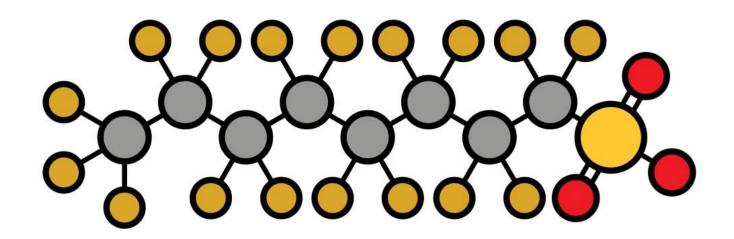


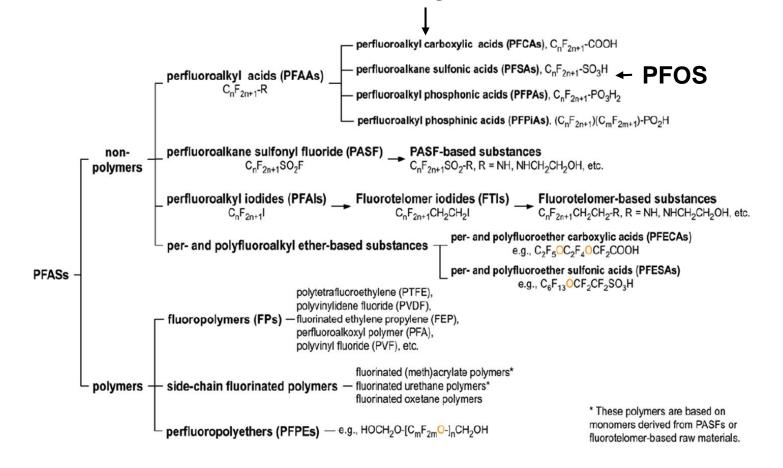
PFAS: Background, Risks, Monitoring, and Treatment

Wastewater Technical Advisory Group

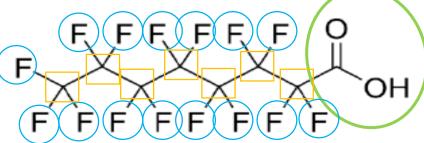

Meghan Williams Nate Willis

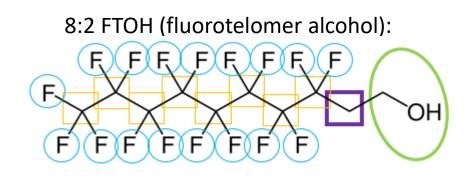
Today's presentation

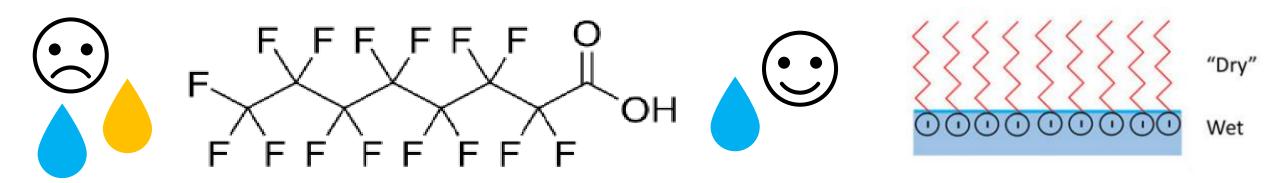
- What are PFAS and where did they come from?
- Why are PFAS a problem?
- What is Wisconsin doing about PFAS?


Today's presentation

- What are PFAS and where did they come from?
- Why are PFAS a problem?
- What is Wisconsin doing about PFAS?


• Family of 4,000+ man-made organic compounds



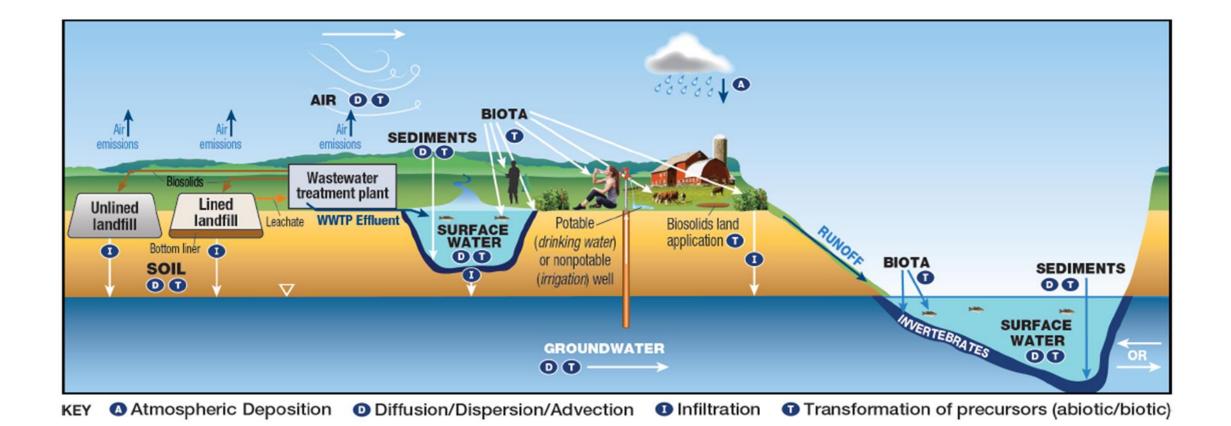

- General structure: fluorinated carbon chain (tail) attached to functional group (head)
- Perfluoroalkyl Substances: fully-fluorinated tail
 - -• Stable, resistant to degradation
- Polyfluoroalkyl Substances: not fully-fluorinated (at least one carbon is not attached to a fluorine)
 - Polyfluoroalkyl substances can transform into to perfluoroalkyl substances

PFOA (perfluorooctanoic acid): ____

- Many PFAS are surfactants
 - Tail is hydrophobic and lipophobic, head is polar and hydrophilic
 - Readily form films, water soluble
 - Unique structure means they have excellent water- and oil-repelling properties

PFAS ¹	Development Time Period								
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics				
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)	
PFOA		Initial Production		otective atings					
PFNA					Initial Production	Architectural Resins			
Fluoro- telomers					Initial Production	Firefighting F	oams	Predominant form of firefighting foam	
Dominant Process ³		Electrochem	emical Fluorination (ECF) telomerization (shorter chain E						
Pre-Invention of Chemistry /			Initial Chemical Synthesis / Production			Commercial Products Introduced and Used			

- Manufactured since 1940s for use in:
 - Non-stick coatings
 - Waterproof fabrics
 - Firefighting foams
 - Protective coatings
 - Stain/water resistant products
 - Chrome plating
 - Food packaging
 - Personal care products



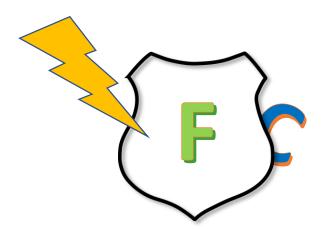
https://www.flickr.com/photos/yourbestdigs/3294884208

https://commons.wikimedia.org/wiki/File:US Navy 021022-N-5362A-011 Fire fighting training during Diligent Warrior 2003.jpg https://upload.wikimedia.org/wikipedia/commons/6/6d/Popcorn_bag_popped.jpg https://upload.wikimedia.org/wikipedia/commons/6/6b/Imos_Pizza_in_the_box_1.jpg https://cdn.pixabay.com/photo/2016/09/13/23/02/shampoo-1668525_960_720.jpg https://cl.staticflickr.com/6/5139/5559905257_6220017633_b.jpg

4 44 - 44 4

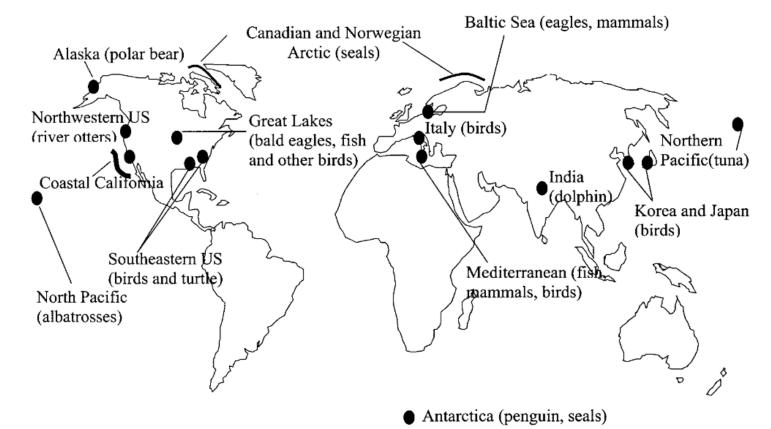
Interstate Technology Regulatory Council (<u>https://pfas-1.itrcweb.org/wp-content/uploads/2018/03/pfas fact sheet fate and transport 3 16 18.pdf</u>)

Fate and transport

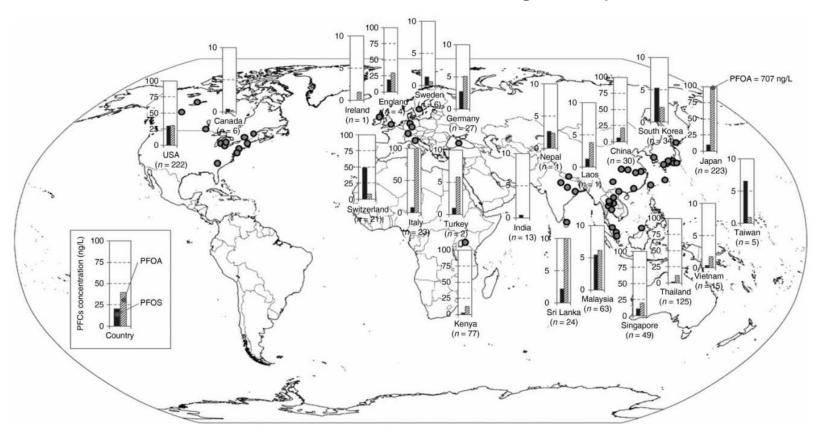

- Longer chains tend to adsorb to organic carbon in soils
- Shorter chains are more mobile in groundwater
- Highest concentrations at the air-water interface
- Mobile through air by adsorbing onto particulates
- More studies needed!

Today's presentation

- What are PFAS and where did they come from?
- Why are PFAS a problem?
- What is Wisconsin doing about PFAS?



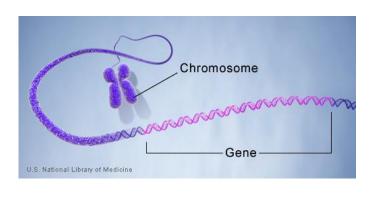
- Carbon-fluorine bond is incredibly strong
 - Fluorine atoms "shield" carbon from chemical reactions
 - PFAS do not undergo biotic or abiotic degradation
 - Thermally degrade only at high temperatures
 - Very persistent!

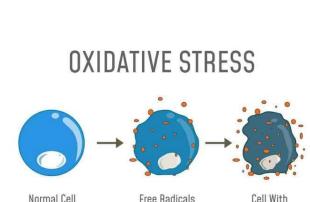


AA ... ALA

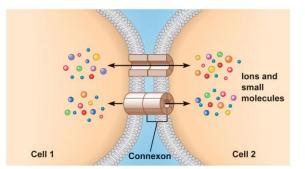
- Persistence = global distribution
 - PFAS have been found in wildlife on all continents

- Persistence = global distribution
 - PFAS have been found in surface waters globally


- PFAS have documented toxicity
 - Animal studies have shown negative effects on:
 - Liver
 - Immune system
 - Reproduction and development
 - Thyroid (endocrine system)
 - Cancers
 - Probable links to human health effects*:
 - Childhood growth and development
 - Pregnancy-related hypertension
 - Hormone regulation
 - Increased cholesterol levels
 - Immune system effects
 - Cancer risk


Human health effects were often found in highly exposed populations (i.e., Dupont workers in Ohio River Valley)

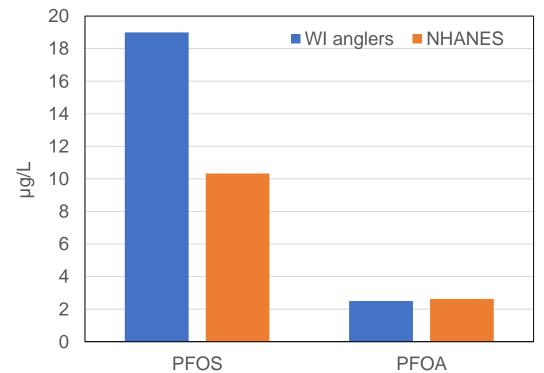
- How are PFAS toxic?
 - Proposed mechanisms
 - Gene expression changes
 - Increased oxidative stress
 - Disruption of mitochondria (powerhouse of cell)
 - Inhibited intercellular communication



Attacking Cell

Oxidative Stress

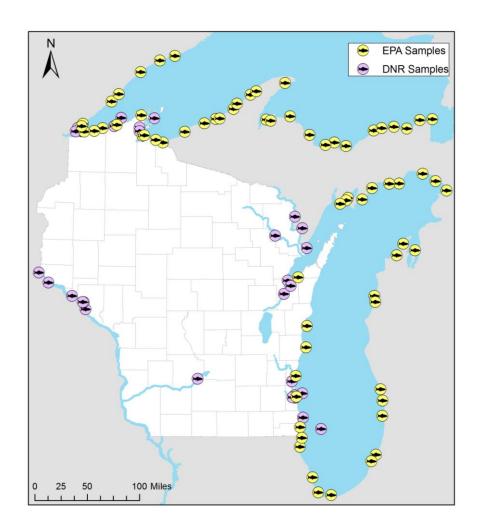
https://kasturisem2biochem.files.wordpress.com/2013/10/figure_05_01a_labeled1.jpg


https://i0.wp.com/alternativemedicine.com/wp-content/uploads/2018/12/oxidative-stress.jpg?resize=678%2C381&ssl=1

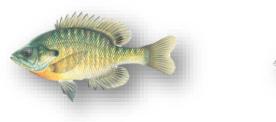
Today's presentation

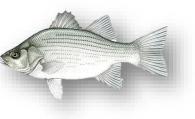
- What are PFAS and where did they come from?Why are PFAS a problem?
- What is Wisconsin doing about PFAS?
 - Past monitoring efforts
 - Treatment strategies

Monitoring efforts - anglers


- 2012-13 DHS biomonitoring study of older male anglers
 - PFOS in all samples, median 19 μ g/L
 - PFOA in >97% of samples, median 2.5 μ g/L
 - PFOS in WI anglers > PFOS in comparable population surveyed in National Health and Nutrition Examination Survey

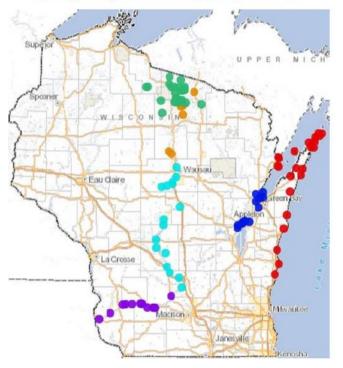
Monitoring efforts – fish


- 2006-2012 subset of contaminant monitoring samples analyzed for PFAS, combined with PFAS data from EPA
 - WDNR sampled fish from rivers with high industrial use, Great Lakes AOCs
 - PFOS found in >99% of samples
 - Other PFAS detected varied by location*
 - PFOS variation:
 - Species: highest in fillets of white bass, crappie, and bluegill
 - Location: highest in fillets from Mississippi River, lowest in fillets from Lake Superior


*May be an artifact of analysis method

Fish consumption advisories

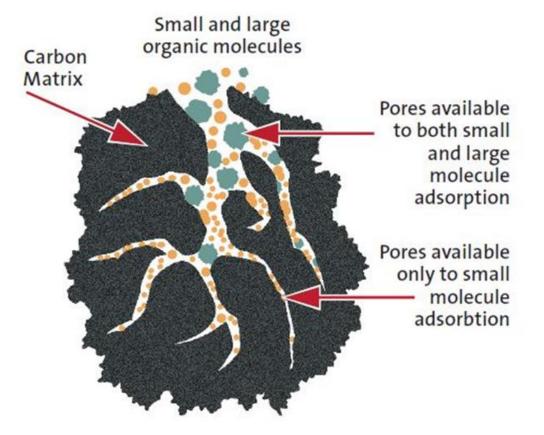
- Locations within the Mississippi river have PFOS-based advisories
 - Pool 3 bluegill, crappie
 - Pool 4 bluegill
 - Pools 5, 5A, and 6 bluegill, crappie
- PFAS levels detected in fish from other locations were not high enough to supersede advisories already in place for PCBs



Monitoring efforts – bald eagles

- WDNR statewide biosentinel program (2011-2017)
 - Sampled in 6 regions, measured total PFAS
 - Highest concentrations (>600 µg PFAS/L) in Middle & Lower Wisconsin River
 - Lowest concentrations in Northern Highlands

Bald Eagle Populations Sampled 2011 – 2017



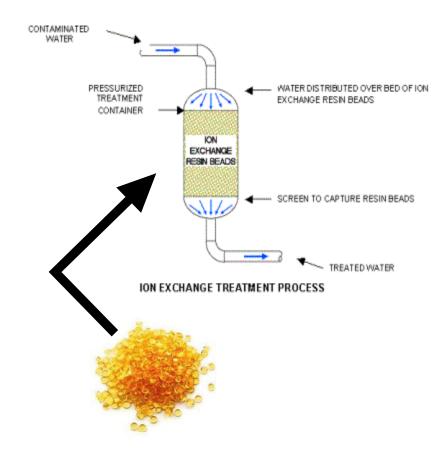
Today's presentation

4 44

- What are PFAS and where did they come from?
- Why are PFAS a problem?
- What is Wisconsin doing about PFAS?
 - Past monitoring efforts
 - Treatment strategies

- GAC (Granular Activated Carbon)
 - Pollutants adsorb to surface of activated carbon
 - Carbon material (wood, coconut shells, coal, etc.,...)
 - Diameter = 0.5 to 3mm
 - Surface Area = 1000 1500 m²/gram
 - Once adsorption capacity reached, carbon is either regenerated or replaced

• GAC Column Experiment Example



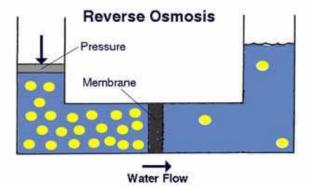
Source: (https://stud.epsilon.slu.se/8158/13/ostlund a 150709.pdf) Ostlund, Anna; Evaluation of granular activated carbon and anion exchange using column tests, and the effect of dissolved organic carbon, Swedish University of Agricultural Sciences


-

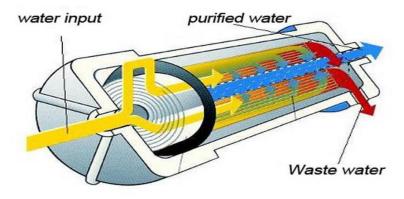
- •GAC
 - Most widely-used/studied treatment for PFAS
 - High removal efficiency (89 99%) of long-chained PFAS (≥C8; PFOA, PFOS)
 - Poor removal of smaller-chained PFAS (<C6; PFBS)
 - Background organics negatively impact efficiency
 - What to do with spent carbon?!
 - Incinerate!

- Anion-Exchange Resins
 - Anions in resin exchange with PFAS anions
 - Binds PFAS with resin
 - Operated in series or individually
 - Like GAC, must be regenerated

Anion-Exchange Resin Column Experiment Example



Source: (https://stud.epsilon.slu.se/8158/13/ostlund_a_150709.pdf) Ostlund, Anna; *Evaluation of granular activated carbon and anion exchange using column tests, and the effect of dissolved organic carbon*, Swedish University of Agricultural Sciences


- Anion-Exchange Resin
 - Higher removal rates of longerchained PFAS at higher Bed Volumes than GAC
 - Same issues as GAC:
 - Breakthrough of smaller-chained PFAS
 - Organic matter reduces efficiency

- Reverse Osmosis Filters
 - Water is pushed through a spiralized semipermeable membrane under pressures that exceed the osmotic pressure
 - 93-99% Removal efficiencies
 - Contaminants are captured by the membrane and contained in a more concentrated solution
 - More initial capital costs than GAC

Source: (http://www.csun.edu/~vchsc006/356b/ro.html)

• Ineffective Removal Technologies (for PFAS)

Treatment	% Removal		
Conventional Treatment	0		
Low Pressure Membranes	0-23		
Biological Treatment (including slow sand filters)	0-15	**Bench up to 18 exposure	
Disinfection – Chloramines	0		
Oxidation – Permanganate	1-53**		
Oxidation – Hydrogen Peroxide	0-2*	*Bench-s	
Oxidation – Ozone	0-7	, Beucu-	
Advanced Oxidation: UV - TiO ₂	15		
Advanced Oxidation: UV – Ozone	0*		
Advanced Oxidation: Ozone - Peroxide	9		

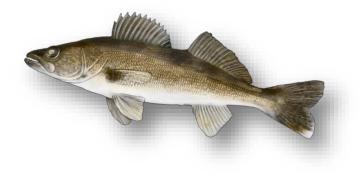
**Bench-scale with up to 18 days of exposure

*Bench-scale data

Source: EPA

(https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=341079&simpleSearch=1&searchAll=Perfluorochemicals+OR+Perfluoroalkyl+OR+Perfluorinated+OR +Polyfluorinated+OR+Polyfluoroalkyl+OR+pfas+OR+pfae+OR

Questions?


Nate Willis

Nathaniel.Willis@WI.gov 608-266-3221

Meghan Williams

MeghanC3.Williams@WI.gov 608-267-7654

