Agricultural Survey Results for the Fox Illinois River Basin TMDL

10/31/2023

Prepared by:

WI Department of Natural Resources 101 S. Webster St PO Box 7921 Madison, WI 53707-7921

CONTENTS

1.	Project Background	1
2.	Agricultural Survey	
3.	Land cover Estimates	4 4 5
4.	Crop Summary 4.1.Crop Sequence 4.2.Planting and Harvesting 4.3.Crop Yields	8 8
5.	Land Management	10 10 10 11 11
6.	SWAT Model Input Summary 6.1.Final Agricultural Land Cover Dataset 6.2.Final Land Management Table for SWAT 6.3.Incorporation of Land Management Table in SWAT	. 13 . 13
Acl	knowledgements	15
Re	ferences	15

FIGURES

FIGURE 1.1 Extent of Fox Illinois TMDL Study Area and Impairments	2
FIGURE 2.1 Diagram of the Primary Model Inputs for the SWAT Watershed Model	
FIGURE 3.1 Comparison of Land Cover Percentages by County	6
FIGURE 3.2 Fox Illinois TMDL Study Area Agricultural Land Use	7

TABLES

TABLE 3.1 Wiscland 2.0 Classification for Agriculture and Grassland	. 4
TABLE 3.2 Refinements to Land Cover Based on Survey Results	. 5
TABLE 4.1 Crop Sequences for Agricultural Land Cover	
TABLE 4.2 Approximate Planting and Harvest Dates for Crops	. 8
TABLE 4.3 Target Crop Yield Estimates	. 9
TABLE 5.1 Tillage Strategies in the TMDL Study Area	
TABLE 5.2 Manure Application Methods in the TMDL Study Area	11

TABLE 5.3 Average Irrigation and Tile Drainage in the TMDL Study Area	11
TABLE 5.4 Average Soil Phosphorus in the TMDL Study Area	12
TABLE 6.1 Final Land Cover and Land Management Categories	13
TABLE 6.2 Rotations and Tillage Categories Used in Counties	14

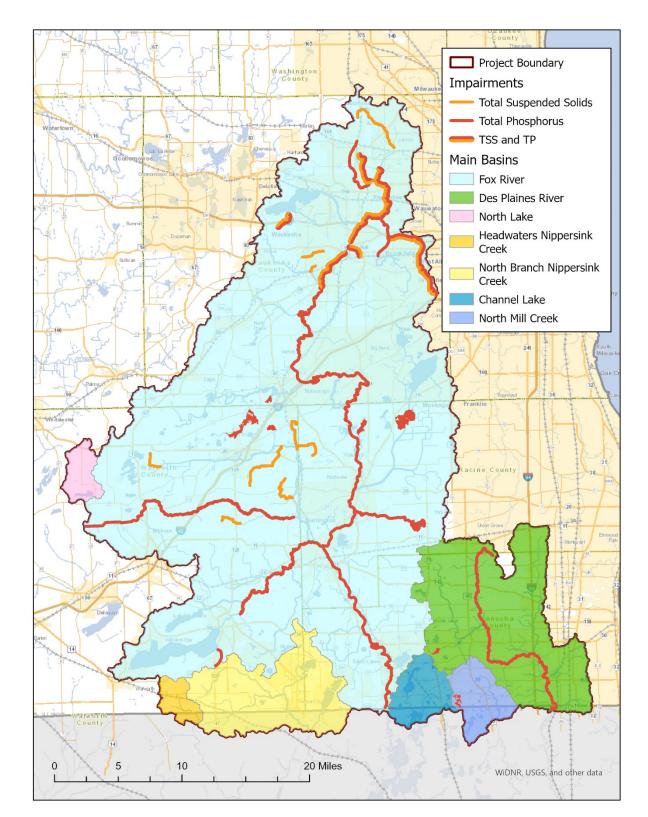
APPENDICES

Appendix A Example of Agricultrual Survey

Appendix B Steps for Updating Agricultural Land cover

Appendix C Irrigation and Tile Drainage by HUC 12

Appendix D Soil Phosphorus by HUC 12


Appendix E Detailed Land Cover and Land Management Categories for SWAT Modeling

1. PROJECT BACKGROUND

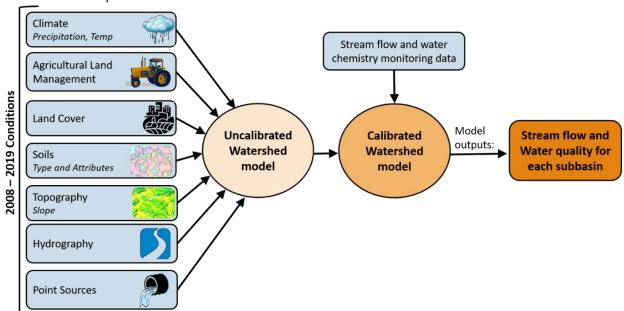
The Department of Natural Resources, together with many partners, is working to improve the surface water quality of tributaries, streams, rivers, and lakes within the Fox Illinois River Basin. To strengthen these ongoing efforts, the Department is developing a Total Maximum Daily Load (TMDL) for the river basin. The TMDL for this study area, referred to as the Fox Illinois River (FOXIL) TMDL, will be a multi-year effort to address surface water quality impairments caused by phosphorus and total suspended solids. The TMDL study will provide a strategic framework and pollutant reduction goals for surface water quality improvement within the river basins.

The Fox Illinois River TMDL study area is located in southeastern Wisconsin. The study area includes the Fox River, the Des Plaines River, Nippersink Creek, North Mill Creek, and Channel Lake watersheds. The study area is primarily located in Racine, Kenosha, Walworth, and Waukesha counties. It is approximately bounded by Waukesha to the north, Lake Geneva to the southwest, and the western portions of Kenosha to the southeast. The TMDL study area covers approximately 1,060 square miles within Wisconsin, which is approximately 2 percent of the state. Within the study area, some lakes and streams are impaired (WDNR, 2022b), which means they are not meeting their water quality criteria. The extent of the TMDL and the waterbodies that are currently impaired are shown in Figure 1.1.

An important step in developing a TMDL is understanding land cover and agricultural practices within the watershed. The DNR worked with county conservationists in the project area to characterize land cover, crop rotations, tillage practices, and other land management practices. Information was collected from a formal survey and follow-up discussions, and the information will be incorporated into a watershed model. This report provides a detailed summary of the survey results.

FIGURE 1.1 **Extent of Fox Illinois TMDL Study Area and Impairments**

2. AGRICULTURAL SURVEY


A detailed agricultural survey was sent to county conservationists in Waukesha, Walworth, Kenosha, and Racine Counties. The survey included questions about land cover, crop sequences, tillage, fertilizer and manure, soil phosphorus, grazing, irrigation, and tile drainage. The survey requested information for all HUC 12s within the study area for each county. Detailed information was not available for Waukesha County, so information gathered for Walworth, Kenosha, and Racine Counties were applied to Waukesha County. An example of the survey is provided in Appendix A.

2.1. Watershed Modeling

Information from the survey will be incorporated into a watershed model developed using the Soil and Water Assessment Tool (SWAT) model. The SWAT model will be developed for the entire Fox Illinois River study area and will be used to evaluate phosphorus and sediment loading in support of TMDL development. The detailed information for agricultural areas outlined in this report will be incorporated into the SWAT model; however, they may be adjusted through model calibration and additional feedback from agricultural practitioners and watershed managers in the study area.

Agricultural land cover and land management data are two of many important inputs for a SWAT model. Other important model inputs, shown in Figure 2.1, include data about precipitation, temperature, soil, slope, and point source locations and discharge characterizations. Water quality monitoring data is used to calibrate the model before the outputs of stream flow and stream loads are estimated.

FIGURE 2.1 Diagram of the Primary Model Inputs for the SWAT Watershed Model

Model inputs:

3. LAND COVER ESTIMATES

Initial estimates of agricultural land cover were derived from the Wiscland 2.0 dataset (WDNR, 2016). The respondents to the agricultural survey were asked to review the land cover estimates and provide feedback on the accuracy of the estimates. Survey results were then used to refine the land cover data. The following sections describe the process to develop a final agricultural land cover dataset.

3.1. Wiscland 2.0

Wiscland 2.0 is a spatial dataset that characterizes land cover in Wisconsin. The dataset was developed as a collaborative effort between the DNR, the University of Wisconsin-Madison, and the Wisconsin State Cartographer's office (WDNR, 2016). Wiscland 2.0 classifies land cover at four different levels of detail, with Level 1 being the most generic and Level 4 being the most detailed. An example of the classification scheme for agricultural lands and grasslands is provided in Table 3.1. The Level 3 data for crop rotations (cash grain, continuous corn, dairy rotation, potato/vegetable) and for forage grassland (hay, pasture) were used to characterize the agricultural land cover in the Fox Illinois River TMDL study area. More information about the sequences in the crop rotations is provided in Section 4.

Level	Class ID	Class
1	2000	Agriculture
2	2100	Crop Rotation
3	2110	Cash Grain
3	2120	Continuous Corn
3	2130	Dairy Rotation
3	2140	Potato/Vegetable
2	2200	Cranberries
1	3000	Grassland
2	3100	Forage Grassland
3	3110	Нау
3	3120	Pasture
2	3200	Idle Grassland
3	3210	Cool-season Grass
3	3220	Warm-season Grass

TABLE 3.1 Wiscland 2.0 Classification for Agriculture and Grassland

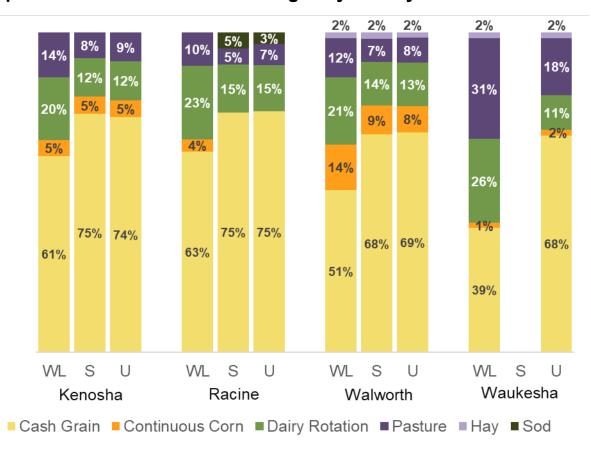
3.2. Agricultural Surveys

Wiscland 2.0 was developed using data from 2008 to 2012, and some changes to land cover have occurred during that time. Maps showing the extent of the Wiscland 2.0 land cover and tables showing the percentage of each agricultural land cover class were provided to the survey respondents. Respondents were asked to review the results and provide input about the accuracy of the land cover estimates. The survey results were used to refine the land cover dataset so it more closely matched true conditions.

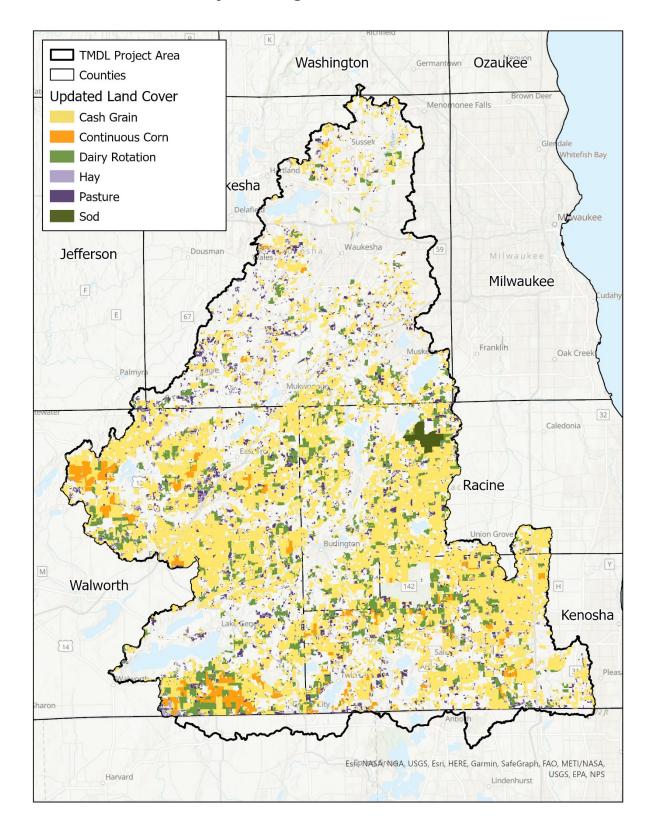
3.3. Agricultural Land Cover Refinements

Input from the surveys was used to refine the land cover originally estimated from Wiscland 2.0. Table 3.2 summarizes the changes indicated by Walworth, Racine, and Kenosha Counties. Details about the processing used to refine the land cover is provided in Appendix B.

TABLE 3.2


Refinements to Land Cover Based on Survey Results

				-	
County	Location	Wiscland 2.0 Land Cover	Updated Land Cover	Percent Updated	Explanation
Kenosha	Channel Lake	Dairy Rotation	Cash Grain	100%	The number of dairy farms has decreased, and no more dairy rotation exist in the Channel Lake subwatershed.
Kenosha	Countywide	Dairy Rotation	Cash Grain	40%	The number of dairy farms has decreased, and the Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.
Racine	Near Wind Lake	Misc.	Sod	100%	Sod farms located near Wind Lake were not identified in Wiscland 2.0. The extent of the sod fields were delineated using the Cropland Data Layer (NASS, 2022) and aerial photographs.
Racine	Countywide	Continuous Corn	Cash Grain	100%	Very little continuous corn is farmed in the county.
Racine	Countywide	Dairy Rotation	Cash Grain	40%	The Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.
Walworth	Countywide	Continuous Corn	Cash Grain	40%	The Wiscland 2.0 dataset overrepresents the amount of continuous corn in the county.
Walworth	Countywide	Dairy Rotation	Cash Grain	40%	The Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county. The majority of dairy rotation is concentrated south of Lake Geneva.
Waukesha	Countywide	Dairy Rotation	Cash Grain	60%	The number of dairy farms has decreased, and the Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.
All	Basinwide	Pasture	ldle grassland	45%	The Wiscland 2.0 dataset classifies some golf courses and other grasses as pasture.


3.4. Final Agricultural Land Cover

The survey results were used to develop final land cover map for the watershed. A comparison of the Wiscland 2.0 estimates (WL), the survey estimates (S), and the updated land cover (U) for each county is provided in Figure 3.2. The percentages in Figure 3.2 represent the percent of agricultural area in each county that is within each land cover class for each estimate. The updated agricultural land use in the project area is shown in Figure 3.3.

FIGURE 3.1 Comparison of Land Cover Percentages by County

FIGURE 3.2 Fox Illinois TMDL Study Area Agricultural Land Use

4. CROP SUMMARY

The agricultural surveys included information about the crops grown in the study area. Predominant crops grown include corn for grain, corn for silage, soybeans, winter wheat, alfalfa, and sod. The sequence of crops for rotations, the average planting date, and the typical yield were all identified as part of the survey and are summarized below.

4.1. Crop Sequence

Six distinct agricultural land cover types were identified from the Wiscland 2.0 dataset and the survey responses. The agricultural land cover types include cash grain, continuous corn, dairy rotation, pasture, hay, and sod. The county survey results included descriptions of the crop sequences for dairy rotations and cash grain rotations. Sequences were simplified so the duration of a single rotation lasted six years. The six-year rotation period was selected so the rotations could be adequately represented in the SWAT modeling. The model will be run for a total of 12 years, which will allow for two full rotations to be modeled. A summary of the rotations that will be used for the model are summarized in Table 4.1.

TABLE 4.1 Crop Sequences for Agricultural Land Cover

	Rotation Year					
Rotation	1	2	3	4	5	6
Dairy Sequence 1	CS	Cs	SOY	WW	ALF	ALF
Dairy Sequence 2	CS	Cs	CS	ALF	ALF	ALF
Cash Grain Sequence 1	CG	SOY	CG	SOY	CG	SOY
Cash Grain Sequence 2	CG	SOY	WW	CG	SOY	WW
Continuous Corn	CG	CG	CG	CG	CG	CG
Continuous Hay	ALF	ALF	ALF	ALF	ALF	ALF
Sod	SOD	SOD	SOD	SOD	SOD	SOD

CS: corn silage, CG: corn grain, SOY: soybean, WW: winter wheat, ALF: alfalfa, SOD: sod

4.2. Planting and Harvesting

The county survey results were also used to estimate planting and harvesting dates. The average planting dates for selected crops are provided in Table 4.2. Alfalfa is assumed to be harvested four times at the end of May, June, July, and August.

TABLE 4.2 Approximate Planting and Harvest Dates for Crops

Crop	Approximate Planting Date	Approximate Harvest Date
Corn silage	May 15	September 15
Corn grain	May 15	November 1
Soybean	May 25	October 15
Winter wheat	October 15	July 15
Alfalfa	July 22	*
Sod	October 15	**

* Alfalfa is cut many times during the season

**Sod is harvested after approximately 1.5 to 2 years of growth

4.3. Crop Yields

Information about crop yields was also provided in the survey results. Although crop yields are not a direct input for the SWAT model, the information will be used during the calibration process to ensure the crop growth predicted in the model is consistent with actual crop growth. Table 4.3 summarizes the crop yield estimates from the survey.

TABLE 4.3 Target Crop Yield Estimates

Crop	Units	Typical Yield
Corn silage	Tons per acre	25-30
Corn grain	Bushels per acre	171-210
Soybean	Bushels per acre	46-65
Winter wheat	Bushels per acre	70-80

5. LAND MANAGEMENT

In addition to information about the crops grown, the SWAT model requires information about how agricultural land is managed. Land management includes tillage practices, chemical fertilizer applications, manure management, and irrigation and tile drainage. The following sections describe details about land management from the county surveys.

5.1. Tillage

Five predominant tillage practices were identified from the county surveys. Tillage practices include two main components: timing and type. The type of tillage implements identified in the surveys include chisel plow, field cultivator, vertical till, moldboard plow, and disk & chisel plow. Different tillage strategies are applied for different crop types, and most of the intensive plowing occurs in the fall after harvest. A summary of the predominant tillage strategies identified from the agricultural surveys is provided in Table 5.1. Moldboard and disk & chisel plows are not widely used in the study area, so they are not included in the generalized tillage categories.

TABLE 5.1 Tillage Strategies in the TMDL Study Area

_			Pe	ercent of La	and
ID	Fall Tillage	Spring Tillage	Dairy	Corn	Cash Grain
Till 1	Chisel plow	Field cultivate (x2)	35%	40%	-
Till 2	Vertical till	Field cultivate	65%	30%	20%
Till 3	None	Vertical till	-	30%	-
Till 4	Field cultivate	None	-	-	35%
Till 5	Vertical till (corn), No till (soy & wheat)	Field cultivate (corn), No till (soy & wheat)	-	-	45%

5.2. Chemical Fertilizer

Non-manure fertilizer is applied to crops in the study area. Fertilizer is typically applied three times per year: once before planting, once at planting, and once during plant growth. The county survey results indicated only cash grain rotations, continuous corn, and sod receive non-manure phosphorus fertilizer. Average phosphorus application rates are summarized below:

- Cash grain rotation: 35 pounds of phosphorus as P₂O₅ per acre per year
- Continuous corn: 45 pounds of phosphorus as P_2O_5 per acre per year
- Dairy rotation: manure applications only
- Pasture and hay: no fertilizer application
- Sod: 45 pounds of phosphorus as P_2O_5 per acre at planting

5.3. Manure Management

Land that is managed as dairy rotation receives nutrients from manure spreading. Manure is typically managed by either collecting and storing the waste or collecting waste and spreading it throughout the growing season. The surveys indicated approximately 50 percent of dairy acres receive manure from stored waste and 50 percent of dairy acres receive manure from daily haul operations. The application methods that will be used in the model are summarized in Table 5.2.

The frequency of manure application depends on the crop type. Acres planted as corn grain and corn silage receive annual manure applications, acres planted as alfalfa receive an application of manure at planting, and acres planted as winter wheat and oats receive an application of manure once a year. Generally, acres planted as soybeans do not receive any manure application.

TABLE 5.2 Manure Application Methods in the TMDL Study Area

Туре	% of Dairy Acres	Frequency	Timing	Followed by Incorporation?	Spreading Amount	Manure Concentration
Daily Haul	50	1 to 14 days	Late fall, winter, spring	No	25 tons per acre	3 pounds per ton
Storage	50	Twice a year	Spring, fall	Yes	12,500 gal. per acre	5 pounds per 1000 gal.

5.4. Irrigation and Tile Drainage

The survey results provided estimates of irrigation and tile drainage for the HUC 12s in the study area. A summary of irrigation and tile drainage for each county is provided in Table 5.3. The full results by HUC 12 are provided in Appendix C.

TABLE 5.3

Average Irrigation and Tile Drainage in the TMDL Study Area

County	Percent of fields with tile drainage	Percent of fields with irrigation
Kenosha	50 - 75	0
Racine	50 - 90	0 - 30
Walworth	0 - 35	0 - 5
Waukesha	Not Available	Not Available

5.5. Soil Phosphorus

The survey results provided estimates of soil phosphorus for the HUC 12s in the study area. A summary of soil phosphorus for each county is provided in Table 5.3. The full results by HUC 12 are provided in Appendix D.

TABLE 5.4 Average Soil Phosphorus in the TMDL Study Area

County	Average Soil P (ppm)
Kenosha	34 - 63
Racine	30 - 60
Walworth	30 - 80
Waukesha	Not available

5.6. Grazing and Pasture

The survey results provided information about grazing practices in the counties. Precise estimates about grazing in the study area were difficult to determine because most grazing occurs in small beef operations and house boarding operations. These operations are dispersed throughout the counties and are typically 50 acres or less. Therefore, specific information regarding these practices was not quantified.

6. SWAT MODEL INPUT SUMMARY

Data from the county surveys will be incorporated into the SWAT model, which is described in Section 2. The approach of using land cover datasets to map crop types, and local knowledge from county LWCDs to determine agronomic practices associated with each crop type, is consistent with methods described by Kirsch et al. (2002), Larose et al. (2007), and Heathman et al. (2008).

6.1. Final Agricultural Land Cover Dataset

The final agricultural land cover dataset shown in Figure 3.2 and described in Appendix B will be combined with the Wiscland 2.0 dataset for non-agricultural lands to create a final land cover dataset for the study area.

6.2. Final Land Management Table for SWAT

The county surveys provided detailed information about crop rotations and land management practices, and the information was simplified to minimize the number of combinations while maintaining an adequate level of detail. The final combinations of crop rotations and land management practices that will be incorporated into the model are provided in Table 6.1. The tillage categories in the table correspond to the tillage strategies described in Table 5.1. A more detailed breakdown of each category is provided in Appendix E.

		Year						
SWAT Input	1	2	3	4	5	6	Tillage	Fertilizer
Dairy Sequence 1 - Till 1	Cs	Cs	S	Ww	А	А	1	Manure
Dairy Sequence 1 - Till 2	Cs	Cs	S	Ww	А	А	2	Manure
Dairy Sequence 2 - Till 1	Cs	Cs	Cs	А	А	А	1	Manure
Cash Grain Sequence 1 - Till 1	Cg	S	Cg	S	Cg	S	1	35 lb/ac
Cash Grain Sequence 1 - Till 3	Cg	S	Cg	S	Cg	S	3	35 lb/ac
Cash Grain Sequence 1- Till 4	Cg	S	Cg	S	Cg	S	4	35 lb/ac
Cash Grain Sequence 1- Till 5	Cg	S	Cg	S	Cg	S	5	35 lb/ac
Continuous Corn Sequence - Till 1	Cg	Cg	Cg	Cg	Cg	Cg	1	45 lb/ac
Continuous Corn Sequence - Till 3	Cg	Cg	Cg	Cg	Cg	Cg	3	45 lb/ac
Continuous Hay	Α	А	А	А	А	А	None	None
Sod	Sod	Sod	Sod	Sod	Sod	Sod	None	45 lb/ac

TABLE 6.1 Final Land Cover and Land Management Categories

The land cover and land management categories will be applied to fields within each county. Based on the survey results, not every county will include every category. A summary of the land cover and land management categories that will be applied for each county is provided in Table 6.2.

TABLE 6.2 Rotations and Tillage Categories Used in Counties

		Rotations with Tillage							
County	Da	airy	Cash	Grain		inuous orn	Нау	Sod	
Kenosha	D1-T2		CG1-T5		CC-T1	CC-T3			
Racine	D1-T1	D1-T2	CG1-T4	CG1-T5				Sod	
Walworth	D1-T1	D2-T1	CG1-T1	CG1-T3	CC-T1		ContHay		
Waukesha	D1-T2		CG1-T1	CG1-T5	CC-T1		ContHay		

6.3. Incorporation of Land Management Table in SWAT

The agricultural classes selected for SWAT modeling are representative of typical agronomic behaviors in the study area while capturing variation in factors that have the greatest impact on runoff volumes, soil erosion, and phosphorus loading. The selected classes are not an exact reflection of each farm in the study area because the ability to simulate additional agricultural classes is limited by model processing times and data storage requirements. However, the selected classes do balance variability in agronomic practices with limitations imposed by the scale of the watershed modeling effort.

ACKNOWLEDGEMENTS

A special thank you to the county conservationists who took the time to complete the agricultural surveys. The county conservationists who assisted with this effort include Mark Jenks from Kenosha County, Chad Sampson from Racine County, Brian Smetana from Walworth County, and Alyssa Vaugh and Alan Barrows from Waukesha County.

REFERENCES

- Heathman, G. C., Flanagan, D. C., Larose, M., and Zuercher, B. W., 2008, Application of the soil and water assessment tool and annualized agricultural non-point source models in the St. Joseph River watershed: Journal of Soil and Water Conservation, v. 64, no. 257, p. 552-568.
- Kirsch, K., Kirsch, A., & Arnold, J. G., 2002, Predicting sediment and phosphorus loads in the Rock River basin using SWAT: Transactions of the ASAE, v. 45, no. 6, p. 1757-1769.
- Larose, M., Heathman, G. C., Norton, L. D., & Engel, B., 2007, Hydrologic and atrazine simulation of the Cedar Creek watershed using the SWAT model: Journal of Environmental Quality, v. 36, no. 2, p. 521-531.
- National Agricultural Statistics Service, 2008-2019, Cropland data layer: Washington, D.C., United States Department of Agriculture NASS, accessed at https://nassgeodata.gmu.edu/CropScape/
- Wisconsin Department of Natural Resources, 2016, Wiscland 2.0 Land Cover, Wisconsin 2016: Madison, WI, https://dnr.wisconsin.gov/maps/WISCLAND

APPENDIX A

EXAMPLE OF AGRICULTRUAL SURVEY

Fox-Des Plaines TMDL: Agricultural Land Management Questionnaire for Kenosha County

BACKGROUND

The Wisconsin Department of Natural Resources, with support from the U.S. Environmental Protection Agency, has initiated a Total Maximum Daily Load (TMDL) study for nutrient- and sediment-impaired waters in the Fox River and Des Plaines River (FDP) watersheds in southeastern Wisconsin. As part of this effort, the Soil and Water Assessment Tool (SWAT) watershed model will be used to simulate runoff volumes and phosphorus and sediment loading to surface waters from nonpoint sources, including runoff from agricultural lands.

Inputs for the SWAT model setup include estimates of variables describing the agricultural land management practices used throughout the modeled area. Practices are defined in *management tables*. A management table describes one specific combination of planting, tillage, fertilizer/manure application, and harvest practices applied to a portion of the modeled area (see Table 1). For the FDP SWAT model, several different management tables will be prepared to capture variation in agricultural practices across the basins that make up the FDP TMDL study area.

Year	Month	Day	Operation	Туре	Amount
1	May	3	Till	Disk Plow	-
1	May	15	Fertilizer	9:23:30	200 lbs/ac
1	May	15	Plant	Corn Grain	-
1	October	15	Harvest	Corn Grain	-
1	October	30	Till	Chisel Plow	_
2	May	3	Till	Disk Plow	-
2	May	15	Fertilizer	9:23:30	200 lbs/ac
2	May	15	Plant	Soybean	-
2	October	15	Harvest	Soybean	_
2	October	30	Till	Chisel Plow	-

Example SWAT agricultural land management table

INSTRUCTIONS

This document contains 24 questions on agricultural management practices in your county. Your responses will be used to guide SWAT model setup. SWAT model output will be used to calculate TMDL load allocations and reductions needed to meet water quality standards.

Accurate inputs for SWAT modeling are therefore critical for generating realistic estimates of phosphorus/sediment load reductions. For this phase of the TMDL study, we are not requesting information on agricultural management down to the scale of individual farms or fields. Most questions in this survey ask for a description of average practices for your county's 12-digit hydrologic units (HUC 12s). HUC 12 boundaries correspond to the subwatersheds defined in the FDP SWAT model and are displayed for reference in 1) Attachment A and 2) a web-based map. More detailed information may be requested at a later time for site-scale TMDL implementation planning.

*Tip 1: Unless specified, answer questions based on average practices and conditions in the last 5 years.

*Tip 2: While filling out this survey, consider seeking input from others as well (agronomists, UW Extension, agricultural agent etc.). <u>Additionally, please contact Eric Hettler</u>, <u>Eric.Hettler@wisconsin.gov, if you have questions about this survey or would like to set up a</u> <u>meeting to discuss this survey.</u>

Please prepare responses directly in this file and deliver by **Friday**, **February** 14th, 2023 in electronic format (Word or PDF) via email to:

Eric Hettler, WDNR Eric.Hettler@wisconsin.gov

I thank you in advance for taking the time to provide us with agricultural land management practices in your county. I look forward to working together to improve water quality in Wisconsin's Fox-Des Plaines watersheds!

PLEASE ENTER YOUR NAME AND CONTACT INFORMATION IN THE SPACE BELOW

Respondent Name: Organization: Email: Phone:

TABLE OF CONTENTS

Background
Instructionsi
Table of Contentsii
Agricultural Land Use (Questions 1 - 4)1
Question 1. Based on your knowledge of crop rotations in your county, would you add any rotations to the four listed above? If yes, please describe below
Question 2. Attachment A and the web-based map display the four general crop rotations in your county. Do any areas stand out as being misclassified?1
Question 3. The table below displays the area of each rotation as a percentage of total county area and agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?
Question 4. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004 transect data from the Conservation Technology Information Center (CTIC). We recognize many counties have been moving away from the Cropland Transect Survey, and it will not be required for this analysis. If you do have recently collected transect data, can you share these data for this project?
Dairy Crop Sequences (Questions 5 - 6)
Question 5. In the table below, please describe the sequence(s) of corn grain (Cg), corn silage (Cs), alfalfa (A), Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation. This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined
Question 6. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed5
Plantings and Harvests (Question 7)6
Question 7. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years
Tillage and Crop Residue (Questions 8 - 11)7
Question 8. In your county, are fields typically tilled in the spring, fall, or both?
Question 9. No-till fields are defined as fields that are never tilled. Sometimes landowners identify fields as no-till, when they in fact do receive tillage in some years. Please describe the frequency of tillage on fields that may identified as no-till but are occasionally tilled
Question 10. Please estimate the % of each rotation area that uses the tillage strategies listed below. This table will be used to determine tillage timing and depth

Question 11. In the tables below, please estimate the percentage of your county's Cash Grain, Continuous Corn, and Dairy acreage with after-planting crop residue levels of 0%-15%, 16%- 30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed
Non-Manure Fertilizer Applications (Questions 12 - 14) 11
Question 12. Using the table below, please describe the characteristics of the most common non- manure fertilizer application for each crop11
Question 13. Using the table below, please estimate typical annual chemical fertilizer application rates (P as lb P ₂ O ₅ , N as lb N)for Cash Grain and Continuous Corn rotations in your county by HUC12 subwatershed
Question 14. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?13
Manure Applications (Questions 15 - 20)14
Question 15. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed
Question 16. Using the table below, please describe the most common manure application practices for a daily haul farm and a manure storage farm in your county
Question 17. In the table below, please estimate typical manure application rates and form (liquid or solid) for a daily haul farm and a manure storage farm in your county by HUC12 16
Question 18. Are you able to provide an estimate of the range or average concentration of N and P in manure in your county? If so, please express as lb per ton or lb per 1000 gal
Question 19. What percent of Dairy Rotation acres under no-till receive injected manure? Manure injection can have similar effects on soil residue as tillage practices
Question 20: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of Dairy acres use the injection methods below
Soil Phosphorus (Question 21)
Question 21. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived from a review of representative Nutrient Management Plans for each HUC1218
Grazing (Questions 22 - 23)
Question 22. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed? What percentage is used as exercise areas?19
Question 23. What are the typical practices of a grazing operation?19
Irrigation and Agricultural Drain Tile (Question 24)
Question 24. What are the typical tile drainage and irrigation practices in each HUC 12?
Additonal Input

AGRICULTURAL LAND USE (QUESTIONS 1 – 4)

Four general crop rotations have been identified in the Fox-Des Plaines TMDL area using the Wiscland 2 data layer. See below for descriptions of these crop rotations as defined in Wiscland 2.

- 1. Cash Grain Corn grain and soybean plantings alternate each year. In some cases, corn grain is grown for two years in a row followed by soybeans. Occasionally, a grain (e.g., wheat, barley, or oats) will be planted in place of soybeans.
- 2. Continuous Corn Corn grain or corn silage grown every year in a 6-year rotation.
- 3. Dairy Areas with rotations of corn grain, corn silage, and alfalfa. Occasionally, soybeans or a grain (e.g., wheat, barley, or oats) are planted in place of corn.
- 4. Continuous Pasture Lands covered by herbaceous vegetation, primarily perennial grasses, used for grazing livestock. Kentucky bluegrass is the most common pasture grass, but many other grass species are grazed. A variety of forbs may be present.

The crop rotation map shown in Attachment A and the web-based map will be used to determine the rotation acreages in model subwatersheds. Modeled acreages and yields will be verified using estimates of acres harvested and crop yields reported by USDA National Agricultural Statistics Service by county. Your input is needed to further verify rotation definitions and maps.

Question 1. Based on your knowledge of crop rotations in your county, would you add any rotations to the four listed above? If yes, please describe below. Click or tap here to enter text.

Question 2. Attachment A and the web-based map display the four general crop rotations in your county. Do any areas stand out as being misclassified? Note: When looking for misclassified areas, please focus on the "bigger picture" and avoid

verifying rotations on the field level.

Question 3. The table below displays the area of each rotation as a percentage of total county area and agricultural area. Do these percentages seem to accurately represent the area of each rotation in your county?

Rotation	% of county area	% of agricultural area	Rotation area (acres)
Cash Grain	35%	60%	49,192
Continuous Corn	3%	5%	4,042
Dairy Rotation	11%	19%	15,730
Pasture	8%	14%	11,144

Note: Areas outside the Fox-Des Plaines TMDL study area are not included in the percent area calculations.

Click or tap here to enter text.

Question 4. Rotation maps can also be verified using Cropland Transect Survey data. We have acquired 2004 transect data from the Conservation Technology Information Center (CTIC). We recognize many counties have been moving away from the Cropland Transect Survey, and it will not be required for this analysis. If you do have recently collected transect data, can you share these data for this project? Click or tap here to enter text.

DAIRY CROP SEQUENCES (QUESTIONS 5 - 6)

Your input is needed to refine the sequence of crops planted in each year of the Dairy rotation.

Question 5. In the table below, please describe the sequence(s) of corn grain (Cg), corn silage (Cs), alfalfa (A), Soybean (S), Winter Wheat (Ww), and/or oats (O) in a typical dairy rotation. This table will be used to determine if the Dairy rotation should be modeled using one single crop sequence or if multiple Dairy rotations should be defined.

Notes: A reference table for the tillage type is provided on the next page

Report P (as P₂O₅) and N as pounds of non-manure fertilizer applied per acre per year Focus on sequences with a significant acreage (at least 10% of the total dairy acres in a HUC12).

Typical Dairy						Year				
Seque	nce(s)	1	2	3	4	5	6*	7*	8*	9*
	Crop Type	Cs	Cs	Cs	Cs	А	A			
F	Tillage	3	3	3	3	7	7			
Example	P (lb/ac/yr)	60	60	60	60	0	0			
	N (lb/ac/yr)	130	130	130	130	0	0			
	Crop Type									
C 1	Tillage									
Sequence 1	P (lb/ac/yr)									
	N (lb/ac/yr)									
	Сгор Туре									
C 2 *	Tillage									
Sequence 2*	P (lb/ac/yr)									
	N (lb/ac/yr)									
	Сгор Туре									
Co	Tillage									
Sequence 3*	P (lb/ac/yr)									
	N (lb/ac/yr)									
	Сгор Туре									
Socionas 1*	Tillage									
	P (lb/ac/yr)									
	N (lb/ac/yr)									
	Сгор Туре									
Socioneo E*	Tillage									
Sequence 5*	P (lb/ac/yr)									
	N (lb/ac/yr)									

*If needed

Tillage Code for Table	Tillage Strategy
1	Fall Chisel plow,
	Spring field cultivate x2
2	Fall Vertical till,
	Spring field cultivate
3	Spring Vertical till
4	Fall moldboard plow,
	Spring field cultivate x2
5	Fall field cultivate
6	Fall disk & chisel plow,
	Spring field cultivate x2
7	No-till
8	Other (please specify)
9	Other (<i>please specify</i>)
10	Other (please specify)

Question 6. If more than one rotation is typical in your county, please use the table below to estimate the percentage of your county's Dairy acres using the crop sequences listed above by HUC12 subwatershed.

HUC 12	% DS1	% DS2	%DS3	%DS4	%DS5
EXAMPLE	90%	10%	0%	0%	0%
Spring Brook-Fox River 071200061002					
Palmer Creek-Fox River 071200061003					
North Branch Nippersink Creek 071200060802					
Kilbourn Road Ditch 071200040102					
Channel Lake 071200061005					
Headwaters Des Plaines River 071200040103					
North Mill Creek 071200040201					
Bassett Creek-Fox River 071200061006					
Hoosier Creek 071200061001					
Jerome Creek-Des Plaines River 071200040104					
Brighton Creek 071200040101					

Note: DS = Dairy sequence

PLANTINGS AND HARVESTS (QUESTION 7)

SWAT management tables ask for planting and harvest dates for each crop planted. For the FDP SWAT model, management tables will initially be setup using average planting and harvest dates for the Basin. We recognize that dates can vary widely from year-to-year depending on temperature and moisture conditions. The initial planting dates will be varied as part of model sensitivity analysis to evaluate how much of an effect they have on modeled runoff and phosphorus/sediment loads. Your input is needed to determine average, early, and late planting and harvest dates in the FDP.

Question 7. In the table below, please estimate average planting dates (50% of crop planted) in your county in cool/wet, average, and warm/dry years.

Crop	Temperature/Moisture Condition	Average Planting Date	Average Harvest Date
	Cool & Wet Year		
Corn grain	Average Temperature & Moisture Year		
	Warm & Dry Year		
	Cool & Wet Year		
Corn silage	Average Temperature & Moisture Year		
Warm & Dry Year			
	Cool & Wet Year		
Alfalfa	Average Temperature & Moisture Year		
	Warm & Dry Year		
	Cool & Wet Year		
Soybean	Average Temperature & Moisture Year		
	Warm & Dry Year		
	Cool & Wet Year		
Winter wheat	Average Temperature & Moisture Year		
	Warm & Dry Year		
	Cool & Wet Year		
Oats	Average Temperature & Moisture Year		
	Warm & Dry Year		

TILLAGE AND CROP RESIDUE (QUESTIONS 8 - 11)

When defining tillage practices in SWAT management tables, key variables are the timing of tillage, depth of tillage, and amount of protective crop residue remaining on the surface following tillage. Your input is needed to determine appropriate tillage timing, tillage depth, and residue levels for each crop rotation. Tillage settings will also be informed by Cropland Transect Survey data. If you have conducted transect surveys since 2004, please provide the transect data for this project (see question 5).

Question 8. In your county, are fields typically tilled in the spring, fall, or both? Click or tap here to enter text.

Question 9. No-till fields are defined as fields that are never tilled. Sometimes landowners identify fields as no-till, when they in fact do receive tillage in some years. Please describe the frequency of tillage on fields that may identified as no-till but are occasionally tilled.

Crop Rotation	# of years tilled in a rotation
EXAMPLE	Tilled 1 out of every 6 years
Cash Grain	
Continuous Corn	
Dairy	

Question 10. Please estimate the % of each rotation area that uses the tillage strategies listed below. This table will be used to determine tillage timing and depth.

	% of rotation area using tillage strategy			
Tillage Strategy	EXAMPLE	Continuous Corn	Cash Grain	
Fall chisel plow, Spring field cultivate x2	0%			
Fall vertical till, Spring field cultivate	25%			
Spring vertical till	0%			
Fall moldboard plow, Spring field cultivate x2	0%			
Fall field cultivate	50%			
Fall disk & chisel plow, Spring field cultivate x2	0%			
No-till	25%			
Other (<i>please specify</i>)	0%			
Other (<i>please specify</i>)	0%			
Other (<i>please specify</i>)	0%			

Question 11. In the tables below, please estimate the percentage of your county's Cash Grain, Continuous Corn, and Dairy acreage with after-planting crop residue levels of 0%-15%, 16%-30%, >30%, and percentage under No-Till/Zone-Till by HUC12 subwatershed.

Note: This table will be used to determine the number of tillage classes to model for each crop rotation and the relative area of each tillage class per model subwatershed.

Crop Rotation	Crop Residue Class (% of residue)	Spring Brook-Fox River 071200061002	Palmer Creek-Fox River 071200061003	North Branch Nippersink Creek 071200060802
	0%-15%	071200061002	071200001003	071200060802
	16%-30%			
Cash Grain	>30%			
	No-/Zone-Till			
	0%-15%			
Continuous	16%-30%			
Corn	>30%			
	No-/Zone-Till			
Dairy	0%-15%			
	16%-30%			
	>30%			
	No-/Zone-Till			

Crop Rotation	Crop Residue Class	Kilbourn Road Ditch	Channel Lake	Headwaters Des Plaines River	North Mill Creek
	(% of residue)	071200040102	071200061005	071200040103	071200040201
	0%-15%				
Cash Grain	16%-30%				
Cash Grain	>30%				
	No-/Zone-Till				
	0%-15%				
Continuous	16%-30%				
Corn	>30%				
	No-/Zone-Till				
	0%-15%				
Dairy	16%-30%				
	>30%				
	No-/Zone-Till				

Crop Rotation	Crop Residue Class (% of residue)	Bassett Creek-Fox River 071200061006	Hoosier Creek 071200061001	Jerome Creek- Des Plaines River 071200040104	Brighton Creek 071200040101
	0%-15%	07120001000	07120001001	071200040104	071200040101
	16%-30%			-	
Cash Grain	>30%				
	No-/Zone-Till				
	0%-15%				
Continuous	16%-30%				
Corn	>30%				
	No-/Zone-Till				
Dairy	0%-15%				
	16%-30%				
	>30%				
	No-/Zone-Till				

NON-MANURE FERTILIZER APPLICATIONS (QUESTIONS 12 – 14)

Non-manure fertilizer applications will be modeled for the Cash Grain, Continuous Corn, and Dairy rotations. Important settings for non-manure fertilizer applications include application rate, placement, and whether application is followed by incorporation. Note that when defining fertilizer application rates, our focus is on the amount of **phosphorus** and **nitrogen** applied. Application rates for potassium are less relevant for this project. Your input is needed to determine appropriate chemical fertilizer application settings for the Cash Grain, Continuous Corn, and Dairy rotations.

Question 12. Using the table below, please describe the characteristics of the most common non-manure fertilizer application for each crop.

Charact	eristic	Example	Cash Grain	Corn Grain	Corn Silage
Application timing	Pre-panting	x			
(check all that	At-planting	x			
<u>apply)</u>	During growing				
Placement	Surface	x			
<u>(check one per</u> <u>rotation)</u>	Injection				
Incorporation after application?	Yes	x			
(check one per rotation)	No				

Question 13. Using the table below, please estimate typical annual chemical fertilizer application rates (P as lb P_2O_5 , N as lb N)for Cash Grain and Continuous Corn rotations in your county by HUC12 subwatershed.

HUC 12				plication inuous orn	
	Р	N	Р	Ν	
EXAMPLE	60	130	70	120	
Spring Brook-Fox River 071200061002					
Palmer Creek-Fox River 071200061003					
North Branch Nippersink Creek 071200060802					
Kilbourn Road Ditch 071200040102					
Channel Lake 071200061005					
Headwaters Des Plaines River 071200040103					
North Mill Creek 071200040201					
Bassett Creek-Fox River 071200061006					
Hoosier Creek 071200061001					
Jerome Creek-Des Plaines River 071200040104					
Brighton Creek 071200040101					

Question 14. Crop yield targets could also inform the selection of appropriate fertilizer application rates. For example, areas with high yield targets may also be receiving high rates of fertilizer application. Can you provide estimates of crop yields by HUC12 subwatershed?

	Crop Yield Targets (yield/acre/yr)			
HUC 12	Cash grain	Corn grain	Corn silage	
EXAMPLE	170 bu/ac	150 bu/ac	10 tons/ac	
Spring Brook-Fox River 071200061002				
Palmer Creek-Fox River 071200061003				
North Branch Nippersink Creek 071200060802				
Kilbourn Road Ditch 071200040102				
Channel Lake 071200061005				
Headwaters Des Plaines River 071200040103				
North Mill Creek 071200040201				
Bassett Creek-Fox River 071200061006				
Hoosier Creek 071200061001				
Jerome Creek-Des Plaines River 071200040104				
Brighton Creek 071200040101				

MANURE APPLICATIONS (QUESTIONS 15 - 20)

Manure applications will be modeled for the Dairy rotation. Important settings for manure applications include application frequency, rate, timing, and whether application is followed by incorporation. Your input is needed to determine appropriate manure application settings.

Question 15. In the table below, please estimate the percentage of your county's Dairy acreage practicing daily haul of manure versus manure storage by HUC12 subwatershed.

HUC 12	% Daily Haul	% Storage
Spring Brook-Fox River 071200061002		
Palmer Creek-Fox River 071200061003		
North Branch Nippersink Creek 071200060802		
Kilbourn Road Ditch 071200040102		
Channel Lake 071200061005		
Headwaters Des Plaines River 071200040103		
North Mill Creek 071200040201		
Bassett Creek-Fox River 071200061006		
Hoosier Creek 071200061001		
Jerome Creek-Des Plaines River 071200040104		
Brighton Creek 071200040101		

Question 16. Using the table below, please describe the most common manure application practices for a daily haul farm and a manure storage farm in your county.

Notes: Please fill out the table for the most common practices observed in the county.

"% of area receiving application per year" refers to the percent of land that receives manure in any given year. For example, in a given year, does every acre planted with corn grain receive manure, or are only a select percentage of those acres receiving manure?

Crop	Characteristic	Daily Haul Farm	Storage Farm
	Application frequency	Every 2 weeks	Twice a year
Example	Application timing	Year round	Spring and fall
crop	Followed by incorporation?	No	Yes
	% of area receiving application each year	50%	50%
	Application frequency		
Corn	Application timing		
grain	Followed by incorporation?		
	% of area receiving application each year		
	Application frequency		
Corn	Application timing		
silage	Followed by incorporation?		
	% of area receiving application each year		
	Application frequency		
Alfalfa	Application timing		
Allalla	Followed by incorporation?		
	% of area receiving application each year		
	Application frequency		
Soybean	Application timing		
boybean	Followed by incorporation?		
	% of area receiving application each year		
	Application frequency		
Winer	Application timing		
wheat	Followed by incorporation?		
	% of area receiving application each year		
	Application frequency		
Oats	Application timing		
Cals	Followed by incorporation?		
	% of area receiving application each year		

Question 17. In the table below, please estimate typical manure application rates and form (liquid or solid) for a daily haul farm and a manure storage farm in your county by HUC12.

Notes: Application Rate refers to the average rate per an application (i.e., not a yearly or rotational average).

% Incorporated refers to a spectrum starting with 0% (surface spreading and no tillage) and ending with 100% (injection).

	DAIL	Y HAUI		STORAGE		
HUC 12	Application Rate (tons or 1000 gals per acre)	% inc.	Manure Form	Application Rate (tons or 1000 gals per acre)	% inc.	Manure Form
Spring Brook-Fox River 071200061002						
Palmer Creek-Fox River 071200061003						
North Branch Nippersink Creek 071200060802						
Kilbourn Road Ditch 071200040102						
Channel Lake 071200061005						
Headwaters Des Plaines River 071200040103						
North Mill Creek 071200040201						
Bassett Creek-Fox River 071200061006						
Hoosier Creek 071200061001						
Jerome Creek-Des Plaines River 071200040104						
Brighton Creek 071200040101 Note: % inc. = Percent incorporated						

Note: % inc. = Percent incorporated

Question 18. Are you able to provide an estimate of the range or average concentration of N and P in manure in your county? If so, please express as lb per ton or lb per 1000 gal.

P concentration (as P₂0₅): Click or tap here to enter text. N concentration (as N): Click or tap here to enter text.

Click or tap here to enter text.

Question 19. What percent of Dairy Rotation acres under no-till receive injected manure? Manure injection can have similar effects on soil residue as tillage practices. Click or tap here to enter text.

Question 20: Of the Dairy Rotation acres that receive manure by injection, please estimate what percent of Dairy acres use the injection methods below.

This table will be used to determine the depth of soil disturbance and soil residue disturbance. Values in table should sum to 100%.

Injection method	% of dairy acres receiving manure by injection
Narrow knife	
Sweep	
Knife	
Other (please specify)	

SOIL PHOSPHORUS (QUESTION 21)

An important parameter for SWAT modeling is the initial phosphorus content of soils throughout the modeled area. We have acquired average soil phosphorus by county based on 2010-2014 soil testing from the UW Soil Testing Lab (<u>http://uwlab.webhosting.cals.wisc.edu/wp-content/uploads/sites/17/2016/06/DATCP-soil-summary-2010-to-2014-1.xlsx</u>). Your input is needed to estimate finer-scale soil phosphorus values. Estimates of average soil P per HUC12 can be generated by averaging values from a group of representative Nutrient Management Plans for farms in each HUC12.

Question 21. In the table below, please estimate average soil phosphorus per HUC12. Estimates can be derived from a review of representative Nutrient Management Plans for each HUC12.

HUC 12	Average Soil P (parts per million)
Spring Brook-Fox River 071200061002	
Palmer Creek-Fox River 071200061003	
North Branch Nippersink Creek 071200060802	
Kilbourn Road Ditch 071200040102	
Channel Lake 071200061005	
Headwaters Des Plaines River 071200040103	
North Mill Creek 071200040201	
Bassett Creek-Fox River 071200061006	
Hoosier Creek 071200061001	
Jerome Creek-Des Plaines River 071200040104	
Brighton Creek 071200040101	

GRAZING (QUESTIONS 22 – 23)

SWAT management tables can be setup to model animal grazing on pastured lands. Required inputs include the animal type and count, timing of the start of grazing, and number of grazing days. Your input is needed to determine the prevalence of managed grazing in areas classified as Continuous Pasture and, if grazing is significant, to determine appropriate grazing settings.

Question 22. In a given year, what percentage of your county's Pasture acreage (as identified in Attachment A or the web-based map) is grazed? What percentage is used as exercise areas?

Percent grazed: Click or tap here to enter text. Percent as exercise area: Click or tap here to enter text.

Question 23. What are the typical practices of a grazing operation?

	Dairy/Heifer Cattle	Beef Cattle	Horses
Total acres in county			
Number of animals per acre			
Grazing timing & duration (Entire growing season, year-round, spring only, etc.)			

IRRIGATION AND AGRICULTURAL DRAIN TILE (QUESTION 24)

The SWAT model includes options for tile drainage and irrigation. Information about these operations is useful for calibrating the model for flow and concentration.

Question 24. What are the typical tile drainage and irrigation practices in each HUC 12?

HUC12	Percent of fields with ag tile	Percent of fields with irrigation
Spring Brook-Fox River 071200061002		
Palmer Creek-Fox River 071200061003		
North Branch Nippersink Creek 071200060802		
Kilbourn Road Ditch 071200040102		
Channel Lake 071200061005		
Headwaters Des Plaines River 071200040103		
North Mill Creek 071200040201		
Bassett Creek-Fox River 071200061006		
Hoosier Creek 071200061001		
Jerome Creek-Des Plaines River 071200040104		
Brighton Creek 071200040101		

ADDITONAL INPUT

What trends are you seeing with agriculture in your county? Click or tap here to enter text.

What are your most pressing agricultural challenges (e.g., drain tiles, gullying, barnyards)? Click or tap here to enter text.

What other key agriculture groups within the county should we be contacting? Click or tap here to enter text.

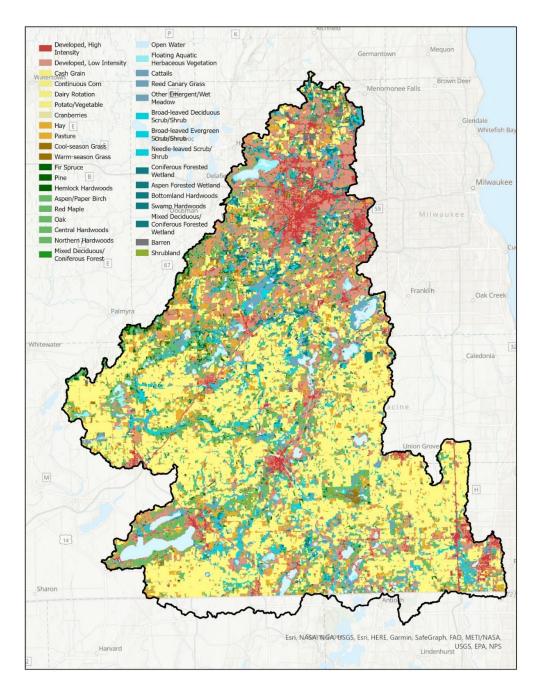
What trends are you seeing with regards to conversion of agricultural land to developed land? Click or tap here to enter text.

Are there any medium-to-large sized animal operations in your county (i.e., between 300 and 1000 animal units)? If so, are you able to share any information about these operations? Click or tap here to enter text.

Are you aware of any areas where water quality is seemingly better than one may expect (i.e., a stream in a watershed with significant agriculture that is still high quality)? Click or tap here to enter text.

If there are significant agricultural land management practices in your county that were <u>not</u> mentioned in this survey and could affect water quality, please elaborate below and/or provide any relevant data.

For example, if you know of barnyards with significant runoff, what are the size and location and size of each barnyard.

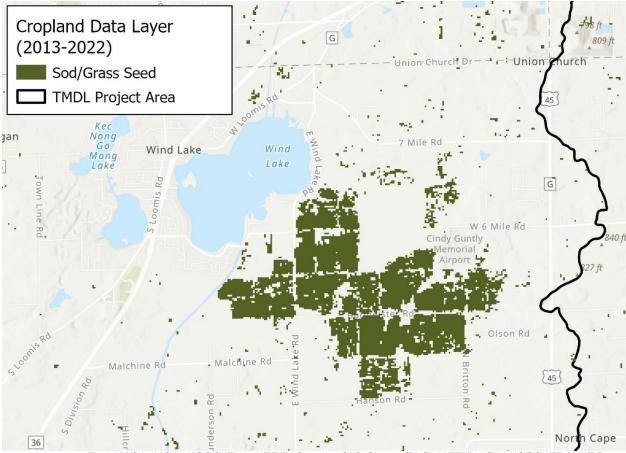

APPENDIX B

STEPS FOR UPDATING AGRICULTURAL LAND COVER

Step 1: Use Wiscland 2.0 as the baseline land cover for the study area.

Wiscland 2.0 (WDNR, 2016) is a spatial dataset that characterizes land cover in Wisconsin. The dataset was developed as a collaborative effort between the DNR, the University of Wisconsin-Madison, and the Wisconsin State Cartographer's office. Wiscland 2.0 classifies land cover at four different levels, with Level 1 being the most generic and Level 4 being the most detailed. The Level 3 Wiscland 2.0 dataset for the study area is shown in Figure B.1.

FIGURE B.1 Wiscland 2.0 Land Cover for TMDL Study Area



Step 2: Update areas in Racine County that are identified as sod farms.

The survey results from Racine County indicated a significant amount of land near Wind Lake is used for sod farming. Sod is not included as part of the Wiscland 2.0 dataset, so the areas around Wind Lake are misclassified. To identify the land used as sod, the Cropland Data Layer from 2013-2022 (NASS, 2013-2022), which includes a classification for sod/grass seed, was used. Additionally, aerial photographs were reviewed to delineate the approximate location of sod farms. The extents of land cover as sod from the cropland data layer is shown in Figure B.2, and aerial imagery of the area is shown in Figure B.3. In Figure B.3, the sod farms can be identified as the more vibrant green areas.

The final estimated extent of the sod farms used for the updated dataset is shown in Figure B.5. Note that some roads and other small parcels in the final extents may be misclassified as sod, but these discrepancies will be reconciled during the modeling process.

FIGURE B.2 Extent of Sod Land Cover from Cropland Data Layer (2013-2022)

Esri, NASA, NGA, USGS, Esri, HERE, Garmin, SafeGraph, FAO, METI/NASA, USGS, EPA, NPS

FIGURE B.3 Aerial Image of Sod Farms near Wind Lake

SEWRPC, Earthstar Geographics

Step 3: Convert dairy rotations to cash grain to match results from the surveys.

The survey results indicated dairy rotations were overrepresented in the Wiscland 2.0 dataset. The biggest driver of the changes to dairy rotation has been the decrease in the number of small dairies. An overview of changes to dairy rotations required for the updated land cover dataset are summarized in Table B.1. In order to systematically reduce the area of dairy rotations, the size of all fields classified as dairy rotation were identified. The smallest of these fields were removed from the dataset until the area of dairy rotations in a county matched the county survey. All of the removed areas were reclassified to cash grain. The extent of dairy rotations that are converted to cash grain is shown in Figure B.6.

Waukesha County did not have information about the extent of dairy rotations in the county. To determine the decrease in the area of dairy rotations in Waukesha County, the total number of dairy operations in Waukesha County was determined from the NASS census (NASS, 2017). Between 2002 and 2017, the number of dairy operations decreased from 52 to 22, and the number of dairy cattle decreased from nearly 4,000 to just over 1,600. The changes in dairy operations were compared with the other counties. Waukesha County has experienced a larger decrease in dairy operations than Kenosha, Racine, and Walworth Counties. To account for a decrease in dairy operations, the amount of dairy rotation in Wiscland 2.0 was assumed to overestimate actual dairy

rotations by 60 percent, which is slightly higher than the 40 percent overestimation indicated in the other three counties.

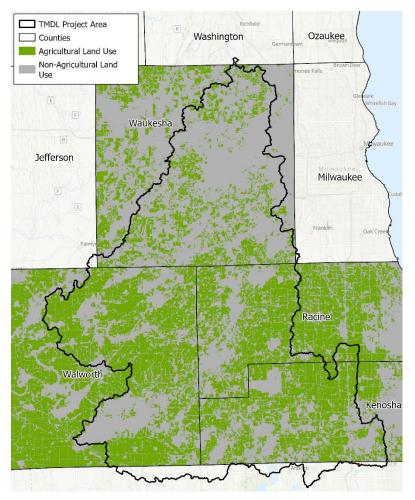
TABLE B.1

Updates to Wiscland 2.0 Dairy Rotations

County	Location	Wiscland 2.0 Land Cover	Updated Land Cover	Percent Updated	Explanation
Kenosha	Channel Lake	Dairy Rotation	Cash Grain	100%	The number of dairy farms has decreased, and no more dairy rotation exist in the Channel Lake subwatershed.
Kenosha	Countywide	Dairy Rotation	Cash Grain	40%	The number of dairy farms has decreased, and the Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.
Racine	Countywide	Dairy Rotation	Cash Grain	40%	The Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.
Walworth	Countywide	Dairy Rotation	Cash Grain	40%	The Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county. The majority of dairy rotation is concentrated south of Lake Geneva.
Waukesha	Countywide	Dairy Rotation	Cash Grain	60%	The number of dairy farms has decreased, and the Wiscland 2.0 dataset overrepresents the amount of dairy rotation in the county.

Step 4: Convert a portion of continuous corn to cash grain.

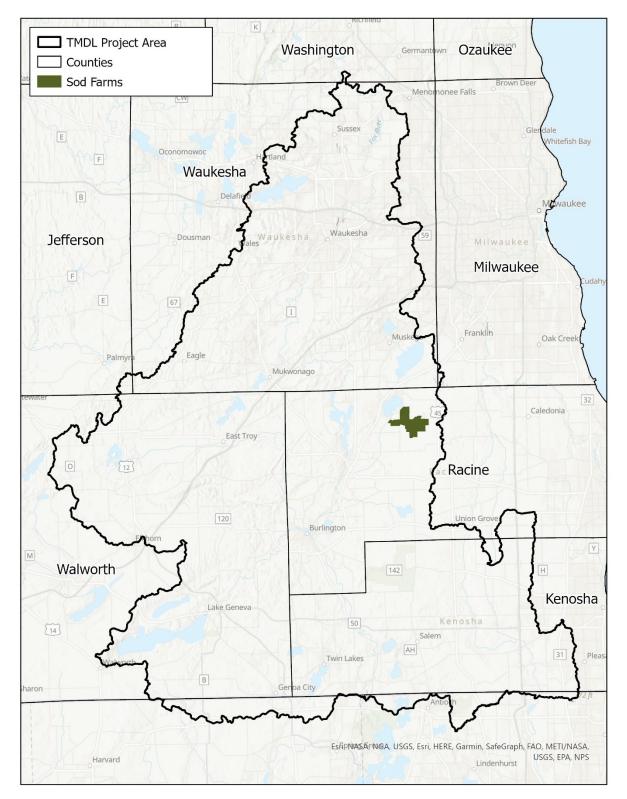
The survey results from Racine County and Walworth County indicated the continuous corn rotation in the Wiscland 2.0 dataset was overrepresented. Very little continuous corn is grown in Racine County, and the continuous corn in Walworth County was overrepresented by approximately 40 percent. All continuous corn in Racine County was removed from the updated land cover dataset. In order to achieve the appropriate balance of continuous corn in Walworth County, the approach described in Step 3 was used. To systematically reduce the area of continuous corn, the size of all fields classified as continuous corn were identified. The smallest of these fields were removed from the dataset until the area of dairy rotations in a county matched the county survey. All removed areas were reclassified to cash grain. The extent of the continuous corn that was reclassified as cash grain is shown in Figure B.7.

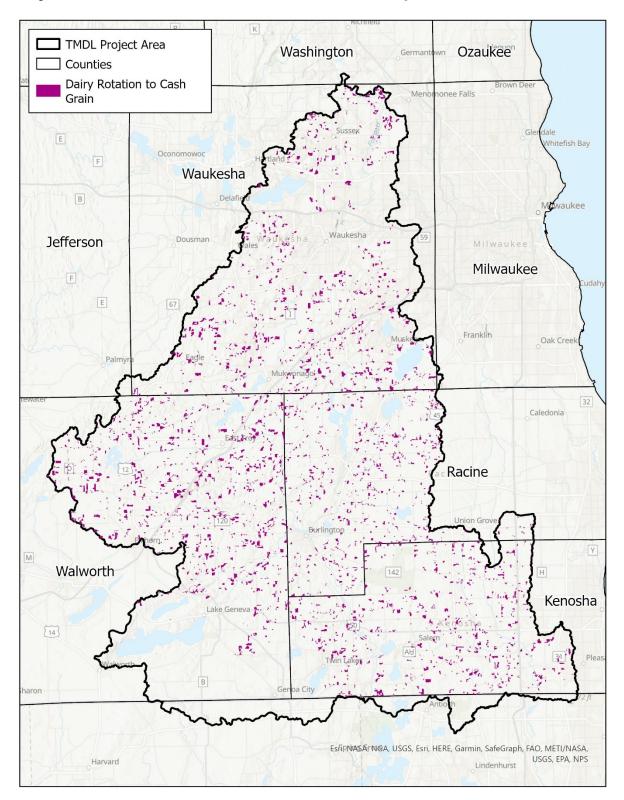

Step 5: Convert pasture and hay in non-agricultural areas to warm-season grass.

The results of the county surveys indicated pasture is difficult to estimate. Pasture that is grazed is typically limited to small beef operations and horse boarding operations. Additionally, areas in

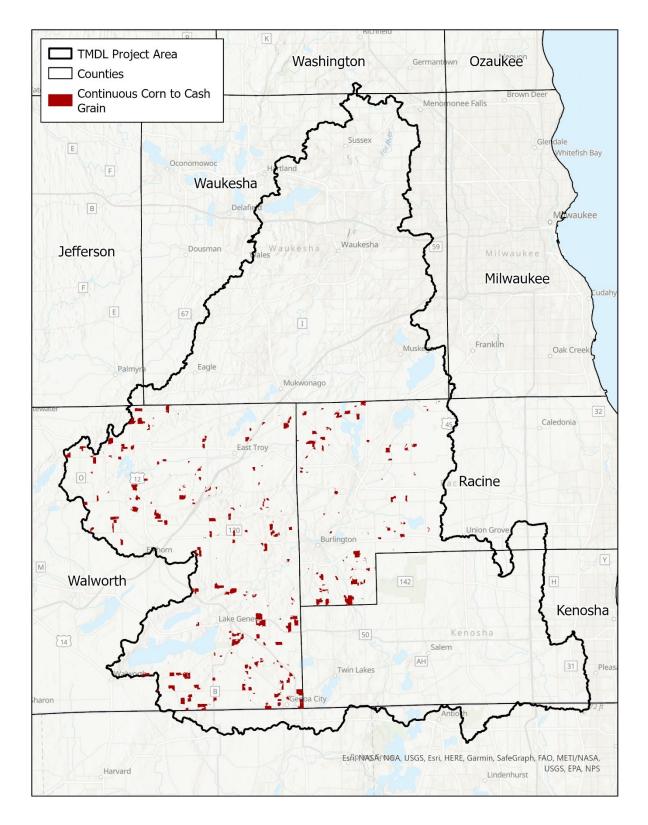
Wiscland 2.0 classified as pasture encompass areas that are known to not be pastures. The misclassified areas include turf grass and golf courses.

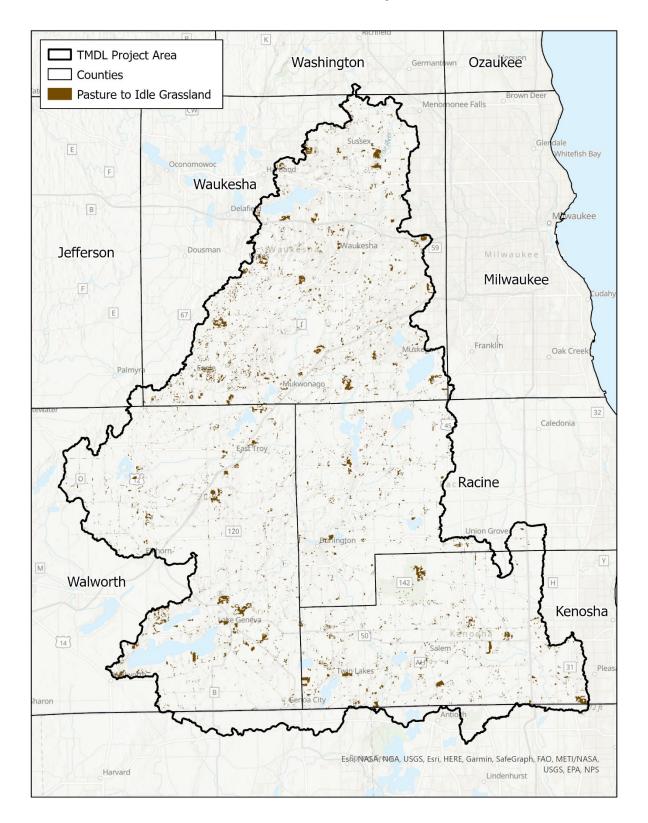
In order to estimate the actual extent of pasture that may be used for grazing, the 2010 land use data from the Southeast Regional Planning Commission (SEWRPC, 2010) was reviewed. The data were used to delineate agricultural versus non-agricultural areas. All Wiscland 2.0 pasture areas located in non-agricultural land use areas were removed from the final agricultural land cover dataset because these areas are likely golf courses and other turf grass. All Wiscland 2.0 pasture areas located agricultural land use areas were retained. The land use classification from SEWRPC is shown in Figure B.4. The extent of the pasture that was removed from the final land cover dataset is shown in Figure B.8.


FIGURE B.4 Agricultural and Non-Agricultural Land Use from SEWRPC 2010


Step 6. Combine changes in Steps 1 through 5 to establish final land cover dataset

A final agricultural land cover dataset was developed by applying the changes described in Steps 2 through 5 to the Wiscland 2.0 dataset described in Step 1. A comparison of the agricultural lands from the Wiscland 2.0 dataset and the updated dataset is provided in Figure B.9.


FIGURE B.5 Location of Sod Farms Added to Updated Land Cover


FIGURE B.6 Dairy Rotation Converted to Cash Grain for Updated Land Cover

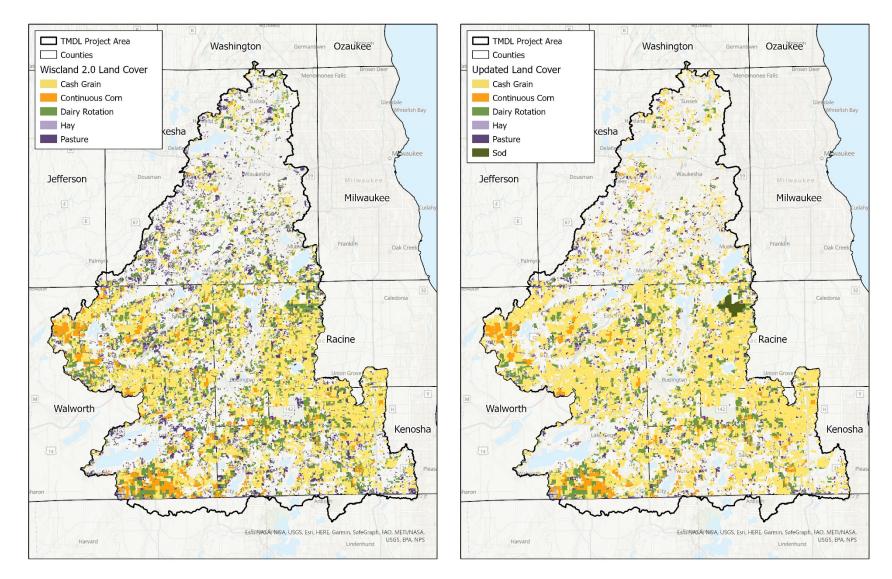

FIGURE B.7 Continuous Corn Converted to Cash Grain for Updated Land Cover

FIGURE B.8 Pasture Converted to Idle Grassland for Updated Land Cover

FIGURE B.9 Comparison of Wiscland 2.0 Land Cover and Updated Land Cover

REFERENCES FOR APPENDIX B

- National Agricultural Statistics Service, 2013-2022, Cropland data layer: Washington, D.C., United States Department of Agriculture NASS, accessed at https://nassgeodata.gmu.edu/CropScape/
- National Agricultural Statistics Service, 2017, Census of agriculture: Washington, D.C., United States Department of Agriculture NASS, accessed at https://quickstats.nass.usda.gov/
- Southeast Wisconsin Regional Planning Commission, 2010, Land use inventory: Waukesha, WI, accessed at https://geodata.wisc.edu/catalog/
- Wisconsin Department of Natural Resources, 2016, Wiscland 2.0 Land Cover, Wisconsin 2016: Madison, WI, https://dnr.wisconsin.gov/maps/WISCLAND

APPENDIX C

IRRIGATION AND TILE DRAINAGE BY HUC 12

TABLE C.1 Tile Drainage and Irrigation for HUC 12s in Kenosha County

HUC 12	HUC 12 Name	Percent of fields with tile drainage	Percent of fields with irrigation
071200061002	Spring Brook-Fox River	50-75	0
071200061003	Palmer Creek-Fox River	50-75	0
071200060802	North Branch Nippersink Creek	50-75	0
071200040102	Kilbourn Road Ditch	50-75	<2
071200061005	Channel Lake	50-75	0
071200040103	Headwaters Des Plaines River	50-75	0
071200040201	North Mill Creek	50-75	0
071200061006	Bassett Creek-Fox River	50-75	0
071200061001	Hoosier Creek	50-75	0
071200040104	Jerome Creek-Des Plaines River	50-75	0
071200040101	Brighton Creek	50-75	0

TABLE C.2

Tile Drainage and Irrigation for HUC 12s in Racine County

HUC 12	HUC 12 Name	Percent of fields with tile drainage	Percent of fields with irrigation
071200061002	Spring Brook-Fox River	50	0
071200061003	Palmer Creek-Fox River	70	0
071200060604	White River	50	0
071200060704	Village of Big Bend-Fox River	50	0
071200040102	Kilbourn Road Ditch	80	0
071200060302	Muskego Lake	90	0
071200040103	Headwaters Des Plaines River	80	0
071200060705	Tichigan Lake-Fox River	50	10
071200060706	Eagle Creek	90	0
071200060304	Wind Lake Drainage Canal	70	30
071200060707	Long Lake-Fox River	70	0
071200060503	Honey Creek	50	0
071200060303	Goose Lake Branch Canal	70	30
071200061001	Hoosier Creek	90	0
071200040101	Brighton Creek	70	0

TABLE C.3 Tile Drainage and Irrigation for HUC 12s in Walworth County

HUC 12	HUC 12 Name	Percent of fields with tile drainage	Percent of fields with irrigation
071200060401	North Lake	0	1
071200060402	Silver Lake-Sugar Creek	5	0
071200060603	Ore Creek	10	0
071200060802	North Branch Nippersink Creek	20	0
071200060604	White River	10	0
071200060502	Spring Creek-Honey Creek	25	0
071200060903	Headwaters Nippersink Creek	30	0
071200060801	West Branch North Branch Nippersink Creek-North Branch Nippersink Creek	35	5
071200060602	Lake Geneva-White River	10	0
071200060403	Lake Wandawega-Sugar Creek	20	0
071200060601	Como Creek	20	0
071200060203	Mukwonago River	0	0
071200060503	Honey Creek	10	0
071200060202	Eagle Spring Lake	0	0
071200060501	Lauderdale Lakes-Honey Creek	30	5
071200060404	Sugar Creek	25	0

APPENDIX D

SOIL PHOSPHORUS BY HUC 12

TABLE D.1 Soil Phosphorus for HUC 12s in Kenosha County

HUC 12	HUC 12 Name	Average Soil P (parts per million)		
071200061002	Spring Brook-Fox River	*		
071200061003	Palmer Creek-Fox River	39		
071200060802	North Branch Nippersink Creek	*		
071200040102	Kilbourn Road Ditch	57		
071200061005	Channel Lake	*		
071200040103	Headwaters Des Plaines River	63		
071200040201	North Mill Creek	45		
071200061006	Bassett Creek-Fox River	*		
071200061001	Hoosier Creek	*		
071200040104	Jerome Creek-Des Plaines River	*		
071200040101	Brighton Creek	34		
Note: * Indicates HUC 12s where an estimate is not available				

TABLE D.2 Soil Phosphorus for HUC 12s in Racine County

HUC 12	HUC 12 Name	Average Soil P (parts per million)
071200061002	Spring Brook-Fox River	60
071200061003	Palmer Creek-Fox River	60
071200060604	White River	30
071200060704	Village of Big Bend-Fox River	60
071200040102	Kilbourn Road Ditch	60
071200060302	Muskego Lake	30
071200040103	Headwaters Des Plaines River	30
071200060705	Tichigan Lake-Fox River	60
071200060706	Eagle Creek	60
071200060304	Wind Lake Drainage Canal	60
071200060707	Long Lake-Fox River	60
071200060503	Honey Creek	60
071200060303	Goose Lake Branch Canal	60
071200061001	Hoosier Creek	60
071200040101	Brighton Creek	30

TABLE D.3 Soil Phosphorus for HUC 12s in Walworth County

HUC 12	HUC 12 Name	Average Soil P (parts per million)
071200060401	North Lake	50
071200060402	Silver Lake-Sugar Creek	30
071200060603	Ore Creek	30
071200060802	North Branch Nippersink Creek	30
071200060604	White River	30
071200060502	Spring Creek-Honey Creek	30
071200060903	Headwaters Nippersink Creek	80
071200060801	West Branch North Branch Nippersink Creek-North Branch Nippersink Creek	70
071200060602	Lake Geneva-White River	35
071200060403	Lake Wandawega-Sugar Creek	35
071200060601	Como Creek	30
071200060203	Mukwonago River	25
071200060503	Honey Creek	35
071200060202	Eagle Spring Lake	30
071200060501	Lauderdale Lakes-Honey Creek	35
071200060404	Sugar Creek	35

APPENDIX E

DETAILED LAND COVER AND LAND MANAGEMENT CATEGORIES FOR SWAT MODELING

Dairy Sequence 1 - Till 1	Yea	ar 1	Yea	ar 2	Yea	ar 3	Ye	ear 4	Ye	ar 5	Ye	ar 6
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	silage	Corn s	silage	Soybean	Winter wheat	Winter wheat	Alfalfa	Alfa	alfa	Alf	alfa
Approx. Planting Date	15-May		15-May		25-May	15-0ct		22-Jul				
Approx. Harvest Date		15-Sep		15-Sep		15-0ct	15-Jul		Four c	uttings	Four c	uttings
Tillage	Cultivator, 2x	Chisel plow	Cultivator, 2x	Chisel plow	Cultivator, 2x	Chisel plow	None	Chisel plow	None	None	None	Chisel plow
Liquid manure applications	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	None	Liquid	None	None	None	None
Manure P (lb P205/ac)	37.5	37.5	37.5	37.5	37.5	37.5	-	37.5	-	-	-	-
Timing	Before till	Before till	Before till	Before till	Before till	Before till	-	Before till	-	-	-	-
Solid manure applications	None	None	None	Solid	None	None	None	Solid	None	None	None	Solid
Manure P (lb P205/ac)	-	-	-	75	-	-	-	75	-	-	-	75
Timing	-	-	-	After till	-	-	-	After till	-	-	-	After till
Other fertilizer application	None	None	None	None	None	None	None	None	None	None	None	None
Amount (Ib P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-

Dairy Sequence 1 - Till 2	Yea	ar 1	Yea	ar 2	Yea	ar 3	Y	ear 4	Ye	ar 5	Ye	ar 6
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	silage	Corn	silage	Soybean	Winter wheat	Winter wheat	Alfalfa	Alf	alfa	Alf	alfa
Approx. Planting Date	15-May		15-May		25-May	15-0ct		22-Jul				
Approx. Harvest Date		15-Sep		15-Sep		15-0ct	15-Jul		Four o	outtings	Four o	cuttings
Tillage	Cultivator	Vertical till	Cultivator	Vertical till	Cultivator	Vertical till	None	None	None	None	None	Vertical till
Liquid manure applications	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	None	Liquid	None	None	None	None
Manure P (Ib P205/ac)	37.5	37.5	37.5	37.5	37.5	37.5	-	37.5	-	-	-	-
Timing	Before till	Before till	Before till	Before till	Before till	Before till	-	Before till	-	-	-	-
Solid manure applications	None	None	None	Solid	None	None	None	Solid	None	None	None	Solid
Manure P (Ib P205/ac)	-	-	-	75	-	-	-	75	-	-	-	75
Timing	-	-	-	After till	-	-	-	After till	-	-	-	After till
Other fertilizer application	None	None	None	None	None	None	None	None	None	None	None	None
Amount (Ib P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-

Dairy Sequence 2 - Till 1	Ye	ar 1	Yea	ar 2	Yea	ar 3	Yea	r 4	Ye	ar 5	Ye	ear 6
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	silage	Corn	silage	Corn	silage	Alfa	lfa	Alf	alfa	Alf	falfa
Approx. Planting Date	15-May		15-May		15-May		20-May		20-May		20-May	
Approx. Harvest Date		15-Sep		15-Sep		15-Sep	Four cu	ittings	Four	cuttings	Four	cuttings
Tillage	Cultivator, 2x	Chisel plow	Cultivator, 2x	Chisel plow	Cultivator, 2x	Chisel plow	Cultivator, 2x	None	None	None	None	Chisel plow
Liquid manure applications	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	None	None	None	None	None
Manure P (Ib P205/ac)	37.5	37.5	37.5	37.5	37.5	37.5	37.5	-	-	-	-	-
Timing	Before till	Before till	Before till	Before till	Before till	Before till	Before till	-	-	-	-	-
Solid manure applications	None	None	None	Solid	None	None	None	Solid	None	None	None	Solid
Manure P (Ib P205/ac)	-	-	-	75	-	-	-	75	-	-	-	75
Timing	-	-	-	After till	-	-	-	After till	-	-	-	After till
Other fertilizer application	None	None	None	None	None	None	None	None	None	None	None	None
Amount (Ib P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-

Cash Grain Sequence 1 - Till 1	Yea	r 1	Yea	ar 2	Yea	r 3	Yea	r 4	Year 5		Year 6	
	Spring	Fall										
Crop	Corn g	grain	Soyb	bean	Corn g	grain	Soyb	ean	Corn g	grain	Soyb	ean
Approx. Planting Date	15-May		25-May		15-May		25-May		15-May		25-May	
Approx. Harvest Date		1-Nov		15-0ct		1-Nov		15-0ct		1-Nov		15-0ct
Tillage	Cultivator, 2x	Chisel plow										
Manure applications	None	None										
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None										
Amount (Ib P205/ac)	35 (total)	-										
Timing	30-Apr, 30-Jun	-										

Cash Grain Sequence 1 - Till 3	Yea	ar 1	Year 2		Year 3		Year 4		Year 5		Year 6	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	grain	Soyl	bean	Corn	grain	Soyt	ean	Corn	grain	Soyb	ean
Approx. Planting Date	7-May		25-May		7-May		25-May		7-May		25-May	
Approx. Harvest Date		1-Nov		15-0ct		1-Nov		15-0ct		1-Nov		15-0ct
Tillage	Vertical	None	Vertical	None	Vertical	None	Vertical	None	Vertical	None	Vertical	None
Manure applications	None	None	None	None	None	None	None	None	None	None	None	None
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None	2x	None	2x	None	2x	None	2x	None	2x	None
Amount (Ib P205/ac)	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-
Timing	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-

Cash Grain Sequence 1 - Till 4	Ye	ear 1	Ye	ar 2	Yea	ar 3	Ye	ar 4	Yea	ar 5	Ye	ar 6
	Spring	Fall										
Crop	Corr	ı grain	Soy	bean	Corn	grain	Soyl	bean	Corn	grain	Soyl	bean
Approx. Planting Date	7-May		25-May		7-May		25-May		7-May		25-May	
Approx. Harvest Date		1-Nov		15-0ct		1-Nov		15-0ct		1-Nov		15-0ct
Tillage	None	Cultivator										
Manure applications	None	None										
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None										
Amount (Ib P205/ac)	35 (total)	-	35 (total)	-								
Timing	30-Apr, 30-Jun	-										

Cash Grain Sequence 1 - Till 5	Yea	ır 1	Year 2		Yea	ar 3	Year 4		Year 5		Year 6	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	grain	Soyl	bean	Corn	grain	Soyb	ean	Corn	grain	Soyb	ean
Approx. Planting Date	7-May		25-May		7-May		25-May		7-May		25-May	
Approx. Harvest Date		1-Nov		15-0ct		1-Nov		15-0ct		1-Nov		15-0ct
Tillage	Cultivator	Vertical	None	None	Cultivator	Vertical	None	None	Cultivator	Vertical	None	None
Manure applications	None	None	None	None	None	None	None	None	None	None	None	None
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None	2x	None	2x	None	2x	None	2x	None	2x	None
Amount (Ib P205/ac)	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-	35 (total)	-
Timing	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-

Continuous Corn - Till 1	Yea	r 1	Year 2		Yea	r 3	Yea	r 4	Year 5		Year 6	
	Spring	Fall										
Crop	Corn g	grain	Corn	grain	Corn g	grain						
Approx. Planting Date	7-May											
Approx. Harvest Date		1-Nov										
Tillage	Cultivator, 2x	Chisel plow										
Manure applications	None	None										
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None										
Amount (Ib P205/ac)	45 (total)	-										
Timing	30-Apr, 30-Jun	-										

Continuous Corn - Till 2	Yea	r 1	Year 2		Yea	ar 3	Yea	nr 4	Year 5		Year 6	
	Spring	Fall										
Crop	Corn	grain										
Approx. Planting Date	7-May											
Approx. Harvest Date		1-Nov										
Tillage	Cultivator	Vertical till										
Manure applications	None	None										
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None										
Amount (Ib P205/ac)	45 (total)	-										
Timing	30-Apr, 30-Jun	-										

Continuous Corn - Till 3	Ye	ar 1	Year 2		Ye	ar 3	Ye	ar 4	Year 5		Year 6	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Corn	grain	Corr	n grain	Corn	grain	Corn	grain	Corn	grain	Corn	grain
Approx. Planting Date	7-May		7-May		7-May		7-May		7-May		7-May	
Approx. Harvest Date		1-Nov		1-Nov		1-Nov		1-Nov		1-Nov		1-Nov
Tillage	Vertical	None	Vertical	None	Vertical	None	Vertical	None	Vertical	None	Vertical	None
Manure applications	None	None	None	None	None	None	None	None	None	None	None	None
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	2x	None	2x	None	2x	None	2x	None	2x	None	2x	None
Amount (Ib P205/ac)	45 (total)	-	45 (total)	-	45 (total)	-	45 (total)	-	45 (total)	-	45 (total)	-
Timing	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-	30-Apr, 30-Jun	-

Continuous Hay	Year 1		Year 2		Year 3		Year 4		Year 5		Year 6	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Alfalfa		Alfalfa		Alfalfa		Alfalfa		Alfalfa		Alfalfa	
Approx. Planting Date	20-May		-		-		20-May		-		-	
Approx. Harvest Date	Four cuttings		Four cuttings		Four cuttings		Four cuttings		Four cuttings		Four cuttings	
Tillage	Cultivator, 2X	None	None	None	None	None	Cultivator, 2X	None	None	None	None	None
Manure applications	Liquid	None	None	None	None	None	Liquid	None	None	None	None	None
Manure P (Ib P205/ac)	37.5	-	-	-	-	-	37.5	-	-	-	-	-
Timing	Before till	-	-	-	-	-	Before till	-	-	-	-	-
Other fertilizer application	None	None	None	None	None	None	None	None	None	None	None	None
Amount (Ib P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-

Sod	Year 1		Year 2		Year 3		Year 4		Year 5		Year 6	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Crop	Sod		Sod		Sod		Sod		Sod		Sod	
Approx. Planting Date		15-0ct	-	-	-	15-0ct	-	-	-	15-0ct	-	-
Approx. Harvest Date		-	-	-	20-May	-	-	-	20-May	-	-	-
Tillage	None	Cultivator, 2X	None	None	None	Cultivator, 2X	Cultivator, 2X	None	None	Cultivator, 2X	None	None
Manure applications	None	None	None	None	None	None	None	None	None	None	None	None
Manure P (lb P205/ac)	-	-	-	-	-	-	-	-	-	-	-	-
Timing	-	-	-	-	-	-	-	-	-	-	-	-
Other fertilizer application	None	1x	None	None	None	1x	None	None	None	1x	None	None
Amount (Ib P205/ac)	-	45	-	-	-	45	-	-	-	45	-	-
Timing	-	1-0ct	-	-	-	1-Oct	-	-	-	1-Oct	-	-