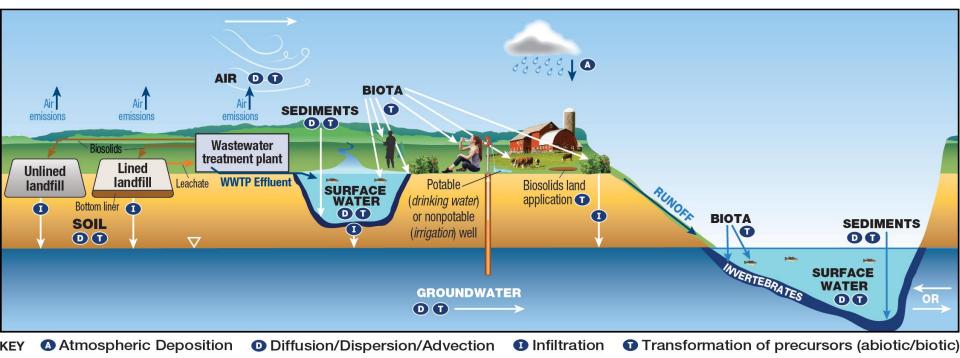


PFAS Technical Advisory Group

Waste Management Subgroup July 18, 2019


- Reminder to please mute your phone on WisLine
- Presentation can be found online at <u>https://dnr.wi.gov/topic/Contaminant</u> <u>s/PFASGroup.html</u> under Subgroups

Purpose and Scope

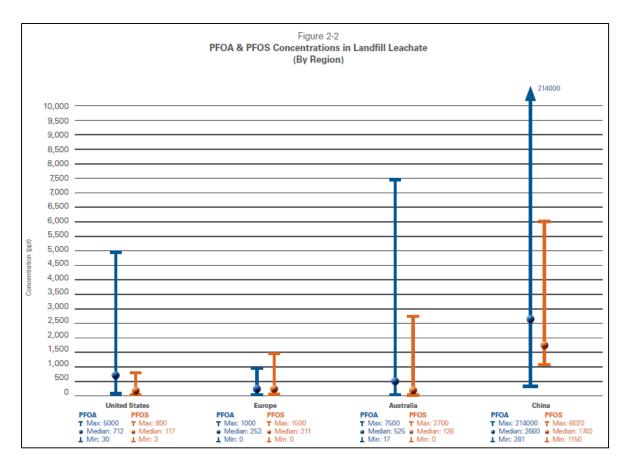
- Work with stakeholders to develop best management practices for handling and disposing of PFAS-containing waste
 - What wastes commonly contain PFAS?
 - Which closed and active landfills or other waste sites likely have those wastes and what engineering features are present?
 - What are safe levels of PFAS in leachate? How can it be treated at wastewater treatment plants?
- Information gathering
- Scope of this group: PFAS going to, at, and from waste sites
 - Other groups working on testing parameters, surface water, etc.

- Interstate Technology & Regulatory Council
- Fate and Transport

- ITRC:
 - landfill leachate PFAS concentrations are relatively high
 - leachate generally is considered only a minor source to the environment
 - Legacy industrial waste landfills, however, may constitute a major source to the environment

Vermont DEC

- June 2019 report on PFAS statewide sampling plan
 - Leachate and groundwater at operating and closed, lined and unlined landfills
 - Findings
 - Additional investigation on LF leachate concentrations, waste water treatment facilities influent and effluent, surface water, and biosolids


and sounded Askender

California State Water Resources Control Board

- March 2019 Investigatory Order:
 - Statewide effort determining groundwater impacts
 - Required submittal by MSW landfills that accepted, stored, or used materials that may contain PFAS
 - One-time leachate and groundwater assessment

Michigan EGLE

- Statewide study on landfill leachate completed by the Michigan Waste & Recycling Association (MWRA) in collaboration with EGLE
- 32 active municipal solid waste landfills (type II landfills) were sampled throughout the state
- Sampling guidance documents and sampling training provided by EGLE
- Goal was to determine magnitude of contamination in landfills throughout the state, assess which landfills needed further evaluation, and cooperate with landfill industry to develop best management practices

Sample Sizes		
United States	98	
Europe (Sweden, Denmark, Germany, Spain, Nordic Countries)	26+	
Australia	114	
China	6	

Region	PFOA (ppt)	PFOS (ppt)
Michigan*	16 to 3,200	9 to 960
United States	30 to 5,000	3 to 800
Europe	ND to 1,000	ND to 1,500
Australia	17 to7,500	13 to 2,700
China	281 to 214,000	1,150 to 6,020
Worldwide Range	ND to 214,000	ND to 6,020

EGLE

9

Michigan EGLE

- Sample groundwater at solid waste landfills with previous known releases and potential downgradient receptors through 2019
 - HWS to assist when needed
- Additional sampling conducted at landfills and WWTP to produce more accurate conclusions
- Reduce release of PFAS in leachate to WWTP immediately at appropriate facilities
- Continue to work with MWRA to Develop best management practices for managing leachate disposal in the future
 - Determine appropriate treatment technology

DNR Water Quality

- Request for sampling by POTW and Industrial facilities
 - Still finalizing
 - Influent & Effluent
 - Extent of the issue
- Fate and transport study
 - Mass balance
 - Assess how compounds behave

Potential Strategy for Looking at Landfills:

- Compile a priority list of landfills to be sampled based on:
 - Known GW contamination
 - PFAS concentrations in leachate
 - Receptors
 - Waste Types Likely Received based on location and landfill type (e.g. MSW, papermill, etc.)
 - (e.g. Landfills located in industrial and manufacturing areas or accepted large volumes of certain waste types)

How do we know if GW Quality is Impacted?

- Look at concentration trends over time of substances analyzed in GW samples collected from monitoring wells.
- Compare concentrations with NR 140 standards and baseline data

How do we know if GW Quality is Impacted?

- Typical Health and Public Welfare Related Substances:
 - Volatile Organic Compounds (VOCs)
 - Volatile
 - Soluble
 - Mobile
 - Semi-Volatile Organic Compounds (SVOCs)
 - Less Volatile

AL AL . AL AL

- Soluble
- Mobile

How do we know if GW Quality is Impacted?

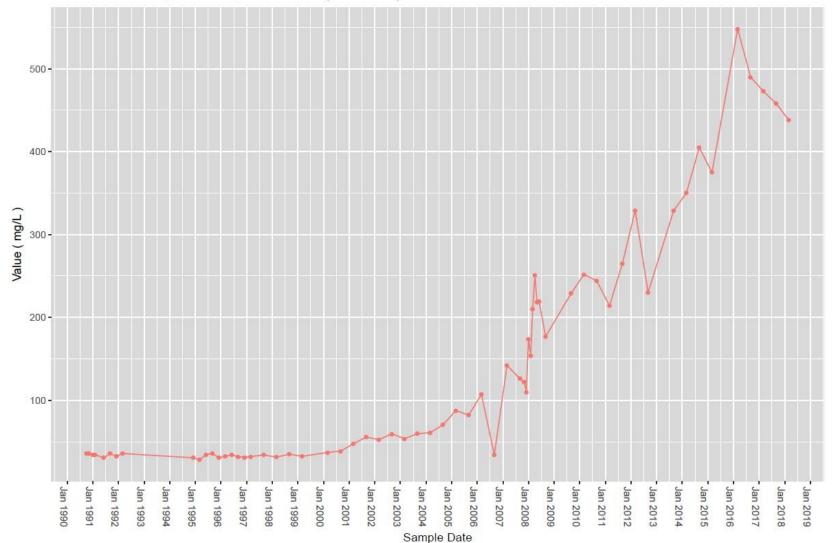
- Typical Health and Public Welfare Related Substances:
 - Inorganic Compounds- Not Volatile (except Hg)
 - Metals Manganese, Iron, cadmium, chromium, selenium, etc. – Often less mobile than VOCs
 - Others- Arsenic, Boron, Sulfate Potential for high mobility

• Often mobility of metals depends on pH and alkalinity.

How do we know if GW Quality is Impacted?

- Indicator Parameters:
 - Chloride
 - pH
 - Temperature

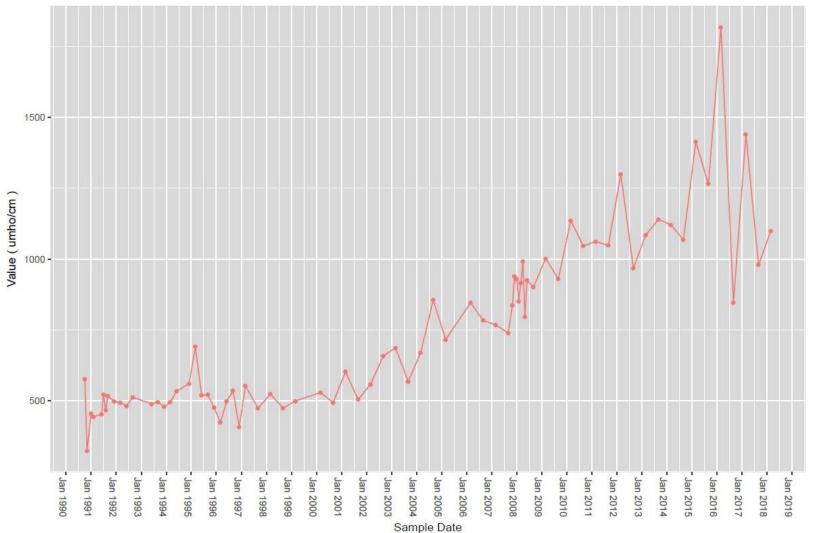
A AA . AA AA


- Specific Conductance
- Alkalinity
- Hardness
- Dissolved Organic Carbon (DOC)

What Do Indicators Tell You?

- Indicators can help you if you have a history of their data to show concentration trends over time.
- Indicators can give clues that there may be more going on than meets the eye.
- They may tell you that there may be other contaminants of concern than what has been analyzed.
- They may help identify a source of contamination.
- They may help you to see that other contaminants may be on their way.
- They may help to show if contaminants are coming from releases in the natural geological formation as a result of geochemical changes.

Parameter: 00946, SULFATE, DISSOLVED (MG/L SO4)


Laborald Ardenad

18

Parameter: 00094, SPECIFIC CONDUCTANCE, FIELD (UMHO/CM @ 25C)

LAALAN ALAA

19

Managing PFAS Waste

- Treatment and Remediation handling resulting waste
 - PFAS treatment in water is limited to sorption using carbon, mineral media (for example, clay), or a combination
 - Remedy selection based on source, release pathways, affected receptors, and fate and transport in the environment
- Landfill or incineration
- VT DEC guidelines for landfill leachate: 120,000 ppt for PFOA and 1,000 ppt for PFOS
 - Concentrations developed to ensure that receiving waters of WWTFs permitted to receive landfill leachate would not exceed Minnesota's surface water criteria (standards), as Vermont has no such standard currently

Managing PFAS Waste

- Storage
 - Hold until more is known
 - NR 502.05 storage facilities
 - Biosolids under WPDES
- Non-landfill facilities
 - Compost sites
 - Recycling facilities

Managing PFAS Waste

- Generators
 - More scrutiny from landfills
 - Source reduction efforts (P2)
- Remediation or treatment
 - Fate and transport
 - Plan for end of life management (GAC)

Low Hazard Waste Exemptions

- Sampling and testing
 - Site specific determinations
 - Source
 - Use location
 - Guided by site history
 - Industries known to use PFAS
 - Events such as fires

Registrant Issues

- Identifying sources
- Sampling requirements and costs
- Landspreading
- Is incineration the only effective way to destroy PFAS?
- Leachate management and treatment
- Proper PFAS waste management
- What happens if PFAS is detected in leachate?
- Lack of control over PFAS waste in landfills
- Effect on older, closed landfills
- Industrial discharge management and source reduction
- Managing waste filtration media
- Finding background level when "it's everywhere"

Next Steps

- More research and welcome input from all interested parties
- Discussions with other states and looking at their research
- Setting up next Waste Subgroup meeting, possible in early November

Contact Information:

Joe Van Rossum, Waste & Materials Management Director Joseph.vanrossum@Wisconsin.gov

Kate Strom Hiorns, Recycling & Solid Waste Section Chief Kathrynm.stromhiorns@Wisconsin.gov

Joe Lourigan, Hydrogeologist Plan Review Expert Joseph.Lourigan@Wisconsin.gov

Thank you!

- Next meeting of the full PFAS Technical Advisory Group is September 20, 2019
 - -10:00-2:00

A A A A A A

Natural Resources Building (GEF2)
Room G09
101 S Webster St

DEPT. OF NATURAL RESOURCES