Big-Picture Cost Considerations for PFAS Management

Ali Ling, PhD, PE June 21, 2024

- What makes PFAS unique as an environmental hazard
- Mass balance and steady-state treatment costs
- Status of PFAS use restrictions
- Big-picture cost considerations

Agenda

What's Unique about PFAS?

What's Unique about PFAS?

Persistent and Mobile

• Affects environmental fate and transport

Ubiquitous

- In so many products
- Phase-out will be complicated

So Many Compounds

- >10,000 used
- Difficult to measure and regulate
- Lots of uncertainties about compounds that are not well-studied

Persistent/Mobile - Fate and Transport

- Present in rainwater and in water/soil on all continents
- In most living things, including humans and polar bears

Figure from Evich, M. G. *et al.* (2022). Per- and polyfluoroalkyl substances in the environment. *Science* **375**, ⁵

Ubiquity - Types of Products with PFAS

Not included in photo

- Building materials
- Outdoor equipment
- Food (uptake from soils? leach from packaging?)
- Food packaging

>10,000 PFAS in use

7

>10,000 PFAS in use

Why lots of compounds complicates things:

Uncertainties

- Most toxicity, treatment, and fate data is for PFAAs like PFOA/PFOS How toxic are all the other PFAS?
 - Can we predict it?
- Generally, cannot close fluorine mass balance due to analytical limitations
 - We don't know how much PFAS come out high-temperature incineration stacks!

Mass Balance and Estimated Steady-State Costs

(\$ per year)

The Problem with Persistence

Global PFAS Stocks in Environment

Stocks and concentrations in environmental media

Increased potential to exceed known and unknown thresholds to impact human and environmental health

The Problem with Persistence

Steady-State Costs Approach

Significantly Reduce PFAS Increase Treatment to Match Emissions Made, Used, and Emitted How much would this cost? Emissions Emissions **Active Treatment Active Treatment** and Destruction and Destruction

Steady-State Costs Approach

Estimate	Assess	Technology	Global Costs for
Emissions	Technologies	Costs	Environmental Remediation
How much PFAS are currently emitted from all sources?	What technologies are currently demonstrated and available at relevant scale?	How much does it cost to destroy a kg of PFAS starting from environmental media for each?	How much does it cost to maintain global steady-state? Emissions (mass per year) <u>x Technology costs (\$ per mass)</u> Steady state costs (\$ per year)

Exceeds global GDP

Ling, 2024. *Sci. Tot. Environ.* DOI: <u>10.1016/j.scitotenv.2024.170647</u>

Costs for What Type of PFAS?

Target PFAAs

- Established technologies to treat them
- More widely reported and measured in treatment applications

Figure from ITRC Website: PFAS chemistry, terminology, and acronyms

Steady-State Costs for PFAAs

Active treatment and destruction PFAS produced and emitted \$0.9 to \$65 million USD/kg 1,000 to 10,000 Х PFAA removed and destroyed tonnes PFAAs/year from environmental media **Current PFAA** Increase treatment to production rates match production rate

Ling, 2024. Sci. Tot. Environ. DOI: 10.1016/j.scitotenv.2024.170647 = \$1 trillion to \$600 trillion USD/year for PFAAs alone ~ \$106 trillion)

(Global GDP 15

Costs for What Type of PFAS?

Target PFAAs

- Established technologies to treat them
- More widely reported and measured in treatment applications

Figure from ITRC Website: PFAS chemistry, terminology, and acronyms

Steady-state cost for all PFAS

= \$200 trillion to \$100,000 trillion USD/year (Global for all PFAS \sim \$106 t

(Global GDP ~ \$106 trillion)

Ling, 2024. Sci. Tot. Environ. DOI: <u>10.1016/j.scitotenv.2024.170647</u>

17

There is not enough money in the world to remove PFAS from the environment as fast as we are adding it right now.

lot even close.

Options for Reducing Emissions

Significantly Reduce PFAS Made, Used, and Emitted

- 1.Reduce **PFAS use** in products
 - PFAS use restrictions

2.Reduce **PFAS emissions**

from point sources

- NPDES pre-treatment (but not at WRRF)
- Air emission control

Regulatory Status of PFAS Use Restrictions

Source Reduction

States with Current PFAS Use Restrictions

Product Categories with Alternatives

Needs for PFAS Use Restrictions

Non-specific

- Should target persistent PFAS as a class
- Similar to EU and product bans in specific states

"Essential-use"

considerations

 Include derogations for essential uses to limit immediate economic and societal impacts

Evolving

- Ongoing re-evaluation of essential uses
- Investment in chemical engineering to develop non-PFAS alternatives

Minnesota's PFAS Use Restrictions

Minnesota has just become the world leader in legislation to protect its people from PFAS "forever chemicals."

2024 (in place) – ban "intentionally added" PFAS in food packaging

2025 - ban "intentionally added" PFAS in 11 product categories

2026 – require additional reporting on PFAS in products

2032 - ban PFAS use in other categories that are not "currently unavoidable"

Bans "Intentionally Added"

- Most PFAS probably not "intentionally added"
- Example from Keen Footware - 100 components with PFAS before phase-out

Bans "Intentionally Added"

Removing PFAS from supply chains requires companies to first identify PFAS in their supply chains

Incentives:

State Requirements

Federal Requirements

- Part of MN PFAS Ban
- Requires reporting of PFAS in supply chains by 2026
- TSCA Section 8(a)(7)
- By 2025, PFAS since 2011
- Data to be collected and reported include PFAS type, amount used, product types, byproducts, worker exposure, and fate/disposal.

Exempts "Currently Unavoidable"

MPCA to determine what's "currently unavoidable" before 2032 deadline

"Essential Use" from Montreal Protocol

A controlled substance qualifies as essential only if:

- 1. It is **necessary for the health and safety**–or is critical for the functioning– of society (encompassing cultural and intellectual aspects).
- 2. There are **no available technically and economically feasible alternatives** or substitutes that are acceptable from the standpoint of environment and health.

Environmental Science Processes & Impacts CRITICAL REVIEW

Cite this: Environ Sci.: Processes

The concept of essential use for determining when uses of PFASs can be phased out

Ian T. Cousins, ⁽¹⁾ †** Gretta Goldenman,^b Dorte Herzke,^c Rainer Lohmann, ⁽¹⁾ d Mark Miller,^e Carla A. Ng, ⁽¹⁾ Sharyle Patton,^g Martin Scheringer, ⁽¹⁾ ^b Xenia Trier,¹ Lena Vierke,¹ Zhanyun Wang ⁽¹⁾ and Jamie C. DeWitt¹

Other Resources for Use Restrictions

• OECD

Portal on PFAS Alternatives – links to resources:
<u>https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/alternatives/</u>

- ChemSec
 - PFAS Guide identify and find PFAS in products: <u>https://pfas.chemsec.org/</u>
 - Marketplace identify vendors for parts without PFAS: <u>https://marketplace.chemsec.org/</u>
- EU REACH Documents
 - EU's detailed proposal for PFAS use restrictions, including appendices on PFAS uses and economic impacts of proposed restrictions: <u>https://echa.europa.eu/registry-of-restriction-intentions/-</u> /dislist/details/0b0236e18663449b

Cost Considerations for PFAS Management Options

How much does it cost?

How much does WHAT cost?

BENEFIT:

targeting improvements to a.) current and future human health b.) mass of PFAS in the environment

a.) Human Health Risk

Estimated PFAS Exposure Routes¹

¹EPA, 2022. Interim Drinking Water Health Advisory for PFOS and PFOA

b.) Mass of PFAS in the Environment

²Evich et al., 2002. *Science*. DOI: 10.1126/science.abg9065 ³Ling, 2024. *Sci. Tot. Environ*. DOI: 10.1016/j.scitotenv.2024.170647 We need remediation to solve environmental PFAS,

but we cannot rely on remediation alone

Reducing PFAS use and emissions will have greater benefit per cost on: a.) current and future human health b.) mass of PFAS in the environment

Ali Ling Assistant Professor Civil Engineering

aling@stthomas.edu

36

Thank you

Treatment Technology Status

PFAS Destruction Technologies

	<u>Te</u> Thermal GAC reactivation low oxygen, 980°C	mp (°C) 1,000	High-temperature incinera thermal oxidation with oxygen, >1,000°C	tion or		
Pyroly no oxyg 200-590	Gasification low oxygen, 590- 980°C ysis gen, Insufficient PFAS 00°C Destruction	800 600	Biosolids incineration 700-1,000°C, with oxygen600Thermal biosolids drying <650°C, with oxygen The clean cycle in your oven ~470°C200	Not Large Enough Scale Yet		
		400 200		Supercritical w 374°C, oxygen,	vater oxidation, high pressure ECO	HALT 165°C alkaline ARPs
					+ electricity	+ reductants
	Low oxygen		With oxygen			
High pressure, electricity, or chemical use						

Higher cost per mass PFAS for lower concentrations (because need to treat larger mass of media)

Needs for Emerging Technologies

Separation Technologies

Destruction Technologies

- Need more technologies with demonstrated:
 - PFAS separation/ destruction efficacy
 - Full-scale operational data and guidance
 - Full-scale cost estimates

Needs for Emerging Technologies

Separation Technologies

Destruction Technologies

