

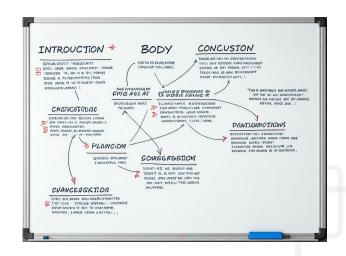
Leachate Management Strategies: Marathon County, WI

Leading with Science®

Introduction

- 6+ Years Solid Waste Experience
- Landfill Permitting, and Construction, Env. Compliance, LFG Design/O&M, and Leachate Management
- Presenter at WIRMC 2025 (PFAS focus)

Jalen Thomas jalen.thomas@tetratech.com (608) 630-4850



Part 1 – Regulatory Overview

Part 2 – Marathon County: Leachate and Regionalization

Federal Actions

Hazardous Substance Designation under CERCLA (April 2024) Drinking Water Standards (April 2024) Effluent Limitations Guidelines (ELG) (Withdrawn January 2025; Ongoing)

- USEPA rulemaking intent: Effluent Limitations Guidelines (ELG a/k/a "Plan 15")
 - Landfill Study

- approx. 3-5 years

- Rule Promulgation
- Implementation Schedule
- Systems operational

- approx. 1-2 years
 approx. 3 years
- approx. 7-10 years (est. 2030-2033)

Biosolids

- Draft Risk Assessment (January 2025)
 - National Sewage Sludge Survey (ongoing)
- Interim PFAS Destruction and Disposal Guidance
 - Underground injection (UIC)
 - Landfill
 - Thermal treatment including incineration

Current USEPA Guidance Policy

- Leverage NPDES permitting (USEPA, 2018)
- Delegate responsibility to States and Territories
 - Facility monitoring
 - Source reduction
 - Require permittees to
 - Eliminate or use substitutes where "reasonable alternatives exist" Not an option for SW Industry
 - Require BMPs w/r/t firefighting foams
 - Enhanced public notification and engagement
 - Protect WWTP discharges & Biosolid applications
 - Pre-treatment Programs
 - Source Control
 - Best Management Practices

Wisconsin Approach

- Specify limits based on receiving water classification
 - Wisconsin

- Chapters NR 102, 105, 106, 219, and other related regulations
- Michigan Rule #57
- Discharge reductions to WWTP
- Source Reduction

TETRA TECH

Where are we heading?

EPA National Primary Drinking Water Standards						
PFAS		Maximum Contaminant	Maximum Contaminant			
		Level Goal	Level			
PFOA		0	4.0 ppt			
PFOS		0	4.0 ppt			
PFNA		10 ppt	10 ppt			
PFHxS		10 ppt	10 ppt			
GenX		10 ppt	10 ppt			
	PFNA					
Mixture of 2 or	PFHxS	1 (unitless)	1 (unitless)			
more	GenX	Hazard Index	Hazard Index			
	PFBS					

 $Hazard Index = \frac{[GenX]}{10} + \frac{[PFBS]}{2,000} + \frac{[PFNA]}{10} + \frac{[PFHxS]}{9}$

Hazard Index for Typical Leachate >>> 1

How are MSW Landfills affected?

INDIRECT DISCHARGE (to WWTP)

- Industrial Pretreatment Program
- Local Limits Analysis
- Discharge criteria subject to WWTP headworks mass loading

DIRECT DISCHARGE (to SW or GW)

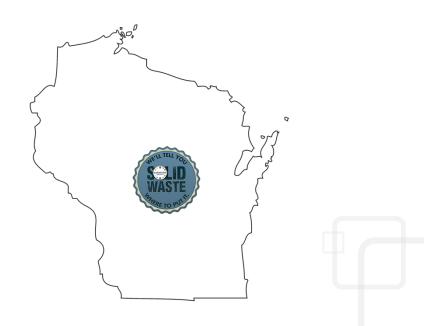
- NPDES permit
- Water Quality Values applicable to receiving waters
- State and local rulemaking

EFFLUENT LIMITATIONS

Regulated parameter	Maximum daily ¹	Maximum monthly avg. ¹
BOD	140	37
TSS	88	27
Ammonia (as N)	10	4.9
α-Terpineol	0.033	0.016
Benzoic acid	0.12	0.071
p-Cresol	0.025	0.014
Phenol	0.026	0.015
Zinc	0.20	0.11
рН	(2)	(2)

¹ Milligrams per liter (mg/L, ppm) ² Within the range 6 to 9.

Source: 40 CFR P445.20, RCRA Subtitle D Non-Hazardous Landfills



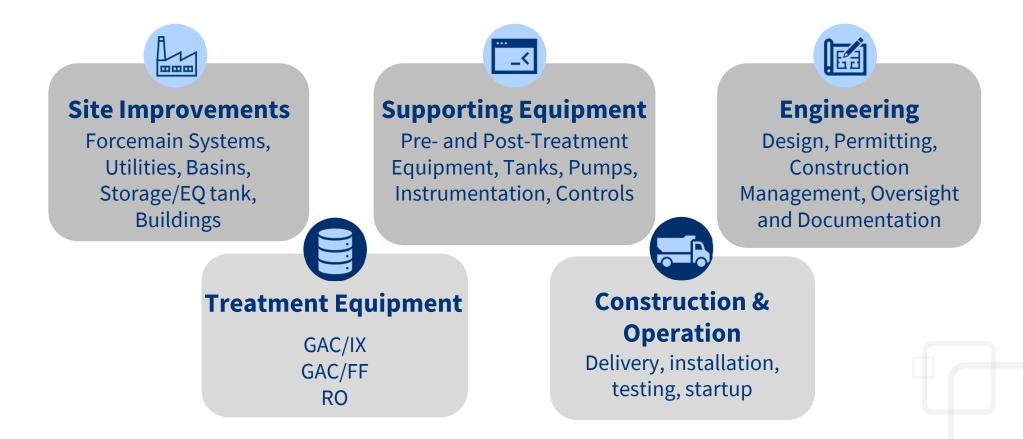
Part 1 – Regulatory Overview

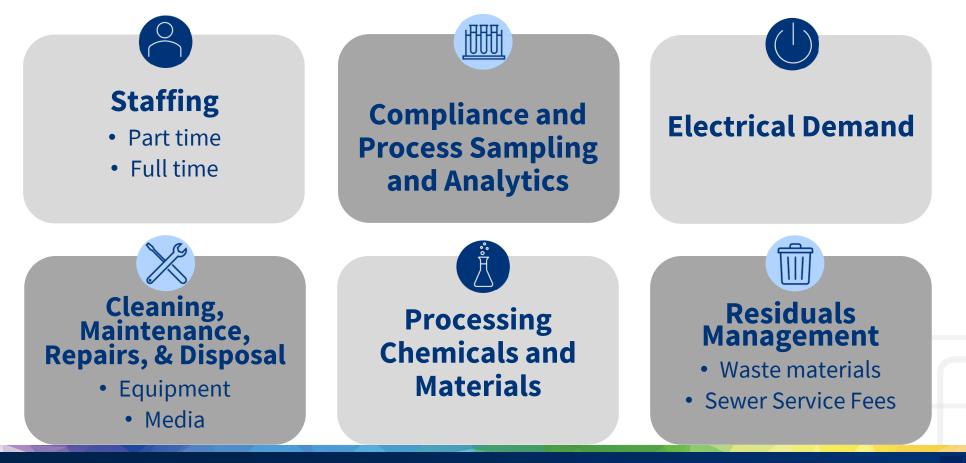
Part 2 – Marathon County: Leachate and Regionalization

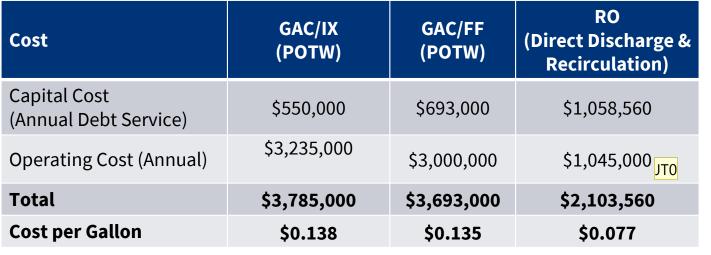
Background

- 120+ acres permitted, 85+ Constructed, 65+ acres closed, Multiple Landfills
- ~31,000 gpd total leachate generation (2024)
- Currently haul and discharge to POTW (under IPP)
- Need for on-site treatment
 - Impending PFAS requirements
 - No existing pre-treatment
 - Dwindling disposal options

Considerations


- Considered Technologies:
 - GAC with IX \rightarrow POTW
 - GAC with $FF \rightarrow POTW$
 - RO → Direct Discharge
- Advantages:
 - Re-use of existing infrastructure
 - Building with dual containment
 - Storage tanks
 - No off-site surface water discharge
- Disadvantages:
 - Separate leachate conveyance systems at each landfills
 - Remote location


Cost Considerations: Capital Costs



Cost Considerations: Operations and Maintenance

Case Study – Cost Comparison

Assumptions:

Period = 20 years Interest Rate = 5.5% Average Utilization = 75% (i.e., 75,000 gallons per day)

14

TETRA TECH

ΤĿ

Percentages of cost instead of numbers Thomas, Jalen, 2025-04-16T17:27:18.581 JT0

Conceptual Regional Leachate Management Solution

Biosolids Spent Treatment Media Marathon Landfill Landfill Lagoon

Parameter	Units	WPDES*	ΡΟΤΨ
PFOS	ng/l	8	TBD
PFOA	ng/l	20 or 95	TBD
* WY-23-19			

15

TE TETRA TECH

JT0 Augment for other landfill leachate to marathon Thomas, Jalen, 2025-04-16T17:16:21.653

