

PFAS Technical Advisory Group

Waste Management Subgroup November 7, 2019

Welcome!

 Reminder to please mute while on Skype

 Agenda and presentation can be found online at <u>https://dnr.wi.gov/topic/Contaminant</u> <u>s/PFASGroup.html</u> under Subgroups

Purpose and Scope

WASTE MANAGEMENT TAG SUBGROUP

- Work with stakeholders to develop best management practices for handling and disposing of PFAS-containing waste
- Information gathering
- Scope of this group: PFAS going to, at, and from waste sites
 - Other groups working on testing parameters, surface water, etc.

- Status of DNR Efforts Joe Van Rossum
- 1:20 PFAS and Landfill Leachate Mark Peters
- 1:40 Water Quality and Wastewater Treatment Nate Willis
- 2:00 PFAS Health Standards Development Sarah Yang, DHS Toxicologist
- 2:25 DNR's Effective Disposal Workgroup
- 2:40 Effects on Waste Industry Roxanne Wienkes, SWANA

Assess time for questions throughout

DNR PFAS Updates

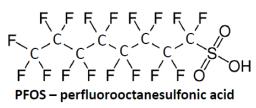
- Staff meetings weekly
 - Site specific updates
 - Team accomplishments and next steps
- Responding to foam events
- Sampling surface water and fish tissue
- Requested data from municipal WWTPs
- Defining research needs

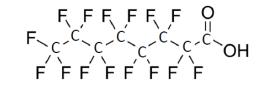
DNR PFAS Updates

- Rulemaking:
 - Surface water quality criteria (WY-23-19)
 - Drinking water max contaminant levels (DG-24-19)
 - Groundwater standards (DG-15-19)
- AFFF Survey to fire departments

 Contract for analysis of potential source locations and type in WI

PFAS in Leachate

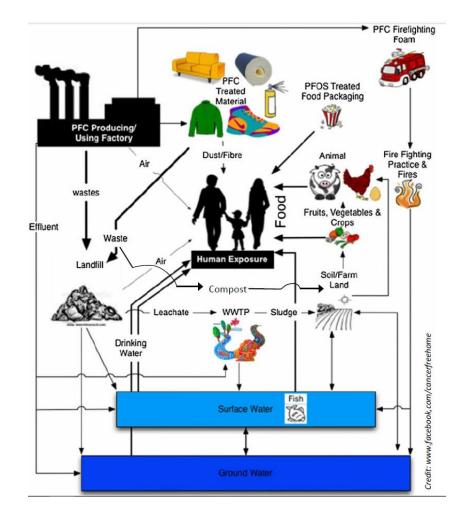

Summary from Environmental Research & Education Foundation Summit August 2019


Mark Peters, Hydrogeologist Waste & Materials Management Program

PFAS Overview

- Brief Intro to PFAS
 - Chemistry – Timeline

- 4,600 CAS Registry Numbers
- PFAS precursors (Non-Regulated)
 - Currently hard to detect analytically
 - Constitute the majority of all fluorinated chemicals at many sites
- End Products- PFOA and PFOS


Source: Bolyard, S.C. and Staley, B. Brief History of PFAS: What are they? Why are they used? What are they in?

PFAS Exposure

- PFAS in blood
 - Half-life (time for 50% concentration reduction in blood) increases with carbon chain length
 - 3-28 days for 4-chain PFAS
 - 2-5 years for PFOA/PFOS
- Primary human exposure dust/food
- Environmental Pathways
 - Air, compost, wastewater, solid waste
 - PFAS accumulation in recyclables unknown

Exposure Pathways

.....

Source: Staley, B. Health/Environmental Implications of PFAS & Exposure Pathways: A summary of Current Research

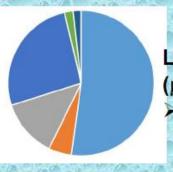
PFAS Analysis Methods

- Total fluorine tests
 - Ion Selective Electrode (ISE)-destructive
 - Particle Induced Gamma Emission (PIGE)surface scan
 - Non-detect fluorine indicates no PFAS
 - Fluorine detection does NOT definitively indicate PFAS.
 - If positive fluorine test, can do total organic precursor (TOP) assay test (LC/MS)

PFAS Analysis Methods

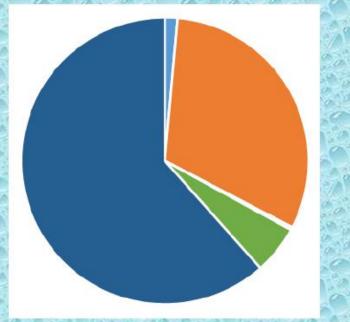
- LC-QTOF MS
 - Unlimited PFAS compounds
 - Expensive
 - Limited US availability
 - Method 537 LC MS more common
- Fluorotelomer Acids
 - PFAS precursors
 - Prevalent in leachate
 - ASTM D7979

PFAS Sampling Challenges


- Leachate- High TOC/SpC Liquid
- Sampling practices
 - Eliminate PTFE (Teflon) Equipment
 - Both lab and field
 - Field Material Tests
 - Positive for PFAS- Non-stick Al foil (minor)
 - Negative for PFAS- Ice packs, Rite-In-The-Rain logs, post-it notes, tape, labels, markers, plastic binders
 - Bold items above restricted by Navy interim guidance

PFAS In Leachate

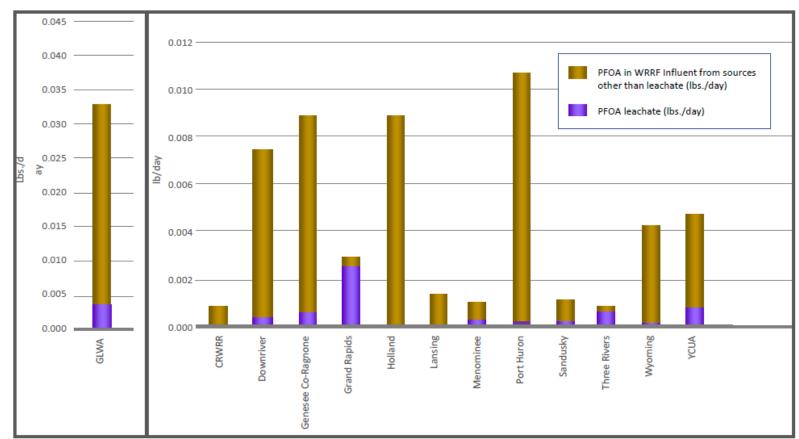
- Shorter chain PFAS predominant
 - Some evidence PFOS/PFOA may be sequestered in LF
 - Synthetic Precipitaion Leaching Procedure (SPLP) samples also majority short chain
- PFOA/PFOS Consistent in US LFs
 - China LF concs. higher
 - China did not participate in ban
- PFOA/PFOS loading from LFs to WWTPs dependent on total flow
 - WWTP discharge in MI exceeds LF influent loading (LF Study)


PFAS Comparison

 Municipal WWTP effluent, landfill leachate, and AFFFcontaminated groundwater

Landfill leachate (µg/L) ≻ short-chain dominant in classes

Municipal WWTP (ng/L)



Groundwater (AFFF) (mg/L

PFCAs PFSA Me-AA Amides FTCA FTSA Other

Source: Field, J.A. PFASs in Leachate and Wastewater: Sampling Considerations and Analytical Challenges

PFOA Mass: Influent Leachate vs. Overall WRRF Influent

Source: Burns, B. Statewide Study on Landfill Leachate PFOA and PFOS: Impact on Water Resource Recovery Facility Influent

PFAS in Landfills

- Clothing/carpeting in model LFs
 - Lag period >100 days before PFAS release
 - Variable results
- Many precursors volatile
 - Could be in LF gas
 - USEPA funding to evaluate PFAS in LF gas

PFAS Leachate/WW Treatment

- Primarily transfer/separation technologies right now
 - Most technologies RO focused
 - GACs/Membranes LF'd or Incinerated
- Deep Injection Wells
 - Disposal method, no destruct/transfer
 - Not occurring in Wisconsin
- Destruction of PFAS compounds
 - Early research phase no specific technologies

Crow Wing Co. MN Treatment

- 22.5 Acre LF- 50,000 tons/yr.
- Aerated Ponds
- Land Application of Leachate
 Struggling to deal with treatment
- Recirculation
- Haul to WWTP if needed

Crow Wing Co. MN Treatment

- RO Treatment after Pond Aeration
 - What to do with Concentrate/residual
 - Solidification not effective

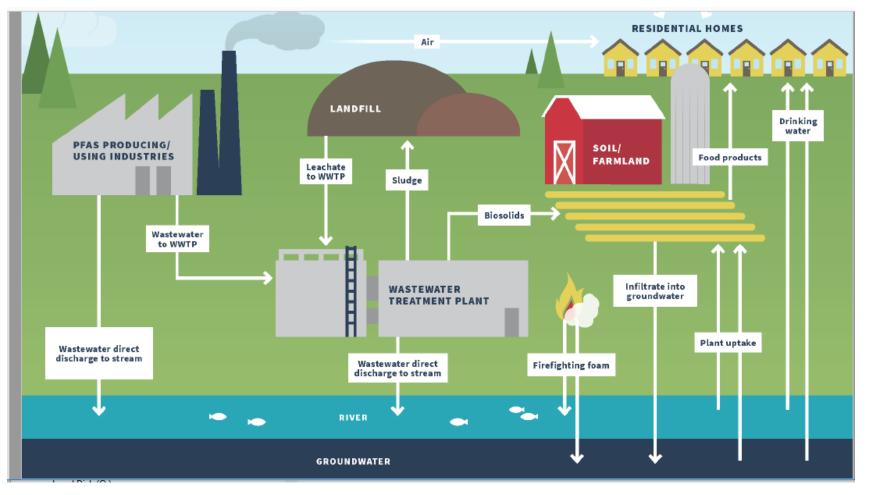
PFAS (ng/L)	Standards	Raw	Permeate	Concentrate
PFBS	7,000 (MN HRL)	714	<16.7	1,150
	2,000 (MN HBV)			
PFBA	7,000 (MN HRL)	1,460	<16.7	2,020
PFOA	70 (EPA HAL)	1,050	<16.7	3,360
	35 (MN HRL)			
PFOS	70 (EPA HAL)	130	<mark><25.1</mark>	413
	300 (MN HRL)			
	15 (MN HBV)			
PFDA		<18.2	<16.7	<31.0
PFHpA		625	<25.1	1,960
PFHxS	47 (MN HBV)	446	<25.1	1,420
PFHxA		2,230	18.1	8,310
PFNA		55.6	<33.5	173
PFPeA		1,180	<25.1	697

Source: Doran, F. Demonstrations for Treating PFAS in Leachate

Regulatory Responses

- Risk-based models in US

 Similar to other contaminant groups
- Leachate/WW cycling
 Where to break chain in PFAS cycle
- Recognize LF/WWTP operators concerned
- PFAS in Leachate/WW Ubiquitous
- AFFF Inventories- 37K gal MI, 2K CT


Receiving Facilities

- Landfill acceptance of PFAS waste variable across the US
- Leachate reduction efforts (existing technology)
- Michigan WWTPs responding to State directives
 - Source reduction/declining trends
- PFAS in Fresh Water
- Fate of Biosolids

What do WWTPs/LFs need?

- Standardized Analytical Methods
- Baseline Data in Environment
- How Significant is Significant?
 Waste Receipt
- Surface Water Standards
- Mass Balance/Sequestration in LFs
- Federal MCL
 - Confirm # of compounds
 - Economics

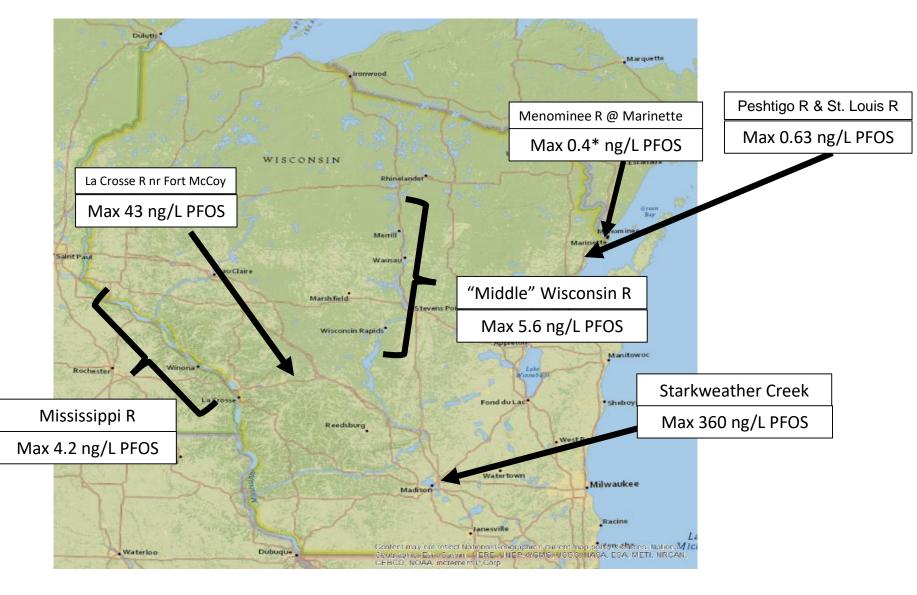
Questions

Source: Silver, S. Michigan Taking Action on PFAS

444-444

Water Quality Program Update

Nate Willis Wastewater Engineer Water Quality Bureau

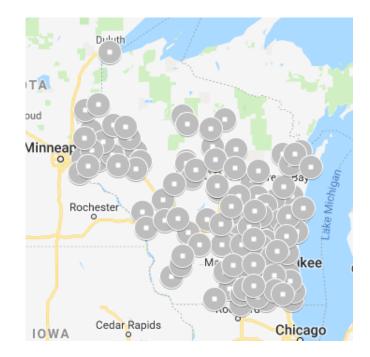


- PFAS Monitoring efforts
- PFAS wastewater treatment options
 How does this impact landfills?

2019 WR Surface Water and Fish Tissue Monitoring Plans

444444

Letter Sent to 125 POTWs


- PFAS Background
- Known Industrial Sources
- Statement that POTWs are <u>not</u> original sources of PFAS, but PFAS pass through them
- Requested Actions
- Invitation to participate in the State Lab of Hygiene Study
- Statement of Department's Intent in sending letter
- Additional Resources

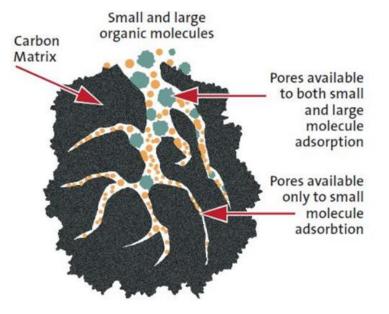
Recipients

• 125 POTWs

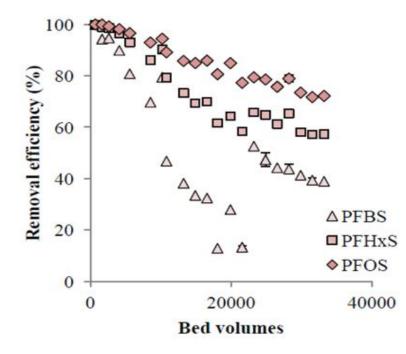
- 27 Authorized
 Pretreatment Programs
- 91 Other POTWs with SIUs
- 6 found by query of permit fact sheets
- 1 community with PFAS in water supply

Requested Actions

- Voluntary sampling of influent and effluent
 - 36 PFAS compounds
 - Please use isotope dilution method
 - Within 90 days of receipt of letter
- Source Identification and Reduction
 - If PFOA+PFOS > 20 ng/L
 - Invitation to work with DNR to develop plan to sample potential sources
 - Invitation to work with DNR and sources to eliminate PFAS
 - Product substitution
 - Operational Controls
 - Cleanup of historical contamination
 - Pretreatment

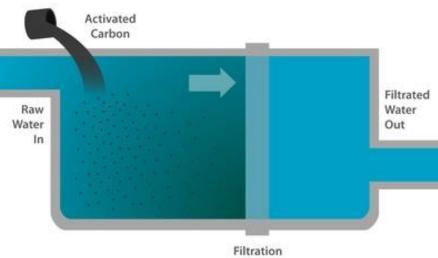

Intended Outcomes

- Primary Goal: Avoid effluent limitations at POTWs
 - Address sources before standards take affect
 - Avoid back-end treatment at POTWs
- Parallel Michigan's demonstrated approach
- Scope extent of PFAS contamination in Wisconsin
- Inform Economic Impact Analysis for standards rulemaking
 - Make informed decisions based upon data

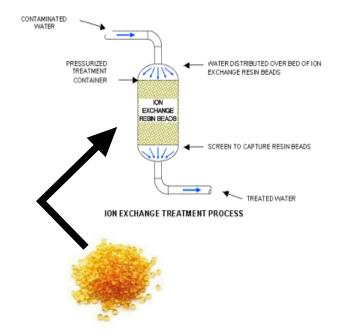

Actual Outcomes

- 2 POTWs completed sampling
- 4 POTWs signed on for participation in WSLH study
 - Initial sampling of influent and effluent performed in October, final participants will be chosen based on those results
- Several POTWs have indicated they will sample once labs have been certified
 - Labs can be certified for PFAS testing of wastewater as of 10/29/2019
- POTWs have indicated they will look to work with pretreatment industries to reduce PFAS in effluent

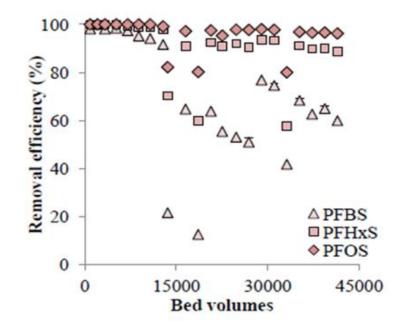
- GAC (Granular Activated Carbon)
 - Pollutants adsorb to surface of activated carbon
 - Carbon material (wood, coconut shells, coal, etc.,...)
 - Diameter = 0.5 to 3mm
 - Surface Area = 1000 1500 m²/gram
 - Once adsorption capacity reached, carbon is either regenerated or replaced


GAC Column Experiment Example

 $Bed Volume = \frac{Volume of treated water}{Volume of the adsorbent (carbon)}$


- GAC
 - Most widely-used/studied treatment for PFAS
 - High removal efficiency (89 99%) of long-chained
 PFAS (≥C8; PFOA, PFOS)
 - Poor removal of smaller-chained PFAS (<C6; PFBS)
 - Background organics negatively impact efficiency
 - What to do with spent carbon?
 - Landfills
 - Incineration
 - Little information on created byproducts

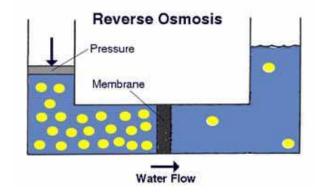
- PAC (Powdered Activated Carbon)
 - Same principle as with GAC, pollutants adsorb to carbon surface
 - Same issues with removal efficiencies affected by organics
 - Solids filtered out
 - Disposal of media
 - Landfill
 - Incineration



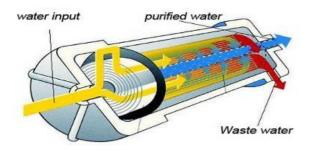
Membrane

- Anion-Exchange Resins
 - Anions in resin exchange with PFAS anions
 - Binds PFAS with resin
 - Operated in series or individually
 - Like GAC, must be regenerated or disposed

Anion-Exchange Resin Column Experiment Example



Source: (https://stud.epsilon.slu.se/8158/13/ostlund_a_150709.pdf) Ostlund, Anna; Evaluation of granular activated carbon and anion exchange using column tests, and the effect of dissolved organic carbon, Swedish University of Agricultural Sciences


- Anion-Exchange Resin
 - Higher removal rates of longer-chained PFAS at higher Bed Volumes than GAC
 - Same issues as GAC:
 - Breakthrough of smaller-chained PFAS
 - Organic matter reduces efficiency
 - Disposal of spent resin
 - Landfills
 - Incineration

- Reverse Osmosis Filters
 - Water is pushed through a spiralized semipermeable membrane under pressures that exceed the osmotic pressure
 - 93-99% Removal efficiencies
 - Contaminants are captured by the membrane and contained in a more concentrated solution
 - Concentrated Volume: Typically 10-20% of original
 - More initial capital costs than GAC
 - Shown to be effective for treating landfill leachate, but not widely used

Source: (http://www.csun.edu/~vchsc006/356b/ro.html)

Health Standards Development

Sarah Yang, Ph.D. Toxicologist WI Department of Health Services

Effective Disposal Workgroup

- Internal (so far) DNR group
 - Members from Solid Waste, Hazardous Waste, Remediation, Wastewater, Air

 Gathering information from other states, research, sites in WI

Dealing With Waste

VISION: protecting and managing natural resources while supporting the economy and the well-being of our citizenry

- Identify best management practices for where and how to dispose
- Identify management practices for dealing with waste that has already been disposed, such as ways to detect, track, manage, and potentially remove PFAS
- Develop outreach materials to guide the management of PFAS containing waste

Treatment of PFAS Waste

- Not considered a hazardous waste by federal or state rules
- Treatment options: (info from CleanHarbors)
 - Granular Activated Carbon sorption and stabilization
 - Isolation and containment
 - Reverse osmosis
 - Additives/stabilization
 - Incineration destructive? best available control?

Incineration Concerns

- Effective incineration or thermal treatment is difficult to achieve (and expensive) – C-F bonds are very strong, requiring extreme heat and long residence time
- Incineration test burns and full-scale incineration happening worldwide – but limited in scope and/or scale
 - Input compounds and breakdown products are difficult to measure and account
 - Unsure of products resulting from incomplete combustion
 - Currently, there is no EPA-approved stack testing methodology for PFAS
 - Dispersion and deposition?

•

•

•

- Review of known sites in WI with PFAS contamination
 - identify all environmental media contaminated with PFAS
 - list PFAS compounds analyzed
 - current waste management practices (disposal or treatment)
- Remedial and spill-related work, known impacts
- Number of analytes varies widely from site to site, most often includes both PFOA and PFOS

- Groundwater has been managed by sending it out of state for deep well injection (Ohio, Texas) or treated using GAC systems
- Surface and storm water have been treated using GAC systems
- Soil has been transported out of state for disposal at a number of landfills
 - US Ecology accepts soil impacted with PFAS at varying levels, at a variety of out of state locations including Michigan, Texas, Nevada, Idaho and Oregon

- No information so far on managing sediments
- Biosolids are managed using a filter press. The filtrate is treated using a GAC system, and the filter cake is landfilled out of state (Oregon)
- Spent carbon from GAC treatment systems is regenerated or landfilled out of state

- ? Best technology so far is containment in RCRA Subtitle C landfill triple lined with leachate capture and destruction?
- Need informal survey of consultants and site owners re: disposal best management
- Need BMPs and outreach development
- EPA research grant awards

Effects on Waste Industry

Roxanne Wienkes, SWANA Representative

PFAS Technical Advisory Group

Questions?

Next PFAS Technical Advisory Group meeting:

December 13, 2019 10:00 am – 2:00 pm DNR GEF2 Building, Madison 101 S. Webster St.