010	1		10/16/18 10:35		1q,H6
9076 Total Chlorine	Analytical	Method: EPA	9076						
Chlorine, Total	0.028	%	0.010	0.010	1		10/19/18 14:29	7782-50-5	N2
9095 Paint Filter Liquid Test	Analytical	Method: EPA	9095						
Free Liquids	pass	no units			1		10/15/18 14:05		
Specific Gravity	Analytical	Method: SM 2	2710F						
Specific Gravity	1.7	no units			1		10/18/18 14:08		
733C S Reactive Cyanide	Analytical	Method: EPA	9014 Prepa	ration Meth	od: SW-	846 7.3.3.2			
Cyanide, Reactive	<0.55	mg/kg	1.4	0.55	1	10/18/18 23:11	10/19/18 00:16		
734S Reactive Sulfide	Analytical	Method: SM4	500S2F-00	Preparation	Method	: SW-846 7.3.4.	2		
Sulfide, Reactive	<13.7	mg/kg	13.7	13.7	1	10/18/18 23:11	10/18/18 23:14		

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303426 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury TCLP

Associated Lab Samples: 40177595001

METHOD BLANK: 1772285 Matrix: Water

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.000084 0.00028 10/17/18 12:22

METHOD BLANK: 1769037 Matrix: Water

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.00084 0.0028 10/17/18 12:38

METHOD BLANK: 1770912 Matrix: Water

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.000084 0.00028 10/17/18 13:18

METHOD BLANK: 1770915 Matrix: Water

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.000084 0.00028 10/17/18 13:11

METHOD BLANK: 1770916 Matrix: Water

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury mg/L <0.000084 0.00028 10/17/18 12:59

LABORATORY CONTROL SAMPLE: 1772286

Date: 10/25/2018 03:52 PM

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/L .005 0.0053 105 85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 17722	87		1772288							
			MS	MSD					_			
Parameter	40 Units	0177385001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Mercury	mg/L	<0.084 ug/L	.005	.005	0.0049	0.0048	97	96	85-115	1	20	
MATRIX SPIKE SAMPLE:	1772	2289										
Parameter		Units	401775 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qualif	iers
Mercury		mg/L	<0.0)84 ug/L	.005	0.00	50	99	85-	115		
MATRIX SPIKE SAMPLE:	1772	2290										
Parameter		Units	104512 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qualif	iers
Mercury		mg/L	<0.0)84 ug/L	.005	0.00	50	99	85-	115		
MATRIX SPIKE SAMPLE:	1772	2291										
Parameter		Units	401773 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qualif	iers
Mercury		mg/L	<0.0)84 ug/L	.005	0.00	51	100	85-	115		
MATRIX SPIKE SAMPLE:	1772	2292										
Parameter		Units	401774 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qualif	iers
Mercury		mg/L	0	.00015J	.005	0.00	51	99	85-	115		
MATRIX SPIKE SAMPLE:	1772	2293										
Parameter		Units	401775 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qualif	iers
Mercury		mg/L		0.00038	.005	0.00	46	84	85-	115 M	10	
MATRIX SPIKE SAMPLE:	1772	2294	10	00001	0 "				0/ 5			
Parameter		Units	401775 Res		Spike Conc.	MS Result		IS Rec	% Rec Limits		Qualif	iers
Mercury		mg/L		0.00040	.005	0.00	 54	99	85-	— — 115		-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303424 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 40177595001

METHOD BLANK: 1772270 Matrix: Water

Associated Lab Samples: 40177595001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	10/18/18 11:07	
Barium	mg/L	< 0.0050	0.015	10/18/18 11:07	
Cadmium	mg/L	< 0.0013	0.0050	10/18/18 11:07	
Chromium	mg/L	< 0.0025	0.010	10/18/18 11:07	
Lead	mg/L	< 0.0059	0.020	10/18/18 11:07	
Selenium	mg/L	< 0.012	0.050	10/18/18 11:07	
Silver	mg/L	< 0.0033	0.010	10/18/18 11:07	

METHOD BLANK: 1770901 Matrix: Solid

Associated Lab Samples: 40177595001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	< 0.042	0.12	10/18/18 11:52	
Barium	mg/L	< 0.025	0.075	10/18/18 11:52	
Cadmium	mg/L	< 0.0066	0.025	10/18/18 11:52	
Chromium	mg/L	< 0.013	0.050	10/18/18 11:52	
Lead	mg/L	< 0.030	0.098	10/18/18 11:52	
Selenium	mg/L	< 0.061	0.25	10/18/18 11:52	
Silver	mg/L	<0.017	0.050	10/18/18 11:52	

METHOD BLANK: 1770902 Matrix: Solid

Associated Lab Samples: 40177595001

Date: 10/25/2018 03:52 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	10/18/18 12:09	
Barium	mg/L	< 0.025	0.075	10/18/18 12:09	
Cadmium	mg/L	< 0.0066	0.025	10/18/18 12:09	
Chromium	mg/L	< 0.013	0.050	10/18/18 12:09	
Lead	mg/L	< 0.030	0.098	10/18/18 12:09	
Selenium	mg/L	<0.061	0.25	10/18/18 12:09	
Silver	mg/L	<0.017	0.050	10/18/18 12:09	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

METHOD BLANK: 1770903 Matrix: Solid

Associated Lab Samples: 40177595001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	10/18/18 12:16	
Barium	mg/L	< 0.025	0.075	10/18/18 12:16	
Cadmium	mg/L	< 0.0066	0.025	10/18/18 12:16	
Chromium	mg/L	< 0.013	0.050	10/18/18 12:16	
Lead	mg/L	< 0.030	0.098	10/18/18 12:16	
Selenium	mg/L	< 0.061	0.25	10/18/18 12:16	
Silver	mg/L	<0.017	0.050	10/18/18 12:16	

METHOD BLANK: 1770904 Matrix: Solid

Associated Lab Samples: 40177595001

Date: 10/25/2018 03:52 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	10/18/18 12:24	
Barium	mg/L	< 0.0050	0.015	10/18/18 12:24	
Cadmium	mg/L	< 0.0013	0.0050	10/18/18 12:24	
Chromium	mg/L	< 0.0025	0.010	10/18/18 12:24	
Lead	mg/L	< 0.0059	0.020	10/18/18 12:24	
Selenium	mg/L	< 0.012	0.050	10/18/18 12:24	
Silver	mg/L	< 0.0033	0.010	10/18/18 12:24	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rsenic	mg/L	.5	0.44	89	80-120	
arium	mg/L	.5	0.47	94	80-120	
admium	mg/L	.5	0.45	90	80-120	
romium	mg/L	.5	0.50	101	80-120	
ad	mg/L	.5	0.48	96	80-120	
elenium	mg/L	.5	0.44	88	80-120	
lver	mg/L	.25	0.26	102	80-120	

MATRIX SPIKE SAMPLE:	1772272						
		10451259001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.3	91	75-125	
Barium	mg/L	0.15	2.5	2.5	93	75-125	
Cadmium	mg/L	<0.0066	2.5	2.2	89	75-125	
Chromium	mg/L	<0.013	2.5	2.5	100	75-125	
Lead	mg/L	< 0.030	2.5	2.3	91	75-125	
Selenium	mg/L	<0.061	2.5	2.2	88	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

MATRIX SPIKE SAMPLE:	1772	2272										
5 .		11.5	104512		Spike	MS		/IS	% Rec		0 "	
Parameter		Units	Res		Conc.	Result	%	Rec 	Limits		Qualif	iers
Silver		mg/L		<0.017	1.2	1	.3	105	75-′	125		
MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 17722	73		1772274							
			MS	MSD								
_		0176305004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Arsenic	mg/L	< 0.042	2.5	2.5	2.3	2.3	91	92	75-125	1		
Barium	mg/L	0.61	2.5	2.5	2.9	2.9	92	93	75-125	1		
Cadmium	mg/L	0.028	2.5	2.5	2.3	2.3	90	91	75-125	2	20	
Chromium	mg/L	< 0.013	2.5	2.5	2.4	2.5	97	99	75-125	2	20	
Lead	mg/L	2.9	2.5	2.5	5.0	5.1	85	90	75-125	2	20	
Selenium	mg/L	< 0.061	2.5	2.5	2.2	2.3	89	92	75-125	3	20	
Silver	mg/L	<0.017	1.2	1.2	1.3	1.3	103	105	75-125	1	20	
MATRIX SPIKE SAMPLE:	1772	2275										
			401773	95001	Spike	MS	N	/IS	% Rec			
Parameter		Units	Res	sult	Conc.	Result	%	Rec	Limits		Qualif	iers
Arsenic		mg/L		<0.042	2.5	2	2.2		75-	 125		
Barium		mg/L		< 0.025	2.5	2	2.3	93	75-1	125		
Cadmium		mg/L		0.0080J	2.5		2.2	89	75-1			
Chromium		mg/L		0.015J	2.5		2.5	99	75-			
Lead		mg/L		< 0.030	2.5		2.3	91	75-			
Selenium		mg/L		< 0.061	2.5		2.3	89	75-			
Silver		mg/L		<0.017	1.2		.3	104	75-			
MATRIX SPIKE SAMPLE:	1772	2276										
			401774	80001	Spike	MS	N	IS	% Rec			
Parameter		Units	Res	sult	Conc.	Result	%	Rec	Limits		Qualif	iers
Arsenic		mg/L		<0.042	2.5	2	2.3	91	75-	 125		
Barium		mg/L		0.28	2.5		2.6	93	75-			
Cadmium		mg/L		<0.0066	2.5		2.3	91	75-			
Chromium		mg/L		< 0.013	2.5		2.4	96	75-			
Lead		mg/L		0.24	2.5		2.5	90	75-			
Selenium		mg/L		< 0.061	2.5		2.2	90	75- <i>′</i>			
Silver		mg/L		<0.017	1.2		.3	104	75-			
MATRIX SPIKE SAMPLE:	1772	2277										
MATTINA OF THE OAIVII LE.	1112		401775	41001	Spike	MS	N	IS	% Rec			
Parameter		Units	Res		Conc.	Result		Rec	Limits		Qualif	iers
Arsenic				<0.042	2.5				75-			
		mg/L		0.14			2.3	92				
Barium		mg/L		0.14	2.5	2	2.5	94	75-1	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

MATRIX SPIKE SAMPLE:	1772277						
		40177541001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	 mg/L	0.030	2.5	2.3	91	75-125	
Chromium	mg/L	< 0.013	2.5	2.5	99	75-125	
Lead	mg/L	0.95	2.5	3.4	97	75-125	
Selenium	mg/L	< 0.061	2.5	2.3	90	75-125	
Silver	mg/L	<0.017	1.2	1.3	106	75-125	
MATRIX SPIKE SAMPLE:	1772278						
		40177546001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.3	93	75-125	
Barium	mg/L	0.074J	2.5	2.4	93	75-125	
Cadmium	mg/L	0.0089J	2.5	2.3	90	75-125	
Chromium	mg/L	2.5	2.5	5.1	100	75-125	
Lead	mg/L	< 0.030	2.5	2.3	91	75-125	
Selenium	mg/L	< 0.061	2.5	2.3	89	75-125	
Silver	mg/L	<0.017	1.2	1.3	104	75-125	
MATRIX SPIKE SAMPLE:	1772279						
WATER OF THE OF THE ELE	1112210	40177595001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.4	94	75-125	
Barium	mg/L	0.69	2.5	3.1	94	75-125	
Cadmium	mg/L	< 0.0066	2.5	2.3	92	75-125	
Chromium	mg/L	0.081	2.5	2.5	97	75-125	
_ead	mg/L	< 0.030	2.5	2.3	91	75-125	
Selenium	mg/L	<0.061	2.5	2.3	91	75-125	
Silver	mg/L	<0.017	1.2	1.3	106	75-125	
MATRIX SPIKE SAMPLE:	1772280						
		40177596001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.3	94	75-125	
Barium	mg/L	<0.025	2.5	2.4	95	75-125	
Cadmium	mg/L	< 0.0066	2.5	2.3	93	75-125	
Chromium	mg/L	< 0.013	2.5	2.5	99	75-125	
Lead	mg/L	< 0.030	2.5	2.3	92	75-125	
Selenium	mg/L	< 0.061	2.5	2.3	93	75-125	
Silver	mg/L	< 0.017	1.2	1.3	105	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303318 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 40177595001

METHOD BLANK: 1771608 Matrix: Water

Associated Lab Samples: 40177595001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	mg/L	<0.00041	0.0010	10/16/18 16:20	
1,2-Dichloroethane	mg/L	< 0.00017	0.0010	10/16/18 16:20	
2-Butanone (MEK)	mg/L	< 0.0030	0.020	10/16/18 16:20	
Benzene	mg/L	< 0.00050	0.0010	10/16/18 16:20	
Carbon tetrachloride	mg/L	< 0.00050	0.0010	10/16/18 16:20	
Chlorobenzene	mg/L	< 0.00050	0.0010	10/16/18 16:20	
Chloroform	mg/L	< 0.0025	0.0050	10/16/18 16:20	
Tetrachloroethene	mg/L	< 0.00050	0.0010	10/16/18 16:20	
Trichloroethene	mg/L	< 0.00033	0.0010	10/16/18 16:20	
Vinyl chloride	mg/L	<0.00018	0.0010	10/16/18 16:20	
4-Bromofluorobenzene (S)	%	99	70-130	10/16/18 16:20	
Dibromofluoromethane (S)	%	95	70-130	10/16/18 16:20	
Toluene-d8 (S)	%	105	70-130	10/16/18 16:20	

METHOD BLANK: 1770889 Matrix: Solid

Associated Lab Samples: 40177595001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	mg/L	< 0.0041	0.010	10/16/18 18:57	
1,2-Dichloroethane	mg/L	< 0.0017	0.010	10/16/18 18:57	
2-Butanone (MEK)	mg/L	0.38	0.20	10/16/18 18:57	
Benzene	mg/L	< 0.0050	0.010	10/16/18 18:57	
Carbon tetrachloride	mg/L	< 0.0050	0.010	10/16/18 18:57	
Chlorobenzene	mg/L	< 0.0050	0.010	10/16/18 18:57	
Chloroform	mg/L	< 0.025	0.050	10/16/18 18:57	
Tetrachloroethene	mg/L	< 0.0050	0.010	10/16/18 18:57	
Trichloroethene	mg/L	< 0.0033	0.010	10/16/18 18:57	
Vinyl chloride	mg/L	<0.0018	0.010	10/16/18 18:57	
4-Bromofluorobenzene (S)	%	100	70-130	10/16/18 18:57	
Dibromofluoromethane (S)	%	95	70-130	10/16/18 18:57	
Toluene-d8 (S)	%	106	70-130	10/16/18 18:57	

LABORATORY CONTROL SAMPLE: 1771609

Date: 10/25/2018 03:52 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	mg/L	.05	0.047	93	75-132	
1,2-Dichloroethane	mg/L	.05	0.049	99	73-134	
Benzene	mg/L	.05	0.053	105	69-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

LABORATORY CONTROL SAMPLE:	1771609					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	- ————————————————————————————————————	_ _		/0 IXEC		Qualifiers
Carbon tetrachloride	mg/L	.05	0.051	101	73-142	
Chlorobenzene	mg/L	.05	0.051	101	70-130	
Chloroform	mg/L	.05	0.048	96	80-129	
Tetrachloroethene	mg/L	.05	0.055	109	70-130	
Trichloroethene	mg/L	.05	0.056	111	70-130	
Vinyl chloride	mg/L	.05	0.039	79	48-134	
4-Bromofluorobenzene (S)	%			112	70-130	
Dibromofluoromethane (S)	%			95	70-130	
Toluene-d8 (S)	%			106	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 17719	60		1771961							
			MS	MSD								
	4	0177501001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethene	mg/L	<4.1 ug/L	.5	.5	0.49	0.48	97	97	72-137	0	20	
1,2-Dichloroethane	mg/L	<1.7 ug/L	.5	.5	0.51	0.49	101	99	71-137	3	20	
Benzene	mg/L	< 0.0050	.5	.5	0.53	0.53	106	105	66-143	1	20	
Carbon tetrachloride	mg/L	<5.0 ug/L	.5	.5	0.50	0.50	101	100	73-142	1	20	
Chlorobenzene	mg/L	<5.0 ug/L	.5	.5	0.51	0.50	101	101	70-130	1	20	
Chloroform	mg/L	<25.0 ug/L	.5	.5	0.47	0.48	95	96	80-131	1	20	
Tetrachloroethene	mg/L	<5.0 ug/L	.5	.5	0.54	0.53	108	107	70-132	1	20	
Trichloroethene	mg/L	<3.3 ug/L	.5	.5	0.55	0.55	110	111	70-131	1	20	
Vinyl chloride	mg/L	<1.8 ug/L	.5	.5	0.41	0.42	82	84	46-134	2	20	
4-Bromofluorobenzene (S)	%						112	111	70-130			
Dibromofluoromethane (S)	%						94	94	70-130			
Toluene-d8 (S)	%						105	106	70-130			

MATRIX SPIKE SAMPLE:	1771962						
		40177595001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	 mg/L	<0.0041	.5	0.48	96	72-137	
1,2-Dichloroethane	mg/L	< 0.0017	.5	0.51	102	71-137	
Benzene	mg/L	< 0.0050	.5	0.53	107	66-143	
Carbon tetrachloride	mg/L	< 0.0050	.5	0.51	101	73-142	
Chlorobenzene	mg/L	< 0.0050	.5	0.51	102	70-130	
Chloroform	mg/L	< 0.025	.5	0.48	97	80-131	
Tetrachloroethene	mg/L	< 0.0050	.5	0.54	109	70-132	
Trichloroethene	mg/L	< 0.0033	.5	0.56	111	70-131	
Vinyl chloride	mg/L	<0.0018	.5	0.42	84	46-134	
4-Bromofluorobenzene (S)	%				113	70-130	
Dibromofluoromethane (S)	%				96	70-130	
Toluene-d8 (S)	%				107	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303829 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 40177595001

METHOD BLANK: 1775443 Matrix: Water

Associated Lab Samples: 40177595001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.0038	0.012	10/22/18 12:35	
2,4,5-Trichlorophenol	mg/L	< 0.0017	0.0056	10/22/18 12:35	
2,4,6-Trichlorophenol	mg/L	< 0.0042	0.014	10/22/18 12:35	
2,4-Dinitrotoluene	mg/L	< 0.0016	0.0053	10/22/18 12:35	
2-Methylphenol(o-Cresol)	mg/L	< 0.0017	0.0058	10/22/18 12:35	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.0031	0.010	10/22/18 12:35	
Hexachloro-1,3-butadiene	mg/L	< 0.0049	0.016	10/22/18 12:35	
Hexachlorobenzene	mg/L	< 0.0034	0.011	10/22/18 12:35	
Hexachloroethane	mg/L	< 0.0053	0.018	10/22/18 12:35	
Nitrobenzene	mg/L	< 0.0029	0.0097	10/22/18 12:35	
Pentachlorophenol	mg/L	< 0.0029	0.0096	10/22/18 12:35	
Phenol	ug/L	<1.2	4.0	10/22/18 12:35	
Pyridine	mg/L	< 0.0036	0.012	10/22/18 12:35	
2,4,6-Tribromophenol (S)	%	131	58-134	10/22/18 12:35	
2-Fluorobiphenyl (S)	%	102	54-122	10/22/18 12:35	
Nitrobenzene-d5 (S)	%	98	56-120	10/22/18 12:35	
Phenol-d6 (S)	%	33	16-120	10/22/18 12:35	

METHOD BLANK: 1770913 Matrix: Water

Associated Lab Samples: 40177595001

Date: 10/25/2018 03:52 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	10/22/18 20:55	
2,4,5-Trichlorophenol	mg/L	< 0.0084	0.028	10/22/18 20:55	
2,4,6-Trichlorophenol	mg/L	< 0.021	0.070	10/22/18 20:55	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	10/22/18 20:55	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	0.029	10/22/18 20:55	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	10/22/18 20:55	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	10/22/18 20:55	
Hexachlorobenzene	mg/L	< 0.017	0.056	10/22/18 20:55	
Hexachloroethane	mg/L	< 0.027	0.089	10/22/18 20:55	
Nitrobenzene	mg/L	< 0.015	0.048	10/22/18 20:55	
Pentachlorophenol	mg/L	< 0.014	0.048	10/22/18 20:55	
Phenol	ug/L	<6.0	20.0	10/22/18 20:55	
Pyridine	mg/L	<0.018	0.060	10/22/18 20:55	
2,4,6-Tribromophenol (S)	%	113	58-134	10/22/18 20:55	
2-Fluorobiphenyl (S)	%	78	54-122	10/22/18 20:55	
Nitrobenzene-d5 (S)	%	78	56-120	10/22/18 20:55	
Phenol-d6 (S)	%	28	16-120	10/22/18 20:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

METHOD BLANK: 1770914 Matrix: Water

Associated Lab Samples: 40177595001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	10/22/18 21:17	
2,4,5-Trichlorophenol	mg/L	< 0.0084	0.028	10/22/18 21:17	
2,4,6-Trichlorophenol	mg/L	< 0.021	0.070	10/22/18 21:17	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	10/22/18 21:17	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	0.029	10/22/18 21:17	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	10/22/18 21:17	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	10/22/18 21:17	
Hexachlorobenzene	mg/L	< 0.017	0.056	10/22/18 21:17	
Hexachloroethane	mg/L	< 0.027	0.089	10/22/18 21:17	
Nitrobenzene	mg/L	< 0.015	0.048	10/22/18 21:17	
Pentachlorophenol	mg/L	< 0.014	0.048	10/22/18 21:17	
Phenol	ug/L	<6.0	20.0	10/22/18 21:17	
Pyridine	mg/L	<0.018	0.060	10/22/18 21:17	
2,4,6-Tribromophenol (S)	%	117	58-134	10/22/18 21:17	
2-Fluorobiphenyl (S)	%	83	54-122	10/22/18 21:17	
Nitrobenzene-d5 (S)	%	71	56-120	10/22/18 21:17	
Phenol-d6 (S)	%	28	16-120	10/22/18 21:17	

METHOD BLANK: 1771858 Matrix: Water

Associated Lab Samples: 40177595001

Date: 10/25/2018 03:52 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	10/23/18 14:57	
2,4,5-Trichlorophenol	mg/L	<0.0084	0.028	10/23/18 14:57	
2,4,6-Trichlorophenol	mg/L	<0.021	0.070	10/23/18 14:57	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	10/23/18 14:57	
2-Methylphenol(o-Cresol)	mg/L	<0.0087	0.029	10/23/18 14:57	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	10/23/18 14:57	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	10/23/18 14:57	
Hexachlorobenzene	mg/L	< 0.017	0.056	10/23/18 14:57	
Hexachloroethane	mg/L	< 0.027	0.089	10/23/18 14:57	
Nitrobenzene	mg/L	< 0.015	0.048	10/23/18 14:57	
Pentachlorophenol	mg/L	< 0.014	0.048	10/23/18 14:57	
Phenol	ug/L	<6.0	20.0	10/23/18 14:57	
Pyridine	mg/L	<0.018	0.060	10/23/18 14:57	
2,4,6-Tribromophenol (S)	%	97	58-134	10/23/18 14:57	
2-Fluorobiphenyl (S)	%	69	54-122	10/23/18 14:57	
Nitrobenzene-d5 (S)	%	58	56-120	10/23/18 14:57	
Phenol-d6 (S)	%	24	16-120	10/23/18 14:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

METHOD BLANK: 1773592 Matrix: Water

Associated Lab Samples: 40177595001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	0.062	10/23/18 15:19	
2,4,5-Trichlorophenol	mg/L	<0.0084	0.028	10/23/18 15:19	
2,4,6-Trichlorophenol	mg/L	< 0.021	0.070	10/23/18 15:19	
2,4-Dinitrotoluene	mg/L	< 0.0079	0.026	10/23/18 15:19	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	0.029	10/23/18 15:19	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	0.052	10/23/18 15:19	
Hexachloro-1,3-butadiene	mg/L	< 0.025	0.082	10/23/18 15:19	
Hexachlorobenzene	mg/L	< 0.017	0.056	10/23/18 15:19	
Hexachloroethane	mg/L	< 0.027	0.089	10/23/18 15:19	
Nitrobenzene	mg/L	< 0.015	0.048	10/23/18 15:19	
Pentachlorophenol	mg/L	< 0.014	0.048	10/23/18 15:19	
Phenol	ug/L	<6.0	20.0	10/23/18 15:19	
Pyridine	mg/L	<0.018	0.060	10/23/18 15:19	
2,4,6-Tribromophenol (S)	%	103	58-134	10/23/18 15:19	
2-Fluorobiphenyl (S)	%	95	54-122	10/23/18 15:19	
Nitrobenzene-d5 (S)	%	94	56-120	10/23/18 15:19	
Phenol-d6 (S)	%	28	16-120	10/23/18 15:19	

LABORATORY CONTROL SAMPLE:	1775444					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	.05	0.038	76	61-108	
2,4,5-Trichlorophenol	mg/L	.05	0.053	107	70-127	
2,4,6-Trichlorophenol	mg/L	.05	0.057	113	77-120	
2,4-Dinitrotoluene	mg/L	.05	0.064	127	70-130	
2-Methylphenol(o-Cresol)	mg/L	.05	0.043	87	60-130	
3&4-Methylphenol(m&p Cresol)	mg/L	.05	0.038	77	53-130	
Hexachloro-1,3-butadiene	mg/L	.05	0.048	96	66-114	
Hexachlorobenzene	mg/L	.05	0.055	110	70-130	
Hexachloroethane	mg/L	.05	0.036	73	52-130	
Nitrobenzene	mg/L	.05	0.047	94	70-130	
Pentachlorophenol	mg/L	.05	0.048	96	65-109	
Phenol	ug/L	50	22.9	46	28-120	
Pyridine	mg/L	.05	0.0098J	20	10-130	
2,4,6-Tribromophenol (S)	%			143	58-134 S	0
2-Fluorobiphenyl (S)	%			100	54-122	
Nitrobenzene-d5 (S)	%			103	56-120	
Phenol-d6 (S)	%			40	16-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

2-Fluorobiphenyl (S)

Nitrobenzene-d5 (S)

Date: 10/25/2018 03:52 PM

Phenol-d6 (S)

MATRIX SPIKE SAMPLE:	1775445						
		40177838001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	.25	0.21	84	57-108	
2,4,5-Trichlorophenol	mg/L	<0.0084	.25	0.26	104	45-127	
2,4,6-Trichlorophenol	mg/L	<0.021	.25	0.28	111	43-129	
2,4-Dinitrotoluene	mg/L	< 0.0079	.25	0.30	121	36-165	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	.25	0.20	78	38-130	
3&4-Methylphenol(m&p Cresol)	mg/L	< 0.016	.25	0.17	69	36-130	
Hexachloro-1,3-butadiene	mg/L	< 0.025	.25	0.25	101	66-114	
Hexachlorobenzene	mg/L	< 0.017	.25	0.27	109	70-130	
Hexachloroethane	mg/L	< 0.027	.25	0.20	81	52-130	
Nitrobenzene	mg/L	< 0.015	.25	0.23	93	65-130	
Pentachlorophenol	mg/L	< 0.014	.25	0.25	100	39-132	
Phenol	ug/L	<0.0060 mg/L	250	96.0	38	21-120	
Pyridine	mg/L	<0.018	.25	0.11	45	10-130	
2,4,6-Tribromophenol (S)	%				137	58-134	30
2-Fluorobiphenyl (S)	%				102	54-122	
Nitrobenzene-d5 (S)	%				103	56-120	
Phenol-d6 (S)	%				38	16-120	
MATRIX SPIKE SAMPLE:	1775446						
		40177480001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	<0.019	.25	0.18	70	57-108	
2,4,5-Trichlorophenol	mg/L	< 0.0084	.25	0.23	93	45-127	
2,4,6-Trichlorophenol	mg/L	<0.021	.25	0.25	99	43-129	
2.4-Dinitrotoluene	mg/L	< 0.0079	.25	0.26	106	36-165	
2-Methylphenol(o-Cresol)	mg/L	< 0.0087	.25	0.19	74	38-130	
3&4-Methylphenol(m&p Cresol)	mg/L	<0.016	.25	0.16	66	36-130	
Hexachloro-1,3-butadiene	mg/L	< 0.025	.25	0.22	89	66-114	
Hexachlorobenzene	mg/L	<0.017	.25	0.24	97	70-130	
Hexachloroethane	mg/L	< 0.027	.25	0.16	66	52-130	
Nitrobenzene	mg/L	<0.015	.25	0.21	82	65-130	
Pentachlorophenol	mg/L	< 0.014	.25	0.23	92	39-132	
Phenol	ug/L	<6.0	250	99.5	40	21-120	
Pyridine	mg/L	<0.018	.25	0.039J	15	10-130	
2,4,6-Tribromophenol (S)	%		-		124	58-134	
2 Fluorobinhonyl (S)	0/.				07	E4 100	

MATRIX SPIKE SAMPLE:	1775447						
		40177505001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	 mg/L	<375 ug/L	.25	<0.38	78	57-108	
2.4.5-Trichlorophenol	ma/l	<168 ua/L	.25	< 0.17	65	45-127	

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

87

89

54-122

56-120

16-120

Project: WESTON COAL FLY ASH-LF ACCEPTA

1775447

Pace Project No.: 40177595

Parameter

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Date: 10/25/2018 03:52 PM

2,4-Dinitrotoluene

Units

mg/L

mg/L

mg/L

mg/L

MATRIX SPIKE SAMPLE:

Parameter	Units	40177505001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
2,4,6-Trichlorophenol			.25				Qualificis
2,4,6-Trichlorophenol	mg/L mg/L	<423 ug/L <158 ug/L	.25 .25	<0.42 0.18J	79 70	43-129 36-165	
2,4-Dinitrototuerie 2-Methylphenol(o-Cresol)	_	242J ug/L	.25 .25	0.18J 0.49J	70 97	38-130	
, ,	mg/L	484J ug/L				36-130	
3&4-Methylphenol(m&p Cresol)	mg/L	<492 ug/L	.25 .25	0.69J	82 83	66-114	
Hexachloro-1,3-butadiene Hexachlorobenzene	mg/L	<339 ug/L	.25 .25	<0.49 <0.34	90	70-130	
	mg/L	<539 ug/L				52-130	MC
Hexachloroethane	mg/L	<532 ug/L <290 ug/L	.25	<0.53	137		-
Nitrobenzene	mg/L	•	.25	<0.29	62	65-130	
Pentachlorophenol	mg/L	<287 ug/L 271J	.25 250	0.42J 391J	169 48	39-132	IVIO
Phenol Provides a	ug/L	<358 ug/L			46 59	21-120	
Pyridine	mg/L	<336 ug/L	.25	<0.36		10-130	
2,4,6-Tribromophenol (S)	%				103	58-134	
2-Fluorobiphenyl (S)	%				89	54-122	
Nitrobenzene-d5 (S) Phenol-d6 (S)	% %				88 31	56-120 16-120	
	~				.	.0 .20	
MATRIX SPIKE SAMPLE:	1775448	40477500004	0-1-	140	140	0/ D	
Demonstra	11.26	40177506001	Spike	MS	MS	% Rec	0
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	mg/L	<93.9 ug/L	.25	0.17J	70	57-108	
2,4,5-Trichlorophenol	mg/L	<42.1 ug/L	.25	0.21	83	45-127	
2,4,6-Trichlorophenol	mg/L	<106 ug/L	.25	0.24J	95	43-129	
2,4-Dinitrotoluene	mg/L	<39.6 ug/L	.25	0.20	80	36-165	
2-Methylphenol(o-Cresol)	mg/L	<43.4 ug/L	.25	0.21	73	38-130	
3&4-Methylphenol(m&p Cresol)	mg/L	<78.1 ug/L	.25	0.19J	62	36-130	
Hexachloro-1,3-butadiene	mg/L	<123 ug/L	.25	0.21J	82	66-114	
Hexachlorobenzene	mg/L	<84.7 ug/L	.25	0.22J	89	70-130	
Hexachloroethane	mg/L	<133 ug/L	.25	0.25J	98	52-130	
Nitrobenzene	mg/L	<72.5 ug/L	.25	0.19J	75	65-130	
Pentachlorophenol	mg/L	<71.7 ug/L	.25	0.21J	85	39-132	
Phenol	ug/L	42.6J	250	117	30	21-120	
Pyridine	mg/L	<89.5 ug/L	.25	0.098J	39	10-130	
2,4,6-Tribromophenol (S)	%				110	58-134	
2-Fluorobiphenyl (S)	%				86	54-122	
Nitrobenzene-d5 (S)				81	56-120		
Phenol-d6 (S)	%				29	16-120	
MATRIX SPIKE SAMPLE:	1775449						
		40177621001	Spike	MS	MS	% Rec	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

< 0.019

<0.0084

< 0.021

< 0.0079

Result

Conc.

.25

.25

.25

.25

Result

0.18

0.22

0.24

0.27

% Rec

74

90

95

107

Limits

57-108

45-127

43-129

36-165

REPORT OF LABORATORY ANALYSIS

Qualifiers

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

MATRIX SPIKE SAMPLE:	1775449						
		40177621001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylphenol(o-Cresol)	mg/L	<0.0087	.25	0.18	74	38-130	
3&4-Methylphenol(m&p Cresol)	mg/L	<0.016	.25	0.16	63	36-130	
Hexachloro-1,3-butadiene	mg/L	< 0.025	.25	0.21	86	66-114	
Hexachlorobenzene	mg/L	< 0.017	.25	0.23	91	70-130	
Hexachloroethane	mg/L	< 0.027	.25	0.17	69	52-130	
Nitrobenzene	mg/L	< 0.015	.25	0.20	82	65-130	
Pentachlorophenol	mg/L	< 0.014	.25	0.19	77	39-132	
Phenol	ug/L	<6.0	250	94.7	38	21-120	
Pyridine	mg/L	<0.018	.25	0.13	50	10-130	
2,4,6-Tribromophenol (S)	%				118	58-134	
2-Fluorobiphenyl (S)	%				83	54-122	
Nitrobenzene-d5 (S)	%				85	56-120	
Phenol-d6 (S)	%				33	16-120	

(920)469-2436

QUALITY CONTROL DATA

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303106 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40177595001

SAMPLE DUPLICATE: 1770478

Date: 10/25/2018 03:52 PM

40177554001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 5.3 % Percent Moisture 5.3 0 10

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303161 Analysis Method: EPA 1010

QC Batch Method: EPA 1010 Analysis Description: 1010 Flash Point, Closed Cup

Associated Lab Samples: 40177595001

LABORATORY CONTROL SAMPLE: 1770861

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

Flashpoint deg F 83.0

SAMPLE DUPLICATE: 1770967

Date: 10/25/2018 03:52 PM

10450966001 Dup Max
Parameter Units Result Result RPD RPD Qualifiers

Flashpoint deg F 131.8 139.7

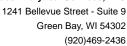
Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303308 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Associated Lab Samples: 40177595001

SAMPLE DUPLICATE: 1771549


40177448002 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers pH at 25 Degrees C 8.0 Std. Units 8.0 0 20 H6

SAMPLE DUPLICATE: 1771550

Date: 10/25/2018 03:52 PM

40177631001 Dup Max RPD RPD Parameter Units Result Result Qualifiers pH at 25 Degrees C Std. Units 7.7 7.7 0 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

QC Batch: 437300 Analysis Method: EPA 9076

QC Batch Method: EPA 9076 Analysis Description: 9076 Total Chlorine

Associated Lab Samples: 40177595001

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2405202 2405201

MSD

MS 92403918003 Spike Spike MS MSD MS MSD % Rec Max Limits RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Qual Chlorine, Total % 0.012 .05 .05 0.059 0.059 94 80-120 20 N2

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303188 Analysis Method: EPA 9095

QC Batch Method: EPA 9095 Analysis Description: 9095 PAINT FILTER LIQUID TEST

Associated Lab Samples: 40177595001

METHOD BLANK: 1771088 Matrix: Solid

Associated Lab Samples: 40177595001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Free Liquids no units fail 10/15/18 13:54

LABORATORY CONTROL SAMPLE: 1771089

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Free Liquids no units pass

SAMPLE DUPLICATE: 1771090

Date: 10/25/2018 03:52 PM

Parameter Units Result Result RPD Qualifiers

Free Liquids no units pass pass

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 303638 Analysis Method: SM 2710F
QC Batch Method: SM 2710F Analysis Description: Spec.Gravity

Associated Lab Samples: 40177595001

SAMPLE DUPLICATE: 1773578

Date: 10/25/2018 03:52 PM

40177838001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers Specific Gravity 1.9 no units 1.8 5 20

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 317251 Analysis Method: EPA 9014

QC Batch Method: SW-846 7.3.3.2 Analysis Description: 733C Reactive Cyanide

Associated Lab Samples: 40177595001

METHOD BLANK: 1547717 Matrix: Solid

Associated Lab Samples: 40177595001

Parameter Units Blank Reporting
Result Limit Analyzed Qualifiers

Cyanide, Reactive mg/kg <0.40 0.99 10/19/18 00:02

LABORATORY CONTROL SAMPLE: 1547718

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide, Reactive mg/kg 99.6 < 0.40 0 0-8

SAMPLE DUPLICATE: 1547719

Date: 10/25/2018 03:52 PM

Parameter Units Result Result RPD Max Qualifiers

Cyanide, Reactive mg/kg ND <0.40 20

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

QC Batch: 317250

QC Batch Method: SW-846 7.3.4.2

Associated Lab Samples: 40177595001

METHOD BLANK: 1547714

Associated Lab Samples: 40177595001

Parameter Units Sulfide, Reactive

mg/kg

Blank Reporting Result

Matrix: Solid

Analysis Method:

Analysis Description:

Limit

Analyzed

SM4500S2F-00

734S Reactive Sulfide

Qualifiers

<9.9 9.9 10/18/18 23:14

LABORATORY CONTROL SAMPLE: 1547715

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 18 Sulfide, Reactive mg/kg 199 35.9 0-52

SAMPLE DUPLICATE: 1547716

Date: 10/25/2018 03:52 PM

30268573001 Dup Max **RPD RPD** Qualifiers Parameter Units Result Result ND 20 Sulfide, Reactive <10 mg/kg

QUALIFIERS

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A	Pace Analytical Services - Asheville
PASI-G	Pace Analytical Services - Green Bay
PASI-PA	Pace Analytical Services - Greensburg

Surrogate recovery outside laboratory control limits.

ANALYTE QUALIFIERS

S0

Date: 10/25/2018 03:52 PM

1q	Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before analysis.
2q	Use of method EPA 1010A for flash point analysis on solid samples is for informational purposes only. It is the user's responsibility to verify the acceptance of this data for intended use.
H6	Analysis initiated outside of the 15 minute EPA required holding time.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
N2	The lab does not hold NELAC/TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: WESTON COAL FLY ASH-LF ACCEPTA

Pace Project No.: 40177595

Date: 10/25/2018 03:52 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40177595001	WESTON 4 FLY ASH	EPA 3010	303424	EPA 6010	303571
40177595001	WESTON 4 FLY ASH	EPA 7470	303426	EPA 7470	303467
40177595001	WESTON 4 FLY ASH	EPA 3510	303829	EPA 8270	303962
40177595001	WESTON 4 FLY ASH	EPA 8260	303318		
40177595001	WESTON 4 FLY ASH	ASTM D2974-87	303106		
40177595001	WESTON 4 FLY ASH	EPA 1010	303161		
40177595001	WESTON 4 FLY ASH	EPA 9040	303308		
40177595001	WESTON 4 FLY ASH	EPA 9076	437300		
40177595001	WESTON 4 FLY ASH	EPA 9095	303188		
40177595001	WESTON 4 FLY ASH	SM 2710F	303638		
40177595001	WESTON 4 FLY ASH	SW-846 7.3.3.2	317251	EPA 9014	317278
40177595001	WESTON 4 FLY ASH	SW-846 7.3.4.2	317250	SM4500S2F-00	317277

1	Pace Analytical www pacellos.com						The Chair	n-of-Custo	ody is a	a LEGA	L DO	CUME	NT. A	di relev	ant fie	lds m	ust be o	omplete	ed accur	ately.			Ų	0		75	75
Sectio Require	n A ed Client Information:	Section Required		ct Info	mation:		~	1/1	/	, ,	on C	mition:										P	age:	1		of J	
Compar	Wisconsin Public Service Corp.	Report To						++	-t	Attent				s Pay	able				7			L	_	<u></u>			<u> </u>
Address	700 North Adams Street	Сору То:			······································	······································	· · · · · · · · · · · · · · · · · · ·	1	\neq	Comp	any Na	me:	WEC	C Ene	rgy G	гоир	····		REG	ΙΙΙ ΔΤ	ORV	AGENO	~~	elektra.	aniani.		in de Arts Pies
***************************************	Green Bay, WI 54307	1						11 6	<u> </u>	Addre							Baγ, W	1		NPDE:			UND W	ATED		BDINIZIN	IG WATER
Email To	o: patrick.ahrens@wecenergygroup.com	Purchase	Order	No.;	120018	7395				Pace C	luote								┨	ust		RCRA		AIEK		DRINKIN OTHER	IG WATER
Phone:	(920) 433-1391 Fax: (920) 433-4916	Project Na	ame:	We	ston Coa	Fly Ash	- Landfill	Accepta	nce	Referei Pace P	roject	Bria	an Ba	ester)					Local		11011		<i>VII</i>	inn		
Reques	sted Due Date/TAT: Normal	Project Nu	ımber:	****	·					Manag Pace P		:								STA		٧	VI				
		<u></u>	· · · · ·							<u> </u>	····					7 (8)	Red	uestei	l Analy			I (Y/N)	- V				
	Section D Valid Matrix Required Client Information MATRIX	Codes CODE	(eff)	(d)		COLI	ECTED		T			Pres	serva	tives		N/A	YN						\top				
# X	ORINKING WATER WASTE WATER WASTE WASTE WASTE PRODUCT SOLUSCURD OIL SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE ORINKING WATER PRODUCT OIL WIPE AIR OTHER THISSUE	DW WY P SL OL WP AR OT TS	MATRIX CODE (see valid codes to left)	SAMPLE TYPE (G*GRAB C=COMP)	COMP STA		COMPO END/GI	SITE RAB	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved H-SO,	3	1	Na ₂ S ₂ O ₃	anoi	Analysis Test	Protocaol A See attached list			\(\frac{1}{2}\)				Kesidual Chlorine (Y/N)			
TEM			MAT	SAM	DATE	TIME	DATE	TIME	SAM	# OF	Und F,S,E	HNO	고 일	geZ .	Metha	¶∀1	Protc See							Kesi	Pace I	Project i	No./ Lab I.D
1	Weston 4 Fly Ash		OL	G			10/12/18			8	8						х						11		ĵζ	<u> </u>	
2			<u> </u>			ļ	<u> </u>																			***************************************	
3			<u> </u>					:	-			14							11								
4 5					}				-	 	-	44		 				 			_		11				···
6			 							-	\dashv	++		╁┼	-					++	_		+		·		
7									1	-		++	+-	++			_		╀┼-	++	+	 					
8									+		+	+-+		╂┼	+	1		-	+	+	-		╁╂			***************************************	
9									1-		┪	++	╫	╁┼	\dashv	1				++		++	┼┼				
10											+	Н	-	++	+	ł			╁╌┼╴	++	+	+-+	++	-	·····		
11		···									+	$\dag \dagger$	+				+	$\vdash \vdash$	†+	++	+	++	╁╁				
12											\top	11	+	H		ŀ	-	I-+	++	++	+	++	╅┪	+	·····		
	ADDITIONAL COMMENTS		RELI	NQUI	SHED BY /	AFFILIATI	ON	DAT	E A	TI	AE .			ACC	EPTED	BY /	AFFILI/	TION		DATE		TIME	1		SAMPL	E CONDIT	ions
	7		Ede	- A	LIN	earl		10/12	Toor	8 /	1:48	17	<u>.</u> Z	7	7	T	T^{-}		£,,,	[Q]	ic.	1145					
		D	_	j .	/ 				. (. 9	<u> </u>	+-	7		4	8	Approximately 1	- CHARLES		164		<u> </u>	0		, +	17	\

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

SAMPLER NAME AND SIGNATURE

PRINT Name of SAMPLER: Merlin Raab

SIGNATURE of SAMPLER:

Received on Ice (Y/N)

DATE Signed (MM/DD/YY): /O//2

Custody Sealed Cooler (Y/N) Samples Intact (Y/N)

Outagamie County Landfill Brown Outagamie Winnebago Counties Analytical Protocol/Acceptance Criteria Protocol A

(Foundry process waste; municipal, hospital and boiler ash; ink wastes; paint wastes and paint sludges; metal treatment/preparation sludges; waste glues and adhesives; ceramic production/manufacturing waste; soils contaminated with heavy metals.)

Analytical Parameter	Acceptance Criteria
pH	$2.0 \le pH \le 12.5$
Total solids	$\geq 40\%$
Free liquids	0%
Flash point (closed cup)	>140°F
Chlorine	<1%
TCLP metals ¹	
arsenic	TCLP <5.0 mg/l
barium	TCLP <100.0 mg/l
cadmium	TCLP < 1.0 mg/l
chromium	TCLP <5.0 mg/l
lead	TCLP <5.0 mg/l
mercury	TCLP <0.2 mg/l
selenium	TCLP <1.0 mg/l
silver	TCLP < 5.0 mg/l
Total available sulfide	<500 mg/kg
Total available cyanide	<250 mg/kg
Phenol	<2000 mg/l
TCLP organics ¹	
benzene	TCLP <0.5 mg/l
carbon tetrachloride	TCLP < 0.5 mg/l
chlorobenzene	TCLP <100.0 mg/l
chloroform	TCLP < 6.0 mg/l
o – cresol ²	TCLP <200.0 mg/l
m - cresol ²	TCLP <200.0 mg/l
p - cresol ²	TCLP <200.0 mg/l
1,4 - dichlorobenzene	TCLP <7.5 mg/l
1,2 - dichloroethane	TCLP <0.5 mg/l
1,1 - dichloroethene	TCLP <0.7 mg/l
2,4 - dinitrotoluene	TCLP <0.13 mg/l
hexachlorobenzene	TCLP < 0.13 mg/l
hexachlorobutadiene	TCLP <0.5 mg/l
hexachloroethane	TCLP < 3.0 mg/l
methyl ethyl ketone	TCLP <200.0 mg/l

C:\Documents and Settings\barnetbl\Local Settings\Temporary Internet Files\Content.Outlook\IC5IW93N\Updated Special Waste appendices (rev 6-13-12).doc

Analytical Parameter	Acceptance Criteria
nitrobenzene	TCLP <2.0 mg/l
pentachlorophenol	TCLP <100.0 mg/l
pyridine	TCLP < 5.0 mg/l
tetrachloroethene	TCLP < 0.7 mg/l
trichloroethene	TCLP < 0.5 mg/l
2,4,5 - trichlorophenol	TCLP < 400.0 mg/l
2,4,6 - trichlorophenol	TCLP < 2.0 mg/l
vinyl chloride	TCLP < 0.2 mg/l

For all constituents which are identified as TCLP extraction, it is permissible to do a totals
analysis if <20 times the regulatory level. If the totals analysis is >20 times regulatory limit, the
TCLP extraction is required.

^{2.} If o-, m-, and p-cresol concentrations cannot be differentiated, the total cresol concentration is used. The regulatory level for total cresol is 200 mg/l.

Cli		: Nai		***************************************		21			****			·	****		Pro	ojed	t,#	atio	n Re	ecei U	pt F	orm	1 5	75	<u>-</u>							1241 E	nalytical Services, LLC dellevue Street, Suite 9 Green Bay, WI 54302 8
	All c	ontain	ers n	eeding	pres	ervati	on ha	ve be	en ch				below paper		s⊡No	,DMT/		b Std :	#ID of	prese	rvatio	n (if p	H adju	usted)						l when pleted:		Date/ Time:	Page
		and produce and a state of the		Glas	S	, constant of the second					Plast	tic	1				**********	ials	d distribution of a standard constant of the s	y commence of the commence of		Jars		ţ	ener	al	Vials (>6mm) *	152	VaOH+Zn Act pH ≥9	≥12	З	ijusted	Volume
Pace Lab#	AG10	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP2N	BP2Z	врзи	ВРЗС	BP3N	BP3S	DG9A	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	N O	OA Viak	12SO4 pH	laOH+Zn	√aOH pH ≥12	INO3 pH <2	ж after adjusted	(mL)
001	800.008																				X			<u> </u>		Ľ	Ĺ				-	- 6	2.5/5/10
002												_																					2.5 / 5 / 10
003 004														0.663.163	V. C.	100000000000000000000000000000000000000		C 250, CES		200000000000000000000000000000000000000													2.5 / 5 / 10
004												-					-					<u> </u>											2.5 / 5 / 10
005						(EA) (A) (A)	20.00	806			8.0858			(20) AT			- (2) (1) (1)	A (24) 3050	2047/64000			bandana	- ABS-0-146	42,000,000	sa salan Workes	20 e58001588	SAVAGRISA	2017400400000	September 1907	Sec. 900 (1000)		2 -00-2 -00-00	2.5 / 5 / 10
007												-																					2.5 / 5 / 10
800										NG 20060														V (2) () () () () () () () () ()					TENESSIA (4.0		26344033440	5.058.04.00	2.5/5/10
009																					-		-								8		2.5/5/10
010							600,000			a a											5.00000					20.90		50.000					2.5 / 5 / 10
011																																	25/5/10
012								168 IB																								Au	2.5 / 5 / 10
013																												55 (52)					2.5 / 5 / 10
014																	986.000																2.5 / 5 / 10
015								205(10000)																									2.5 / 5 / 10
016		1000									8.8					6, 6				us con													2.5 / 5 / 10
017																								H									2.5/5/10 2.5/5/10
018										3 6						45.00			8.8														2.5/5/10
019											m																						2.5 / 5 / 10
020					23 (8)			100 (0)		10.00	anda.			180	200																	180	2.5/5/10
Excep	tions	to pre	serva	ation c	heck:	VOA	Colif	orm.	тос	TOX	TOH	O&C	WID	RO F	henol	ics C	ther:			Hood	00000	in \#	۱۸ \ <i>ا</i> -	Ja / > 0		-V		lus.					Edward Labor I Warrison (Anti-Joseph College
AG1U									100,					, 1				Lic					√A VIA			·		<i>f</i>		look	in head	Ispace	COlumn :
AG1H			_		L.			1	2N		r plas: nL pla		•				69A 69T	i i	iL amb iL amb						ifU SFU	1		r jar u: ar unp					
AG4S	125	mL an	nber g	glass F	12504			l	22	•	-		аОН,	Znact		i .	i9U	1	L clea			s			PFU			ar unp : jar u					
AG4U								ļ	3Ú		nL pla					VG	i9H												İ				
AGSU									3C		nL pla						9M		L clea			I			'5T	120	nL pla	stic N	a Thio	sulfate	ė		
AG2S BG3U				ilass H ss un		•		BP BP	3N 3S		nL pla nL pla					VG	G9D 40 mL clear vial DI ZPLC ziploc bag																

GN:

Pace Analytical

Document Name: Sample Condition Upon Receipt (SCUR)

Document Revised: 25Apr2018

Document No.:

Issuing Authority:

1241 Bellevue Street, Green Bay, WI 54302

F-GB-C-031-Rev.07

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: WFC		Project #	WO# : 4	0177595
Courier: CS Logistics Fed Ex S	peedee Clips Cv	Valtoo	B 4 :	
Client Pace Other		ranto o		
Tracking #:		**	4017/595	- -
Custody Seal on Cooler/Box Present:	es Fino Seals intact	yes no		en e
Custody Seal on Samples Present: 🦵 ye	· · · · · · · · · · · · · · · · · · ·	yes I no		
Packing Material: Bubble Wrap	Bubble Bags Non	e Cother		
Thermometer Used SR - NH	Type of Ice (Wet	Blue Dry None	Samples on	ice, cooling process has begun
	orr: (20)		F	
Temp Blank Present: yes no	Biological '	Tissue is Frozen: 🖟	yes no	Person examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.				Initials:
Chain of Custody Present:	_ □Yes □No □N/A	1.		
Chain of Custody Filled Out:	Yes Pino ON/A	2. notime		appropriet
Chain of Custody Relinquished:	SNA V	3.		
Sampler Name & Signature on COC:	ØYes □No □N/A	4.		
Samples Arrived within Hold Time:	ØYes □No	5.		
 VOA Samples frozen upon receipt 	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes ØNo	6.		
Rush Turn Around Time Requested:	□Yes_ØNo	7.		
Sufficient Volume:	•	8.		
For Analysis; ☐Yes ☐No MS/	MSD; EYes Ono On/A			
Correct Containers Used:	DYes □No	9.		
-Pace Containers Used:	Yes No N/A			
-Pace IR Containers Used:	□Yes □No ☑Ñ/A			
Containers Intact:	No	10.		
Filtered volume received for Dissolved tests	□Yes □No □NA	11.		
Sample Labels match COC:	Yes ONO ON/A	12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>			
Frip Blank Present:	□Yes □No □N/A	13.		
Frip Blank Custody Seals Present	□Yes □No ☑N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted:	Dota		necked, see attache	ed form for additional comments
Comments/ Resolution:	Date/	ıme		
Project Manager Review:			Pi - 6 -	11-12 10
j-ot munuger steview.	$-\mathcal{H}\mathcal{H}$		Date:	10-12-18

Attachment 4 Posi-Shell® Product Information and Formulations Guide

2183 Pennsylvania Avenue Apalachin, NY 13732

Ph: 800-800-7671 Fx: 607-625-2689 www.lscenv.com

BASE MIX USAGE GUIDE

Revised September 2016 LF

Table of Contents

1.0 Definition of Posi-Shell* Base Mix	3
1.1 Background and Concept	3
1.2 Environmental and Economic Benefits	3
1.3 Equipment	4
1.4 Personnel	4
1.5 Materials	4
2.0 Safety	5
3.0 Operator Attire	5
4.0 Towing Units	5
5.0 Loading and Mixing Procedure	5
5.1 Liquid Addition	5
5.2 Posi-Shell [®] Base Mix Addition	6
5.3 Optional Xtreme Rain Shield™	6
5.4 Optional Portland Cement Addition	6
6.0 Transporting	7
6.1 Cold Weather Transport	7
6.2 Towing on Slopes	7
7.0 Application of Posi-Shell Base Mix	7
7.1 Odor Control	8
7.2 Vector Control	
7.3 Scavenging	9
7.4 Litter Control	9
7.5 Fire Control	9
7.6 Additional Applications	9
Posi-Shell Base Mix Application Minimum Requirements Guideline	10
Posi-Shell® Products Guide	11
7.7 Discharge Nozzle Selection	12
7.8 Handling the Discharge Spray Boom	12
7.9 Coverage of Large Area	12
7.10 Heavy Applications	12
8.0 Cleaning	13
9.0 Winter Care	13
9.1 Posi-Shell* Base Mix Winterizing Procedure	13
10.0 Material Storage	
10.1 Posi-Shell® Material Storage	13
11.0 Troubleshooting (may not apply to all hydroseeders)	14
11.1 Removing Foreign Object from Discharge Nozzle	14
11.2 Removing Foreign Object from Mixing Tank	14
11.3 Clearing Clogged Mixing Tank	14
11.4 Lockout/Tagout & Confined Space Entry	14
12.0 Contingency Soil Supply	14
Recycling Waste Latex Paint with Posi-Shell*	15
Durability of Long Term Cover	16
GHD Safety Data Sheet Document	17

his guide gives you specific, easy to follow instructions for the safe and efficient usage of LSC Environmental Products Posi-Shell Base Mix product. For best results and to ensure safety, please follow the instructions carefully.

1.0 Definition of Posi-Shell Base Wix

Posi-Shell* is a spray applied mineral mortar coating, similar to stucco, used for waste cover, erosion control, and hydroseeding. It is a low-cost alternative to the conventional six inches (150 mm) of soil used as daily cover at most landfills. Posi-Shell* is a noncombustible blend of materials providing a thin, non-toxic, stucco-like coating that performs all functions of landfill daily cover, intermediate cover, and erosion control. Applied with a standard hydroseeding unit, this system provides increased landfill capacity while providing a more environmentally effective cover system for the landfill.

1.1 Background and Concept

Landfilled solid waste must be covered each day to control vectors, fires, odors, blowing litter, and scavenging. Cover material is generally defined as a six inch (150 mm) soil layer or other suitable material.

Posi-Shell is an alternative to traditional landfill daily cover materials. The coating is a spray-on slurry composed of water, Posi-Shell Base Mix, and optional Portland cement that forms a coating for various types of landfill cover. Posi-Shell is designed for use by a landfill operator at the close of each operating day for compliance with cover regulations. The material meets and exceeds regulatory requirements for the control of landfill vectors, fires, odors, blowing litter, and scavenging.

For most situations Posi-Shell* provides cover ranging from 4 to 10 ft² per gallon (0.10 to 0.25m²/liter) of slurry but depending on conditions and desired quality coverage up to 40ft² per gallon (0.75m²/L.) can be achieved. The coverage area is dependent upon the desired thickness and the texture of the covered surface. Application of Posi-Shell* is a one-man operation.

1.2 Environmental and Economic Benefits

Use of Posi-Shell conserves energy, natural resources and improves air quality by eliminating the use of heavy earth-moving equipment for the transporting, laying, and reworking of some soil covers on the landfill.

The major benefit of the use of Posi-Shell* is the conservation of extremely valuable landfill capacity, commonly known as "air space". Landfill air space is a valuable asset and the need to conserve capacity is paramount to achieve environmental and economic objectives for both landfill operators and regulatory agencies. Efficient use of air space today can directly translate into longer landfill life, decreased operating costs, and increased revenue generation. An increase in air space efficiency up to 20% delays the need for the siting and construction of new facilities that ultimately may have severe environmental and economic impacts.

1.3 Equipment

The equipment used for Posi-Shell* consists of a standard hydroseeding unit, a towing unit, and a water source. The towing unit is used for moving the hydroseeding unit around the landfill site. If a nearby hydrant or other water source is not available, then a water trailer or truck is required.

1.4 Personnel

One operator is required for Posi-Shell*. This operator must be capable of operating heavy equipment and be familiar with the mechanics of all equipment used. The operator will be trained by LSC Environmental Products in the use of Posi-Shell*. If preferred, a

two man operation may be used to expedite coverage time.

1.5 Materials

1.5.1 Water

Potable water, non-potable water and landfill leachate can be used as the liquid portion of Posi-Shell*. Use of leachate requires site-specific regulatory approval, operations, and safety plan to assure proper health and safety practices are implemented.

In most Posi-Shell mixtures approximately 800 gallons (3030liters) of water is used for each 1000 gallon (3785liters) load of Posi-Shell. The water can either be supplied by a hydrant, pumped from a nearby pond, or brought to and stored adjacent to the hydroseeding unit by water truck or trailer. The sizing of the specific water supply method should be adequate to ensure that the filling of the hydroseeding unit occurs within a few minutes' time.

As stated, leachate can be used as a water source if specific regulatory approval is obtained. It is not recommended that a high-strength leachate be used due to odor concerns and the added safety precautions required to assure worker safety. However, use of relatively dilute leachate is an effective method for reducing a portion of a landfill's total leachate production. The inherent odor-neutralizing properties of Posi-Shell* EC Series can mitigate the potential odor problems of leachate when it is used as a water source.

1.5.2 Posi-Shell Base Mix

A proprietary blend of finely ground clay, reinforcing fiber, and coloring mixed with water creates the Posi-Shell* Base Formulation. See the back of this manual for a GHS Safety Data Sheet for this material.

1.5.3 Portland Cement

For more durable covers, optional Portland cement can be used as the cementitious mineral binder component of Posi-Shell* EC Series. Approximately 2000 lbs. (907kg) of this material is used for each 1000 gallon (3785 liter) Posi-Shell* load. The Portland cement further helps neutralize odors and contaminants found in leachate. Material Safety Data for this material is available through local suppliers.

1.5.4 Xtreme Rain Shield™

During light rains, Posi-Shell® coatings will not typically wash off. However, if heavy rains are expected prior to the product fully curing (12-24 hours) the addition of Xtreme Rain Shield™ is necessary to prevent washing. See the back of this manual for a GHS Safety Data Sheet for this material.

20 Safety

Posi-Shell is nonhazardous and is composed of nonhazardous materials. Certain safety measures are recommended during different aspects of Posi-Shell use. Follow safety procedures specific to your hydroseeding unit, towing unit, or other equipment used.

3.0 Operator Attire

The operator should, at all times, wear appropriate protective clothing. Jewelry and loose fitting clothing should be avoided. Recommended protective clothing includes the following:

- · Safety glasses with side shields
- Leather gloves
- · Industrial grade work coveralls
- · Leather steel-toed shoes
- Dust particulate mask

If leachate is being used as the liquid portion of the Posi-Shell* mixture, protective clothing in accordance with site regulations should be worn.

4.0 Towing Units

See table on Page 11 for Posi-Shell* material weights. To determine the total load weight, add the Posi-Shell* material weight to the weight of your hydroseeding unit. Ensure that the towing unit and hitch arrangement are capable of handling the total of these weights.

5.0 Loading and Mixing Procedure

It is important to add the Posi-Shell materials in the order specified.

5.1 Liquid Addition (Step 1)

Before placing any dry material in the mixing tank, the tank must be filled with the appropriate amount of liquid (water or leachate). See chart on Page 11. If your hydroseeding unit has a reserve water tank, fill at this time with clean water. It is not recommended to use leachate as the clean out water.

All bags of material (Posi-Shell[®] Base Mix, Xtreme Rain Shield[™], Portland cement) can be loaded through the side rails of the hydroseeding unit onto the mixing deck from the ground. Ensure that they do not obstruct the ladder area. Never attempt to carry materials up or down ladders. To avoid back injuries, always use proper lifting practices when handling bags. Frozen materials should not be used.

5.2 Posi-Shell® Base Mix Addition (Step 2) (If using component mix add Posi-Pak, PSM-200, and coloring at this time)

When handling Posi-Shell® Base Mix, Xtreme Rain Shield™, or Portland cement a dust mask is recommended to prevent inhalation, and coveralls and gloves to prevent skin contact. Safety glasses should be worn to keep dust from entering the eyes. Should eyes or skin come in physical contact with any Posi-Shell® ingredients thoroughly rinse with water.

With mixer paddles running at medium speed add Posi-Shell® Base Mix material by cutting open bag and dumping contents into the mixing tank (discard bag). See chart on Page 11 for quantities. Allow Posi-Shell® Base Mix to mix at high speed for about 5 minutes until peaks and craters are visible on the surface of the product. Properly thickened Posi-Shell® Base Mix will have the consistency of pudding. (see left photo below).

5.3 Optional Xtreme Rain Shield™


During light rains, Posi-Shell® coatings will not typically wash off. However, if heavier rains are expected prior to the product fully curing (12-24 hours), the addition of Xtreme Rain Shield™ may be necessary. Operator experience and discretion will determine which Xtreme Rain Shield™ formulation is best suited for the situation. With mixer paddles running at medium speed, add material to the already thickened Base Mix by cutting open the bag and gradually adding the contents into the mixing tank (discard bag). For better dispersion of this product into the Posi-Shell® Base Mix, recirculation through the pump and back to tank may be necessary. Properly thickened Posi-Shell® Base Mix with Xtreme Rain Shield™ added will be more sticky and "rubbery" than the Base Mix (see right photo below showing the elasticity of Xtreme Rain Shield™. Posi-Shell® Base Mix does not "stretch" this far). For best results, Portland cement should be added after the Xtreme Rain Shield™ has thickened to better activate the product. (See chart on Page 11 for quantities).

5.4 Optional Portland Cement Addition

At times more durable Posi-Shell® coatings may be desired. These can be achieved by the addition of Portland cement to the already thickened Posi-Shell® Base Mix. With mixer paddles still running at medium speed add Type I Portland cement material (regular Portland cement, NOT concrete.) by cutting open bag and dumping contents into the mixing tank (discard bag). See chart on Page 11 for quantities. After the Portland is added, the material will appear a more grayish brown and have a denser appearance. The thickness should still be about the same as the Posi-Shell® Base Mix (see middle photo below).

Properly Thickened Base Mix (Quarter used for perspective)

With Portland Cement Added (Quarter used for perspective)

With Xtreme Rain ShieldTM Added (Showing dripping from spray nozzle)

6.0 Transporting

Close inlet hopper lid prior to transportation and leave mixer paddles turning at low speed.

6.1 Cold Weather Posi-Shell® Transport

To prevent freezing during extremely cold weather (below 20°F .6°C), recirculate product through system back to mixing tank. Prior to disconnecting spray wand from recirculation hose, be sure to disengage pump.

6.2 Towing on Slopes

To avoid the possibility of equipment tipping over, always tow up or back down slopes. DO NOT traverse (tow sideways) across slopes.

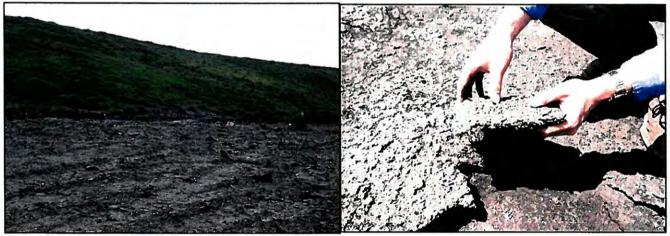
Proper orientation of equipment on slope

7.0 Application of Posi-Shell®

For overnight cover, conventional end-of-day waste compaction and surface preparation are normally adequate prior to Posi-Shell® application. A smoother surface will require less material due to reduced surface area. For intermediate cover applications it may be desirable to create a smoother, more uniform receiving area by spreading available materials such as greenwaste, ash, or processed waste as leveling material over the conventional waste.

Methods of application and the recommended finished appearance of Posi-Shell® are shown in the photographs on the next page. In general, the operator should position the application unit upwind, and should select the spray nozzle appropriate to the distance from the waste pile. When changing nozzles, be sure to disengage pump before disconnecting nozzle. In some cases, it will be necessary to spray a given area from two directions to compensate for "spray shadow" effects or wind dispersion. The most effective method of coverage will vary with each site, but generally, if opposite spray angles cannot be achieved due to operational constraints, the product is best applied from the location at which it will be observed most often.

An example of Spray Shadow (To correct, apply from opposing directions)


When high winds are encountered, it may be necessary to position the hydroseeding unit in an upwind position. Since pumps emit a high pressure stream of slurry it is not generally effected by light winds; however, wind direction should always be considered with respect to airborne dispersion of overspray.

The application process is not typically affected by cold weather. During extremely cold weather, Posi-Shell® will freeze before curing. After a thaw the material will cure. (See Page 16, Durability of Long Term Cover.)

Application of Posi-Shell® via Deck -Mounted Discharge Wand

Application of Posi-Shell® via Extension Hose

Daily and Intermediate Cover

Cured Long-Term Posi-Shell® Coating

7.1 Odor Control

The Posi-Shell® formulation has an inherent capability to suppress odors. By applying the Posi-Shell® as a daily cover, typical landfill odors will be reduced. Additionally if an EC Series coating is used the calcium oxide in Portland cement will further suppress odors.

Where excess or extreme odors warrant additional action, contact LSC for information about our Odor-Shell® product.

7.2 Vector Control

Posi-Shell® cover has proven affective at inhibiting the attraction of vectors to waste piles.

7.3 Scavenging

General animal scavenging is reduced since the Posi-Shell[®] seals in odors and hides the visible food source beneath the covering shell. Scavenging by humans is inhibited by the complete visual coverage of the waste pile and by the coating of slurry applied upon all surface objects.

7.4 Litter Control

Posi-Shell® cover is highly effective for litter control. Due to the sticky consistency and weight of the material, a shell is formed over the garbage which prevents litter from being blown away by high winds. A thin layer of Posi-Shell® cover is recommended for preventing blowing litter.

In extremely windy situations, Posi-Shell® can be applied to waste as it is being unloaded from garbage trucks. This technique has been proven highly effective.

7.5 Fire Control

Posi-Shell® cover is an extremely effective fire control material. Independent laboratory testing of Posi-Shell® by ASTM D4982 method has certified that Posi-Shell® is non-fuel contributing, non-smoke producing, and non-combustible. When an acetylene torch is applied directly to the Posi-Shell® cover, ignition of the Posi-Shell® cover or underlying waste does not occur.

In addition to the non-flammable characteristic of Posi-Shell cover, the Posi-Shell® application unit can be used to fight landfill fires. Direct application of Posi-Shell® material to an open flame will smother it. If a subterranean landfill fire occurs, Posi-Shell® coating can be applied to the waste pile's surface and will form a fire smothering seal.

7.6 Additional Applications

Posi-Shell® cover fulfills the relevant performance criteria for various additional applications including erosion control, ditch lining, coating of sludge piles, contaminated soil piles, compost piles and temporary waste piles and excavations of various types. Posi-Shell® has been successfully applied to coal piles, salt piles, cement clinker piles and used at remediation sites to suppress volatile emissions. Posi-Shell® may also be used as the tackifier in hydroseeding mixtures.

Finished Appearance of Posi-Shell[®] Intermediate Cover, Daily Cover, and Erosion Control at a Major Municipal Landfill

Erosion Control

Odor Control

Posi-Shell®

Application Minimum Requirements Guideline

	SHORT TERM COVER (Depending on conditions cover can last overnight to several weeks)	MEDIUM TERM COVER (Depending on conditions cover can last several weeks to several months)	LONG TERM COVER (Depending on conditions cover can last several months to one year)		
SLURRY MIXTURE* Posi-Shell® Base Posi-Shell® EC-1 (See next page for mixtures)		Posi-Shell® EC-2 Posi-Shell® EC-4 (See next page for mixtures)	Posi-Shell® EC-2 Posi-Shell® EC-4 (See next page for mixtures)		
APPLICATION RATE	Approx. 8-10 ft ² /gal.** (0.20 to 0.25 m ² /L.)	Approx. 6-8 ft ^{2/} gal. (0.15 to 0.20 m ² /L.)	Approx. 4-6 ft 2 /gal. (0.10 to 0.15 m 2 /L.)		
Apply from two directions to eliminate spray shadow. COVERAGE METHOD		Apply from two directions to eliminate spray shadow.	Apply from two directions to eliminate spray shadow. For slope coverage extend cover 3-4 feet (0.9 to 1.2 meters) beyond crest of slope.		
COVERAGE THICKNESS	Finished cover should be Approx. 1/8" (3.5 mm)	Finished cover should be Approx. 1/4" (6.5 mm)	Finished cover should be Approx. 3/8" (9.5 mm)		
COVERAGE APPEARANCE	No waste/soil visible from any angle.	No waste/soil visible from any angle. Cover should have a "stucco-like" texture.	No waste/soil visible from any angle. Cover should have a "stucco-like" texture.		
COVERAGE MAINTENANCE None. Waste is placed over cover next working day.		Cover should be inspected periodically and touched up if waste/soil becomes visible.	Cover should be inspected periodically and touched up if waste/soil becomes visible.		

^{*} These are manufacturer's recommendations. Use and practice will determine the best mixture for each situation.

^{**} Depending on conditions and desired quality, up to $40 \text{ ft}^2/\text{gal.}$ (0.75m²/L.) can be achieved.

Posi-Shell® Formulations Guide

Materials		EC Series			Xtreme Rain Shield™ Series (XRS)		
	Base	EC-1	EC-2	EC-4	Light	Medium	Heavy
Water or Leachate (Gallons)*	800	800	800	800	800	800	800
Posi-Shell* Base Mix: 50 lb Bag	10	10 (500 lbs.)	10 (500 lbs.)	10 (500 lbs.)	10 (500 lbs.)	5 (250 lbs.)	5 (250 lbs.)
Portland cement (lbs)		500	1000	2000	500	1000	2000
Xtreme Rain Shield™ (50 lb Bag)	-				0.50 (25 lbs.)	2 (100 lbs.)	4 (200 lbs.)
Finished Product (Gallons)	800	850	900	1000	850	900	1000
Rain Guide (Inches)**	0.0-0.25	0.0-0.5	0.0-0.5	0.0-0.5	0.5-1.0	1.0-2.0	>2.0

Materials	Base	EC Series			Xtreme Rain Shield™ Series (XRS)		
		EC-1	EC-2	EC-4	Light	Medium	Heavy
Water or Leachate (Liters)	3030	3030	3030	3030	3030	3030	3030
Posi-Shell® Base Mix: 50 lb Bag	10	10 (225 kg.)	10 (225 kg.)	10 (225 kg.)	10 (225 kg.)	6 (138 kg.)	5 (138 kg.)
Portland cement (kgs)	-	225	450	900	225	450	900
Xtreme Rain Shield™ (23 kg Bag)	•				0.50	2	4
Finished Product (Liters)							
Rain Guide (Centimeters)	0.0-1.25	0.0-1.25	0.0-1.25	0.0-1.25	1.25-2.54	2.54-5.08	>5.08

^{*}Amount of rainfall product typically sustains without washing.

**Some leachate, hard water, and salty water may require more Posi-Shell® Base Mix to achieve proper thickness.

7.7 Discharge Nozzle Selection

While other nozzles may be used, LSC Environmental Products offers numerous types of discharge nozzles for the effective spraying of Posi-Shell® at a variety of ranges. Experience and operator discretion will determine which nozzle to use in each situation.

Long Range (Solid Stream) for Distances of 100–150 feet (30–46 meters)

Medium/Long Range (15° Flat Spray) for Distances of 75–100 feet (23–30 meters)

Medium Range (25° Flat Spray) for Distances of 25–75 feet (8–23 meters)

Short Range (50° Flat Spray) for Distances of 5–25 feet (1.5–8 meters)

High Efficiency (25° Low Flow Spray) for Distances of 5–25 feet (1.5–8 meters)

7.8 Handling the Discharge Spray Boom

Care must be taken to use the proper discharge nozzle in order to attain the desired spray range, as being too close to the surface will cause the Posi-Shell® stream to overturn waste on contact. At long range distances the Posi-Shell® stream will break up, causing the desired spray effect. At ranges under 75 ft. (23 meters) the medium or short nozzle should be used and are designed to spray in a wide ribbon pattern.

Blockages may occur in nozzles due to foreign objects in the raw materials. Refer to Section 11.1 for procedure on removing foreign object from discharge nozzle.

With the desired nozzle securely in place, firmly grasp discharge spray handle in one hand and point discharge nozzle in desired direction of spray. With the other hand engage product pump and begin covering area. For desired spray effect operator may adjust pump or throttle speed.

Never disconnect nozzles when pump is running. Never engage pump with discharge spray boom unattended. Never put hands in front of discharge nozzles.

Do not spray at or near other persons. Spray exits nozzle at a high velocity and could cause injury.

Do not spray toward power lines, transformers or other high voltage conductors. Avoid spraying into wind. When unavoidable, be sure to keep direction of spray near to ground. Safety glasses should be worn during spraying operation.

7.9 Coverage of Large Area

Coverage of a large area will require moving the application unit to several spray locations. Inspect the area from several perspectives to ensure that the spray has covered all areas.

7.10 Heavy Applications

Heavy applications may be applied in multiple coats by letting the previous coats partially dry between applications. Several thin applications provides a more consistent and durable shell than a single thick application.

8.0 Cleaning

It is recommended that the hydroseeding unit be cleaned after use. For sites using Posi-Shell® Base, the product MAY be used over several days and will not set up in the mixing tank. After the product is all used, the unit should be cleaned. For loads with Portland cement in the mixture, all the product should be used in one day and the unit cleaned after use.

- When tank is empty of product, shut off pumps, paddles, and engine.
- 2. Open all inlet lids.
- 3. With clean water, rinse product from inlets, lids, deck, walls, etc.
- 4. Fill tank to mixing shaft.
- 5. Close inlet lids.
- Agitate mixing paddles at high speed for several minutes, splashing water inside of tank.
- 7. Drain in approved location.
- Repeat steps 4—7 as necessary.

A properly cleaned hydroseeding unit will remain free of any built-up product internally and externally.

9.0 Winter Care

In extreme cold it is imperative that engines and hydraulic systems are thoroughly warmed before introducing a load. Refer to the operations manual for your hydroseeding unit for proper winter usage and care. During cold weather periods, the hydroseeding unit tank and pump must be drained at the end of the day to avoid freezing. It is desirable, but not necessary, to bring the machinery into a heated building for overnight storage.

9.1 Posi-Shell® Winterlzing Procedure

- After cleanout, drain the mixing tank thoroughly. DO NOT REPLACE DRAIN CAP.
- 2. If your hydroseeding unit is equipped with a reserve water tank and/or pump, drain thoroughly. DO NOT REPLACE DRAIN CAPS.
- 3. Pour approximately one half gallon (1.9 L) of anti-freeze into pump or tank and slowly run through pump and lines to prevent freezing.

10.0 Materials Storage

All materials are inert, and can be stored on, or off, the boundaries of lined landfill cells.

10.1 Posi-Shell® Material Storage

10.1.1 Posi-Shell® Base Mix

Posi-Shell® Base Mix should be kept dry. Stretch wrapped pallets can be easily covered with a tarp or plastic.

10.1.2 Optional Portland Cement & Xtreme Rain Shield™

Portland cement & Xtreme Rain Shield™ should be kept dry. Stretch wrapped pallets can be easily covered with a tarp or plastic.

11.0 Troubleshooting

11.1 Removing Foreign Object from Discharge Nozzle

- 1. Immediately turn off pump.
- 2. If unit is equipped with pump reverse feature, reversing for a few seconds releases any potential pressure in lines. With nozzle pointing away, remove nozzle and clear obstruction.
- 3. Reconnect nozzle and continue spraying.

11.2 Removing Foreign Object from Mixing Tank

- Shut off mixer, pump, and engine.
- 2. If object can be safely retrieved with extended gaff tool, remove and continue with operation. If object cannot be found, drain load in approved area, locate object, and safely remove with extended gaff tool.

11.3 Clearing Clogged Mixing Tank

- In the unlikely event that the Posi-Shell® slurry has thickened in the mixing tank to the point that the mixer paddles will not turn, disengage mixer. Do not force mixer.
- 2. A strong stream of water applied to the surface of the material should begin to thin the slurry. Gently rocking the mixer should free up material and allow to mix back to normal consistency. If this procedure does not work, product would need to be manually removed from tank. It is recommended that deck plates are removed for this process, site specific PPE be worn, and confined space entry and lockout/tagout procedures are followed.

11.4 Lockout/Tagout & Confined Space Entry

- The authorized employee must adhere to their own company's procedure for "Lockout/Tagout". He or she must understand the hazards and know how to control them.
- If the equipment is operating, shut it down by normal stopping procedure (turn key switch off, depress emergency stop button, close valves, etc.) and remove the positive battery cable so that the machine or equipment is isolated from the battery.
- 3. Install tags on the battery cable lug and at the ignition control box with Date, Time, & Authorized Repair Employee's Name.
- 4. If repairing such items as springs, flywheels, hydraulic systems, air, gas or water pressure, etc..., stored or residual energy may be present and must be dissipated or restrained by methods such as grounding, repositioning, blocking, bleeding down, etc.
- Ensure that no other personnel are in the engine compartment or areas of isolation. Then verify the isolation of the equipment by operating the normal controls, testing to make certain the equipment will not operate.
- 6. Return all controls to "Neutral" or "OFF" after verifying the isolation of the equipment.
- If entry into confined space is necessary, the authorized employee must adhere to their own company's procedure for "Confined Space Entry"

12.0 Contingency Soil Supply

In the event that you are unable to apply Posi-Shell®, the landfill operator should have a three-day supply of soil for daily cover material available on-site.

Recycling Waste Latex Paint With Posi-Shell*

Liquids in Landfills – To limit the generation of leachate in solid waste landfills, 40 CFR Part 264.314 and 265.314 cites restrictions on the disposal of material containing free liquids. The criteria used to determine whether a material contains free liquids is the ASTM B9095 Paint Filter Test Method in which 100-mL or 100-g of sample of material is placed into a standard conical paint filter (mesh number +/-5%, available at local paint stores). In short, if any of the material passes through and drops from the filter within a 5 minute test period, the material is deemed to contain free liquids.

<u>Household Hazardous Waste</u> - Household Hazardous Waste (HHW) departments offer various programs for residents and businesses to dispose of special wastes including but not limited to certain free liquids such as oils, aerosols, detergents, and paints most of which, after collection, are forwarded to specialty facilities for disposal or recycling.

<u>Waste Latex Paint</u> - Waste latex paint (WLP) can be generated in large quantities which results in high disposal costs for the solid waste facilities that collect it. Being water based, WLP is non-hazardous but is a free liquid and therefore may not be disposed in it's original form in solid waste facilities.

<u>Traditional Methods of disposal</u> - Methods employed by solid waste facilities for disposing of WLP, once collected, are varied. In some cases, residents are instructed to solidify the WLP by mixing it with a product such as litter box media or other absorbent and then dispose of it along with their other residential waste, while others facilities may collect the WLP, warehouse it, and offer residents a "drop and swap" program. Many facilities not favoring these programs will pay to have WLP removed by third party firms permitted to dispose of or recycle it in some way.

<u>Beneficial Reuse with Posi-Shell</u>* - Numerous solid waste facilities utilizing the Posi-Shell* Cover System (for alternate daily cover, intermediate cover, erosion control, etc.) recycle WLP through the spray-applied Posi-Shell* product. Since Posi-Shell* is a thick, viscous, mineral mortar slurry which passes the ASTM B9095 Paint Filter Test Method, approval to add quantities of WLP into this slurry can be obtained, thus altering the WLP from a free liquid into a beneficially reused solid.

LSC Environmental Products endorses the use of WLP in the Posi-Shell mixture as this additive actually enhances the coating in a number of ways and has no negative effect on application equipment. The WLP becomes a part of the hardened coating and does not recirculate through the landfill as a free liquid. Under the compaction of heavy landfill equipment, the WLP-enhanced Posi-Shell breaks up and falls into surface voids already present on the working face. Posi-Shell does not create impermeable layers within a landfill cell and has no negative effect on leachate or leachate collection systems.

Numerous methods exist for collecting and storing WLP for use with Posi-Shell*. Facilities collecting only small quantities usually store the WLP in the original cans or containers in an approved area. Facilities collecting larger quantities utilize automated can crushers which puncture, empty, and size reduce one and five gallon cans and collect the paint into larger drums. Regardless of the collection process it is recommended to screen the WLP through a 5/16" expanded metal sieve prior to pouring into application equipment

<u>Approval</u> - Historically, obtaining approval for adding WLP to Posi-Shell is not difficult. Generally, submittal to the state regulatory agency for a demonstration project period is required and possibly a minor modification to the operating permit.

Mixture Ratio - Approximately 10% WLP can be added to every gallon of finished Posi-Shell slurry.

Mixture Procedure - WLP is added to the finished Posi-Shell slurry, after all other ingredients have been mixed.

Durability of Posi-Shell^ò Long Term Cover

When used for long term cover, Posi-Shell^o Coatings should be applied at 4-6 sq. ft. per gallon using application techniques described in the Base Mix Usage Guide. For best results apply product while outdoor temperature is above 50° F with no precipitation, and on a dry surface. These "ideal conditions" should remain for 48 hours after application to allow product to cure properly. When applied as described above customers in various climate and precipitation zones regularly achieve 12 months of durable cover with little to no maintenance.

The "duration" or "durability" of long term cover is understood to mean that the cover will perform as well as it did shortly after application and curing. Around the 12 month point, if no maintenance has been performed, the cover could begin to deteriorate from exposure to various elements, but will likely continue performing it's desired function (i.e.: erosion control, dust control, etc.). In this case, "durability" of cover could extend well beyond this 12 month period.

If an end user wants to maintain cover at "just applied" conditions, they may expect to use 5-20% of the original application materials for touch up annually, depending on the application surface.

Long term durability is best achieved using Posi-Shell^o Coatings with durability enhancer added; however, if the product is applied in less than "ideal conditions" (i.e.: below 50° F, in rainy conditions, or on wet surfaces), the duration of the cover may become shortened. Describing exactly the shortened duration period is difficult, but field experience shows that the product will likely perform for several months even when applied in less than ideal conditions. Product should not be applied to standing water, or in heavy rainfall. The addition of Xtreme Rain Shield is recommended when application during rainfall is unavoidable, or when heavy rainfall is forecasted.

SDS

LSC Environmental Products, LLC Issue Date: June 15, 2015

Posi-Shell® Base Mix

Page 1 of 4

Identification

Supplier LSC Environmental Products, LLC

2183 Pennsylvania Ave

Apalachin, NY 13732

Telephone: 607-625-3050 Fax: 607-625-2688 Web: www.lscenv.com

Product Name Posi-Shell® Base Mix

Description: Sodium Montmorillonite Clay (SMC) with Synthetic Fibers and Coloring

CAS Number:

Recommended Use: Spray Applied Environmental Coatings.

Hazards Identification

Route of Entry: Eye Contact, Skin Contact, Inhalation

Hazards: May cause mechanical irritation. Eye:

Skin: May cause drying resulting in dermatitis.

Ingestion: No known health effects.

Inhalation: Acute: Short term exposure may cause mechanical

irritation resulting in dry cough. May aggravate existing

respiratory illness.

Repeated inhalation of respirable* crystalline Chronic: silica above exposure limits can cause lung disease, including

silicosis and lung cancer.

NFPA: Not regulated, Non-hazardous

Composition / Information on Ingredients

Component CAS# Amount Sodium Montmorillonite Clay (SMC)* N/A > 90%

First-Aid Measures

Flush eyes and under eye lids with plenty of water until irritation ceases. Contact Eye:

physician if irritation persists.

Skin: Wash with soap and water until clean. Contact physician if irritation develops.

Ingestion:

Inhalation: Move to area free from dust. If symptoms of irritation persist, contact physician.

Inhalation may aggravate existing respiratory illness.

^{*}Typical western SMC contains 1-6% crystalline silica as quartz CAS# 14808-60-7.

SDS

LSC Environmental Products, LLC Issue Date: June 15, 2015

Posi-Shell® Base Mix

Page 2 of 4

5 Fire Fighting Measures

Flammability:

Non-flammable

6 Accidental Release Measures

Personal Precaution: Cleanup:

Avoid breathing dust; wear respirator approved for silica bearing dust. Vacuum to avoid generating airborne dust. Avoid using water. Material

becomes slippery when wet.

7 Handling and Storage

Handling: Use NIOSH/MSHA respirators approved for silica bearing dust when airborne

SMC dust levels exceed PEL/TLVs. Clean up spills promptly to avoid making

dust. Storage area floors may become slippery if wetted.

Storage: Store in a dry place.

8 Exposure Controls / Personal Protection

Exposure Guidelines (Inhalation):

Component OSHA PEL (8 hr TWA) ACGIH TVL
Crystalline Silica as Quartz 0.1 mg/m³ 0.1 mg/m³

Particles not Otherwise Regulated

Total Dust 15 mg/m³ N/A
Respirable Dust 5 mg/m³ N/A

Engineering Controls: None required for outdoor mixing and application. Use

local ventilation to maintain PELs/TLVs if handling

indoors.

Personal Protective Equipment:

Eye and Face Protection: Wear safety glasses or goggles during loading and

application to protect from dust, splashing, and spray

mist.

Skin Protection: Wear gloves and overalls to protect skin and clothing

from contact with product. Personal hygiene measures, such as washing hands and face after working with

materials, are recommended.

Respiratory Protection: When handling generates dust levels above exposure

limits, use respirators approved by NIOSH/MSHA for

silica bearing dust.

9 Physical and Chemical Properties

Appearance: Off-white dry powder. Small quantity of brown powder and fine

white fibers also present in package.

SDS

LSC Environmental Products, LLC Issue Date: June 15, 2015

Posi-Shell® Base Mix

Page 3 of 4

Odor: Not Determined

pH: 8-10 (5% agueous suspension)

Relative Density (H2O=1): 2.45-2.55

Bulk Density (at 20°C): 55 lbs/cu ft as dry product

Melting Point:

Solubility in Water:

Flammability:

Approx. 1450° C

<2% soluble by weight.

Non-flammable

10 Stability and Reactivity

Stability: Stable

Hazardous Decomposition Products: None under normal handling conditions.

Hazardous Polymerization: Will not occur.
Incompatible Materials: Hydrofluoric Acid.

11 Toxicological Information

Carcinogenicity:

Sodium Montmorillonite Clay is not listed by ACGIH, IARC, NTP, or OSHA.

- IARC, 1997, concludes that there is sufficient evidence in humans for the carcinogenicity of inhaled crystalline silica from occupational sources (IARC Class 1), that carcinogenicity was not detected in all industrial circumstances studied and that carcinogenicity may depend on characteristics of the crystalline silica or on external factors affecting its biological activity. NTP classifies respirable crystalline silica as "known to be a human carcinogen" (NTP 9th Report on Carcinogens - 2000). ACGIH classifies crystalline silica quartz as a suspected human carcinogen (A2).

12 Ecological Information

No information available.

13 Disposal Considerations

Bury in licensed landfill according to local, state, and federal regulations.

14 Transportation Information

US DOT: Non-regulated

15 Regulatory Information

None of the components in this product are known to be regulated by national or international regulatory bodies.

SDS

LSC Environmental Products, LLC Issue Date: June 15, 2015

Posi-Shell® Base Mix

Page 4 of 4

16 Other Information

SDS Status:

Revised from MSDS format in 2015 to comply with GHS requirements.

All information presented herein is believed to be accurate; however, it is the user's responsibility to determine in advance of need that the information is current and suitable for their circumstances.

No warranty or guarantee, expressed or implied, is made by LSC Environmental Products, LLC as to this information or as to the safety, toxicity, or effect of the use of this product.

Attachment 5 WDNR Plan Mod Approvals

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 2984 Shawano Avenue Green Bay WI 54313-6727

Tony Evers, Governor Preston D. Cole, Secretary

Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

November 18, 2021

FID # 405132860 Brown County SW / Approval

Mr. Chad Doverspike Brown County Port & Resource Recovery Department 2561 S Broadway Green Bay, WI 54304

Subject: No Objection to Expedited Plan of Operation Approval Modification at the Brown

County South Landfill, Town of Holland, Brown County, DNR Monitoring No. 3565

Dear Mr. Doverspike:

The Department of Natural Resources (department) does not object to the request dated October 22, 2021, to use papermill sludge as alternative daily cover (ADC) at the Brown County South Landfill (BCSLF). Based on the information provided, the department has determined that the proposal poses low risk to human health and the environment. Please include this letter in the written operating record for the landfill as specified in s. NR 506.17, Wis. Adm. Code.

The department received the request on October 22, 2021, from Foth Infrastructure and Environment, LLC (Foth), on behalf of Brown County Port & Resource Recovery Department (BCPRRD). The review fee was received on November 1, 2021. The expedited plan modification was requested in accordance with s. NR 514.09(1)(a)4, and 10, Wis. Adm. Code, regarding the use of papermill sludge as ADC.

BCSLF proposes to use papermill sludge as ADC from Green Bay Packaging (GBP), Inc. and Sonoco. The GBP material will be fiber rejects, which has approximately 39.9% solids. The Sonoco material will be screw press sludge, which has approximately 41.8% solids. BCSLF anticipates receiving 100-300 tons per day from GBP and 20-40 tons per day from Sonoco. BCSLF will stockpile the ADC near the active area before spreading it in 6-inch layers over the active area. BCSLF will not place the papermill sludge within 10 feet of the drainage layer and will not use it on exterior sideslopes. BCSLF will initially conduct a 1-year trial to confirm the materials' use as ADC. BCSLF should notify the department of problems while using papermill sludge as ADC. BCSLF will report tonnage accepted, use, summary of the effectiveness, and any issues related to its use in the annual report.

This letter is based on the information available to the department as of the date of this letter. If additional information, project changes or other circumstances indicate a possible need to modify the approved plan, the department may ask you to provide further information relating to this activity. Likewise, the department accepts proposals to modify approvals, as provided for in state statutes and administrative codes.

Please keep in mind that this approval does not relieve BCPRRD of obligations to meet all other applicable federal, state or local permits, zoning and regulatory requirements. If you have questions regarding this approval, please contact Sally Hronek at 920-609-5236 or email: Sally.Hronek@wisconsin.gov.

Sincerely,

Kristin DuFresne

Waste and Materials Management Supervisor

Northeast Region

cc: Marty Sturzl – Foth (e-mail)

Jackie Marciulionis – DNR/WA (e-mail) Valerie Joosten – DNR/WA (e-mail) State of Wisconsin **DEPARTMENT OF NATURAL RESOURCES** 2984 Shawano Avenue Green Bay WI 54313-6727

Tony Evers, Governor Preston D. Cole, Secretary Telephone 608-266-2621

Toll Free 1-888-936-7463 TTY Access via relay - 711

November 29, 2022

FID 405132860 **Brown County** SW / Approval

Mr. Chad Doverspike Brown County Port & Resource Recovery Department 2561 S Broadway Green Bay, WI 54304

> Subject: Conditional Plan of Operation Approval Modification for the use of NEW Water

> > Ash/Sand Mixture as alternate daily cover (ADC) and other beneficial uses within the Brown County South Landfill, Town of Holland, Brown County, License No. 3565

Dear Mr. Doverspike:

The Department of Natural Resources (department) has reviewed the requested plan of operation modification dated August 15, 2022. The department conditionally approves the plan of operation modification. Please include the attached plan of operation approval modification in the written operating record for the landfill as specified in s. NR 506.17, Wis. Adm. Code.

The Brown County Port & Resource Recovery Department (BCPRRD) requested use of NEW Water incinerator ash and sand as well as Manitowoc Grey Iron Foundry sand and slag for ADC and other beneficial uses within the landfill. In an email dated October 21, 2022, Foth (on behalf of BCPRRD) requested to remove the Manitowoc Grey Iron Foundry material from the request. The NEW Water incinerator ash and sand will be used for berm construction, for stabilization of interior roadways and the deck area, and for ADC within the landfill.

Please keep in mind that this approval does not relieve the BCPRRD of obligations to meet all other applicable federal, state or local permits, zoning and regulatory requirements. If you have questions regarding this approval, please contact Sally Hronek at 920-609-5236 or email: Sally.Hronek@wisconsin.gov.

Sincerely,

Waste and Materials Management Program Supervisor

Northeast Region

Enclosed - Approval

Dan Michiels – Foth (e-mail) cc:

Sara Beine – Foth (email)

Ben Hintz – BC (email)

Sally Hronek – DNR/WA (email) Kevin Lincicum – DNR/WA (e-mail) Valerie Joosten – DNR/WA (e-mail)

BEFORE THE STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

CONDITIONAL PLAN OF OPERATION APPROVAL MODIFICATION FOR THE BROWN COUNTY SOUTH LANDFILL LICENSE NO. 3565

FINDINGS OF FACT

The Department of Natural Resources (department) finds that:

- 1. The Brown County Port & Resource Recovery Department (BCPRRD) owns and operates a non-hazardous solid waste disposal facility (Brown County South Landfill [BCSLF]) in the E ½ of the SW ¼ of Section 18, Township 21N, Range 20E, town of Holland, Brown County, Wisconsin.
- 2. On January 16, 2020, the department issued a conditional plan of operation approval for the BCSLF.
- 3. On August 15, 2022, Foth Infrastructure and Environment, LLC (Foth), on behalf of the BCPRRD, submitted a request for an expedited plan of operation modification. On September 9, 2022, BCPRRD withdrew the request for an expedited plan of operation modification and requested a modification to the plan of operation in accordance with s. NR 514.04(6), Wis. Adm. Code. The department received the review fee of \$1,000 for an expedited plan of operation modification on August 19, 2022 The remaining review fee of \$650 for a regular plan of operation modification was received by the department on November 14, 2022.
- 4. The information submitted in connection with the plan modification request includes the following:
 - a. A letter and attachments prepared by Foth titled, "Expedited Plan Modification Beneficial Use and ADC Request Ash, Sand, and Slag Brown County South Landfill WDNR License No. 3565" and dated August 15, 2022.
 - b. An email dated September 29, 2022 from Foth revising the request to a regular plan modification to allow more time to collect additional information for the Manitowoc Grey Iron Foundry sand and slag material.
 - c. An email dated October 21, 2022 from Foth requesting to remove the Manitowoc Grey Iron Foundry sand and slag material from the plan of operation modification request.
- 5. Additional documents reviewed in connection with the plan modification request include the following:
 - a. The department's November 18, 2021 approval for BCSLF to use papermill sludge as ADC from Green Bay Packaging (GBP), Inc. and Sonoco.
 - b. The department's January 16, 2020 conditional plan of operation approval for BCSLF.
 - c. The department's Alternate Daily Cover for Municipal Solid Waste Landfills, PUB-WA-1699, dated 2014.

- d. The department's files pertaining to the BCSLF (License No. 3565).
- 6. Additional facts relevant to the review of the plan modification request include:
 - a. NEW Water incinerator ash and sand is generated as part of the wastewater treatment plant (WWTP) sludge incineration process.
 - i. Ash from the incineration process is stockpiled in ponds and then dewatered.
 - ii. A berm of clean sand is placed between the dewatering ash and the pond to filter the dewatered ash and provide a wind barrier.
 - iii. The dewatered ash and sand, primarily sand by weight, make up the material that is proposed for beneficial use.
 - b. BCSLF anticipates receiving 3,000-4,000 tons of NEW Water incinerator ash and sand per year.
 - c. BCSLF use of the ash/sand material for beneficial use includes berm construction, road base, and decking surfaces. The request also proposed used as ADC.
 - i. The material will be used for stabilization of interior roadways and the deck area.
 - ii. BCSLF may mix it with other materials (i.e., breaker run, foundry sand, construction and demolition materials, slag, etc.) to form a solid base for the hauling vehicles to operate on.
- 7. The special conditions set forth below are needed to assure that the sites are operated and maintained in an environmentally sound manner. If the special conditions are complied with, the proposed modifications will not inhibit compliance with the standards set forth in the applicable portions of chs. NR 500-538, Wis. Adm. Code.

CONCLUSIONS OF LAW

- 1. The department has the authority under s. 289.30(6), Wis. Stats., to modify a plan of operation approval if the modification would not inhibit compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 2. The department has the authority to approve a modification to the plan of operation with special conditions if the conditions are needed to ensure compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 3. The conditions of approval set forth below are needed to ensure compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 4. In accordance with the foregoing, the department has the authority under s. 289.30(6), Wis. Stats., to issue the following conditional plan of operation modification approval.

CONDITIONAL PLAN OF OPERATION APPROVAL MODIFICATION

The department hereby approves the proposed plan of operation modification for the BCSLF, subject to compliance with chs. NR 500-538, Wis. Adm. Code and the following conditions:

- 1. Waste materials used as ADC shall not contain free liquids.
- 2. The landfill operator shall remove, scarify or mix-in to the extent possible, at the beginning of the next operating day, any alternative daily cover material that would create a barrier to the movement of leachate and gas.
- 3. ADC materials shall be stored within the lined footprint of the landfill.
- 4. The NEW Water incinerator ash and sand material shall not be used within 10-feet of the landfill drainage blanket.
- 5. The use of the NEW Water incinerator ash within the landfill shall be limited to weather conditions that do not make the material windblown. If the material becomes windblown, it must be covered with a material that prevents windblown conditions.

Unless specifically noted, the conditions of this approval do not supersede or replace any previous conditions of approval for this facility.

This approval is based on the information available to the department as of the date of approval. If additional information, project changes or other circumstances indicate a possible need to modify this approval, the department may ask you to provide further information relating to this activity. Likewise, the department accepts proposals to modify approvals, as provided for in state statutes and administrative codes.

NOTICE OF APPEAL RIGHTS

If you believe you have a right to challenge this decision made by the department, you should know that Wisconsin statutes and administrative codes establish time periods and requirements for reviewing department decisions.

To seek judicial review of the department's decision, sections 227.52 and 227.53, Wis. Stats., establish criteria for filing a petition for judicial review. You have 30 days after the decision is mailed or otherwise served by the department to file your petition with the appropriate circuit court and serve the petition on the department. The petition shall name the Department of Natural Resources as the respondent.

Dated: November 29, 2022

DEPARTMENT OF NATURAL RESOURCES

For the Secretary

Kristin DuFresne

Waste and Materials Management Program Supervisor

Northeast Region

Sally Hronek

Waste Management Engineer

Northeast Region

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
2984 Shawano Avenue
Green Bay WI 54313

Tony Evers, Governor Adam N. Payne, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463

TTY Access via relay - 711

November 17, 2023

FID 405132860 Brown County SW/Approval

Mr. Chad Doverspike Brown County Port & Resource Recovery Department 2561 S Broadway Green Bay, WI 54304

Subject: Conditional Plan of Operation Approval Modification for the Beneficial Use of Tire Chips at

the Brown County South Landfill, Town of Holland, Brown County, License No. 3565

Dear Mr. Doverspike:

The Department of Natural Resources (department) is approving the requested plan of operation modification (the plan) dated September 5, 2023, for the Brown County South Landfill. The department is conditionally approving the plan of operation modification to beneficially use tire derived aggregate (TDA) as horizontal gas extraction well and leachate recirculation trench pipe bedding. Please include the attached plan of operation approval modification in the written operating record for the landfill as specified in s. NR 506.17, Wis. Adm. Code.

Brown County Port & Resource Recovery Department (BCPRRD) is proposing to replace stone aggregate in horizontal gas collection and leachate recirculation trenches with TDA. The TDA will be 2-inch by 2-inch nominally sized tire chips or shreds with 95% of embedded metals removed and wire strands limited to ½ inch protrusions from tire chips. The TDA will additionally have 95% of fines passing the ½ inch screen removed. The TDA will be stockpiled off of the landfill footprint on a concrete pad located north of the landfill.

The horizontal gas extraction trench and leachate recirculation trench widths will be increased to 42-inches to account for anticipated consolidation of the tire chips. BCPRRD is proposing to try various configurations of the horizontal gas extraction trenches by installing one or multiple low points in the horizontal gas extraction trenches for leachate drainage. Tires chips will be set back 20 feet from exterior sideslopes for horizontal gas extraction trenches and 100 feet for leachate recirculation trenches.

After installation of the active gas extraction system infrastructure, BCPRRD will evaluate the performance of the horizontal gas extraction wells and include a summary of the evaluation in the landfill's annual report. In accordance with condition 1 of this approval, if at any time the department determines the TDA horizontal gas extraction wells are not preventing nuisance odor conditions or are creating other adverse conditions, the department reserves the right to discontinue the use of TDA in horizontal gas extraction trenches.

Please keep in mind that this approval does not relieve you of obligations to meet all other applicable federal, state or local permits, zoning and regulatory requirements. If you have questions regarding this approval, please contact Tess Brester at (920) 419-9219 or email Tess.Brester@wisconsin.gov.

Sincerely,

Kristin DuFresne

Waste and Materials Management Supervisor

Northeast Region

cc: Dan Michiels – Foth (dan.michiels@foth.com)

Sara Beine – Foth (sara.beine@foth.com)

Casey Krausensky – DNR/WA (e-copy)

Dan Kroll – DNR/WA (e-copy)

Jackie Marciulionis – DNR/WA (e-copy)

Tess Brester – DNR/WA (e-copy)

BEFORE THE STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

CONDITIONAL PLAN OF OPERATION APPROVAL MODIFICATION FOR THE BROWN COUNTY SOUTH LANDFILL, LICENSE #3565

FINDINGS OF FACT

The Department of Natural Resources (department) finds that:

- 1. The Brown County Port & Resource Recovery Department (BCPRRD) owns and operates a solid waste disposal facility (Brown County South Landfill [BCSLF]) in the E ½ of the SW ¼ of Section 18, Township 21N, Range 20E, Town of Holland, Brown County, Wisconsin.
- 2. The department issued a conditional plan of operation approval for the solid waste disposal facility on January 16, 2020.
- 3. On September 5, 2023, Foth Infrastructure and Environment, LLC (Foth), on behalf of the BCPRRD, submitted a request to beneficially use tire chips within the landfill. The department received the review fee of \$1,650 on September 18, 2023.
- 4. The information submitted in connection with the plan of operation modification request includes the following:
 - a. A letter titled "Plan Modification for Beneficial Use Request Tire Derived Aggregate, Brown County South Landfill WDNR License No. 3565" which was dated and received by the department on September 5, 2023.
 - b. An email from Foth received by the department on August 25, 2023, containing the following articles or links to the articles:
 - i. SCS Engineers paper titled, "Use of Tire Chips in Landfill Gas Extraction Applications" (paper undated).
 - ii. Ohio Environmental Protection Agency Policy Document #599, titled, "Use of Shredded Tire in Landfill Construction" and dated October 2014 (originally published on March 21, 2005).
 - iii. California Department of Resource Recycling and Recovery document titled, "Usage Guide, Tire-Derived Aggregate (TDA)" and dated January 2016.
 - iv. Ohio Environmental Protection Agency Policy Document #671, titled, "Beneficial Use of Scrap Tires" and dated May 2018.
 - v. ASTM D6270-20, titled, "Standard Practice for Use of Scrap Tires in Civil Engineering Applications," and last updated September 22, 2020.
 - vi. U.S. Tire Manufactures Association paper titled, "2021 US Scrap Tire Management Summary" and dated October 25, 2022.

- c. An email and attachments from Foth received by the department on November 2, 2023, in response to the department's October 12, 2023, request for additional information email.
- 5. Additional documents reviewed in connection with the plan of operation modification request include the following:
 - a. The department's October 12, 2023, request for additional information email.
 - b. Appendix K of BCPRRD's plan of operation report titled "Alternative Daily Cover and Beneficial Reuse Plan" and dated April 30, 2019.
 - c. The department's January 16, 2020, plan of operation approval.
 - d. The department's files pertaining to the BCSLF (License No. 3565).
- 6. Additional facts relevant to the review of the plan of operation modification request include:
 - a. Horizontal gas extraction wells (with or without tire derived aggregate) are supplemental to the permanent, vertical gas extraction system and are anticipated to be abandoned prior to final cover construction.
 - b. Tire derived aggregate will be stockpiled off of the landfill footprint in quantities limited to the volume needed for each sequence of horizontal gas extraction well and leachate recirculation trench installation.
- 7. The special conditions set forth below are needed to assure that the sites are operated and maintained in an environmentally sound manner. If the special conditions are complied with, the proposed modifications will not inhibit compliance with the standards set forth in the applicable portions of chs. NR 500-538, Wis. Adm. Code.

CONCLUSIONS OF LAW

- 1. The department has the authority under s. 289.30(6), Wis. Stats., to modify a plan of operation approval if the modification would not inhibit compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 2. The department has the authority to approve a modification to the plan of operation with special conditions if the conditions are needed to ensure compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 3. The conditions of approval set forth below are needed to ensure compliance with the applicable portions of chs. NR 500-538, Wis. Adm. Code.
- 4. In accordance with the foregoing, the department has the authority under s. 289.30(6), Wis. Stats., to issue the following conditional plan of operation modification approval.

CONDITIONAL PLAN OF OPERATION APPROVAL MODIFICATION

The department hereby approves the proposed plan of operation modification for the BCSLF, subject to compliance with chs. NR 500-538, Wis. Adm. Code, and the following conditions:

- 1. If at any time the department determines that the horizontal gas extraction wells with tire derived aggregate are not preventing nuisance odor conditions or are creating adverse effects on the landfill, BCPRRD shall discontinue the use of TDA in horizontal gas extraction trenches.
- 2. BCPRRD shall submit a written plan to control the nuisance odors or other adverse conditions to the department within 30 days of the department's determination for BCPRRD to discontinue the use of TDA in horizontal gas extraction trenches.
- 3. BCPRRD shall place enough select waste over the constructed horizontal gas extraction wells and leachate recirculation trenches to minimize the chance of smolders/fires from the active disposal area from reaching the tire derived aggregate.
- 4. BCPRRD shall submit a revised beneficial use plan (Appendix K of the plan of operation) to the department within 90 days to include the acceptance of tire derived aggregate. The department shall charge a separate review fee if the department determines that the revised 'Appendix K' includes modifications outside of the beneficial use of tires outlined in this approval.

Unless specifically noted, the conditions of this approval do not supersede or replace any previous conditions of approval for this facility.

This approval is based on the information available to the department as of the date of approval. If additional information, project changes or other circumstances indicate a possible need to modify this approval, the department may ask you to provide further information relating to this activity. Likewise, the department accepts proposals to modify approvals, as provided for in state statutes and administrative codes.

NOTICE OF APPEAL RIGHTS

If you believe you have a right to challenge this decision made by the department, you should know that Wisconsin statutes and administrative codes establish time periods and requirements for reviewing department decisions.

To seek judicial review of the department's decision, sections 227.52 and 227.53, Wis. Stats., establish criteria for filing a petition for judicial review. You have 30 days after the decision is mailed or otherwise served by the department to file your petition with the appropriate circuit court and serve the petition on the department. The petition shall name the Department of Natural Resources as the respondent.

Dated: <u>November 17, 2023</u>

DEPARTMENT OF NATURAL RESOURCES

For the Secretary

Waste and Materials Management Program Supervisor

Northeast Region

Waste Management Lead Engineer Waste and Materials Management Program