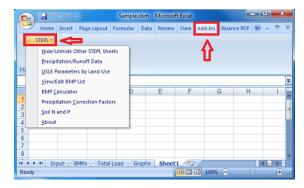
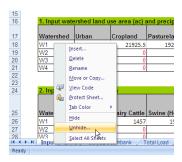
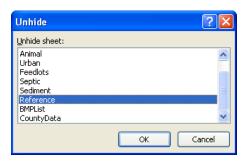

STEPL Training August 5, 2014

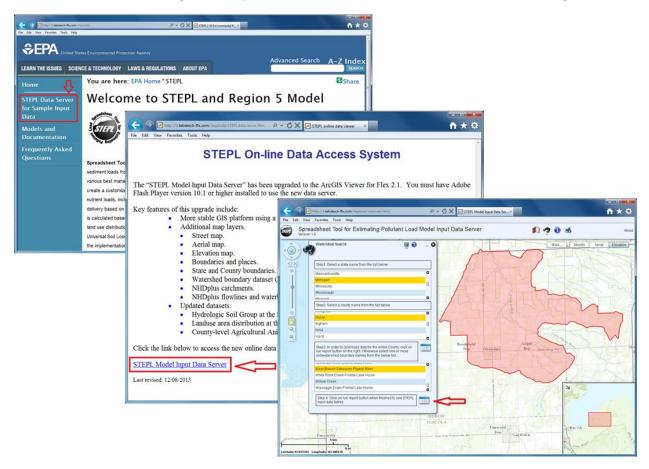

- Download and install the latest version of STEPL (e.g., STEPL 4.2) model. Make sure to uninstall the older version first before installing the newer version.
 - http://it.tetratech-ffx.com/steplweb/models\$docs.htm
- Create a STEPL worksheet with 4 watersheds, 2 gullies, and 2 streambanks
- Save as "TrainingExercise1.xlsm"


- Make sure macros are enabled
 - **Excel 2003 version:** Click on Tools menu > Macro > Security > Security Level > Medium
 - Excel 2007 version: Click on Office icon > Excel Options > Trust Center > Trust Center Settings > Macro Settings
 - **Excel 2010 version:** Click on File menu > Excel Options > Trust Center > Trust Center Settings > Macro Settings
- Set the STEPL installation folder as default file location (e.g., "C:\STEPL\" or "D:\STEPL\").
 - **Excel 2003 version:** Click on Tools menu > Options > General tab
 - **Excel 2007 version:** Click on Office icon > Excel Options > Save
 - **Excel 2010 version:** Click on File menu > Excel Options > Save

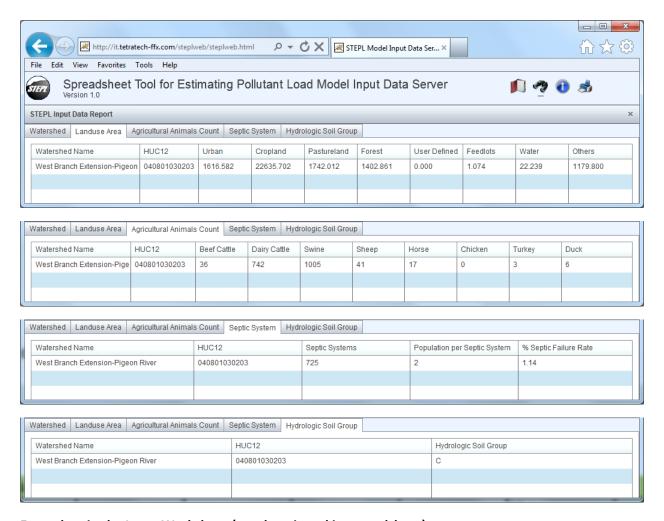


- Save Exercise 1 as Exercise 2 (make sure to save Exercise 1 before saving it as Exercise 2)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Review primary worksheets
 - ♣ Input, BMPs, Total Load, Graphs
- Locate 4 input tables
- Show optional input tables (Click Yes button)
 - How many input tables are there?
- Access STEPL customized menu
 - What is the first option listed? Select it.
 - How many worksheets are there?
 - Select first option again to Hide the additional sheets

- Unhide the Reference sheet only (click right mouse button on any tab)
- Hide the Reference sheet


If you do not see the Add-Ins option in the toolbar, make sure you have enabled the macros (see Exercise 1). Save the spreadsheet, close it, and reopen the spreadsheet.

Estimate total annual loads for a subwatershed of the Pigeon River:


- Save Exercise 2 as Exercise 3 (make sure to save Exercise 2 before saving it as Exercise 3)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Select state = Michigan, and county = Huron.
 - ♣ Notice that initial values for Annual Rainfall and Number of Rain Days are automatically specified in Table 1 as you select a state or county.
- Select a weather station = MI Flint WSCMO.
 - ♣ Notice that rain correction factors change with the selected weather station.

Download data from STEPL Input Data Server

• Select state = Michigan, county = Huron, and watershed = West Branch Extension-Pigeon River.

Click on table button shown on Step 4 of the above figure.

Enter data in the Input Worksheet (numbers in red in spreadsheet)

• Enter data in Tables 1, 2, 3, and 5:

1. Input water	1. Input watershed land use area (ac) and precipitation (in)												
					User								
Watershed	Urban	Cropland	Pastureland	Forest	Defined	Feedlots							
W1	1616.582	22635.702	1742.012	1402.861	0	1.074							
W2	0	0	0	0	0	0							
W3	0	0	0	0	0	0							
W4	0	0	0	0	0	0							

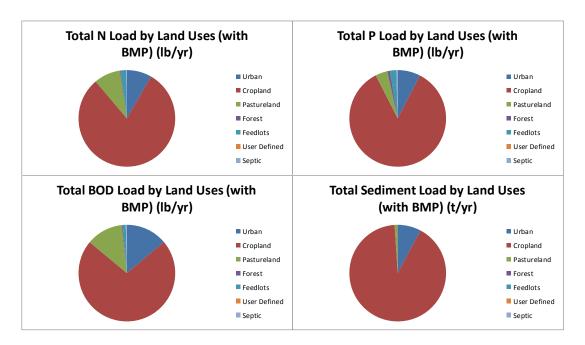
2. Input agric	cultural anim	als						
Mataraha d	Boot Coulo	Daimy Cattle	Suring (Hog)	Sheen	Haras	Chiakan	Turkey	Duck
Watershed	beer Cattle	Dairy Cattle	Swine (Hog)		Horse	Chicken	Turkey	Duck
W1	36	742	1005	41	17	0	3	6
W2	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0
W4	0	0	0	0	0	0	0	0
Total	36	742	1005	41	17	0	3	6

3. Input septi	3. Input septic system and illegal direct wastewater												
Watershed	No. of Septic Systems	Population per Septic System	Septic Failure Rate, %										
W1	725	2	1.14										
W2	0	0	0										
W3	0	0	0										
W4	0	0	0										

Optional Data Input:

5. Select average soil hydrologic group (SHG), SHG A = highest infiltration and												
Watershed	SHG A	SHG B	SHG C	SHG D	SHG							
					Selected							
W1		•	0	•	С							
W2	•	0	•	<u> </u>	В							
W3	(0	•	<u> </u>	В							
W4		0	•		В							

• Examine estimated load in Total Load worksheet and compare the results below:


1. Total load	by subwaters	shed(s)						
Watershed	BMP) BMP)		BOD Load (no BMP)	Sediment Load (no BMP)	N Reduction	P Reduction	BOD Reduction	Sediment Reduction
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	105540.6	17827.4	246734.9	2587.9	0.0	0.0	0.0	0.0
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	105540.6	17827.4	246734.9	2587.9	0.0	0.0	0.0	0.0

2. Total load	by land uses	(with BMP)		
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)
Urban	8810.39	1360.50	34239.01	202.29
Cropland	84953.78	15128.10	178055.46	2358.96
Pastureland	9349.81	726.20	30286.21	25.17
Forest	291.14	145.01	725.41	1.52
Feedlots	1923.96	384.79	2565.28	0.00
User Defined	0.00	0.00	0.00	0.00
Septic	211.48	82.83	863.53	0.00
Gully	0.00	0.00	0.00	0.00
Streambank	0.00	0.00	0.00	0.00
Groundwater	0.00	0.00	0.00	0.00
Total	105540.55	17827.43	246734.90	2587.93

O

If you cannot select the SHG controls in Table 5, make sure you have enabled the macros (see Exercise 1). Save the spreadsheet, close it, and reopen the spreadsheet.

- · Which land use has the highest annual load contributions?
 - Cropland

- Review the Input Data parameters. Which required value did we leave out?
 - # # of months manure applied
- Set the number of months manure applied to 8.
 - ♣ Note the difference in total loads.

2. Input agric	cultural anim	als							
								# of months	
									manure
Watershed	Beef Cattle	Dairy Cattle	Swine (Hog)	Sheep	Horse	Chicken	Turkey	Duck	applied
W1	36	742	1005	41	17	0	3	6	8
W2	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0
W4	0	0	0	0	0	0	0	0	0
Total	36	742	1005	41	17	0	3	6	

1. Total load	by subwaters	shed(s)						
Watershed	N Load (no BMP)	P Load (no BMP)	BOD Load (no BMP)	Sediment Load (no	N Reduction	P Reduction	BOD Reduction	Sediment Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	273930.6	63998.9	472160.3	2587.9	0.0	0.0	0.0	0.0
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	273930.6	63998.9	472160.3	2587.9	0.0	0.0	0.0	0.0

- Which pollutant load value did not change?
 - Sediment

For the same farm area, estimate total annual load reduction assuming reduced tillage is adopted on <u>all</u> cropland

- Save Exercise 3 as Exercise 4 (make sure to save Exercise 3 before saving it as Exercise 4)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Enter BMP data in BMPs worksheet
 - In Table 1 which is for cropland areas, select Reduced Tillage System under BMP column and enter 100 for % area BMP applied. Note that initial values of BMP efficiencies are automatically specified with the selected BMP.

1. BMPs and	1. BMPs and efficiencies for different pollutants on CROPLAND, ND=No Data											
Watershed	shed Cropland											
	N	Р	BOD	Sediment	BMPs	% Area BMP Applied						
W1	0.55	0.45	ND	0.75	👩 Reduced Tillage Systems ∺	100						

Examine estimated load reduction in Total Load worksheet and compare with the results below:

1. Total load	by subwaters	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
	BMP)	BMP) (no BMP)		Load (no			Reduction	Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	273930.6	63998.9	472160.3	2587.9	140848.8	28456.7	11323.0	1769.2
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	273930.6	63998.9	472160.3	2587.9	140848.8	28456.7	11323.0	1769.2

- How many acres were treated by Reduced Tillage? Is this realistic?
- Calculate the load reductions assuming Reduced Tillage is applied on 550 cropland acres
 - Hint: 550 out of 22635.702 is 2.43%

1. BMPs and	I. BMPs and efficiencies for different pollutants on CROPLAND, ND=No Data											
Watershed	hed Cropland											
	N	Р	BOD	Sediment	BMPs	% Area BMP Applied						
W1	0.013365	0.010935	ND	0.018225	Reduced Tillage Systems	2.43						

• Examine estimated load reduction in Total Load worksheet and compare with the results below:

1. Total load	by subwaters	shed(s)						
Watershed	N Load (no BMP) P Load (no BMP)		BOD Load (no BMP)	Sediment Load (no BMP)	N Reduction	P Reduction	BOD Reduction	Sediment Reduction
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	273930.6	63998.9	472160.3	2587.9	3422.6	691.5	275.1	43.0
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	273930.6	63998.9	472160.3	2587.9	3422.6	691.5	275.1	43.0

2. Total load	2. Total load by land uses (with BMP)									
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)						
Urban	8810.39	1360.50	34239.01	202.29						
Cropland	249921.19	60608.06	403205.69	2315.97						
Pastureland	9349.81	726.20	30286.21	25.17						
Forest	291.14	145.01	725.41	1.52						
Feedlots	1923.96	384.79	2565.28	0.00						
User Defined	0.00	0.00	0.00	0.00						
Septic	211.48	82.83	863.53	0.00						
Gully	0.00	0.00	0.00	0.00						
Streambank	0.00	0.00	0.00	0.00						
Groundwater	0.00	0.00	0.00	0.00						
Total	270507.97	63307.39	471885.13	2544.94						

A waste management system is installed to treat the entire 1.074 acres of runoff from Feedlots.

• Add the BMP and calculate the new total load reductions for the watershed.

5. BMPs and	5. BMPs and efficiencies for different pollutants on FEEDLOTS, ND=No Data									
Watershed	Watershed Feedlots									
	N	Р	BOD	Sediment	BMPs	%Area BMP Applied				
W1	0.8	0.9	ND	ND	Waste Mgmt System	100				

• Examine estimated load reduction in Total Load worksheet and compare with the results below:

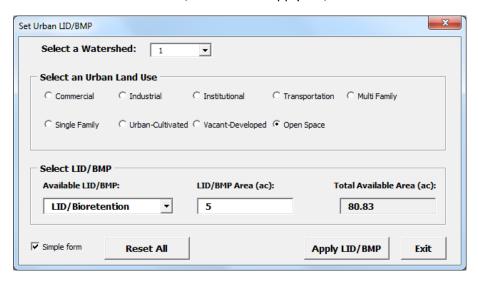
1. Total load	by subwaters	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load		N Reduction	P Reduction	_	Sediment
	BMP)	ВМР)	(no BMP)	Load (no BMP)			Reduction	Reduction
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	273930.6	63998.9	472160.3	2587.9	4961.8	1037.8	275.1	43.0
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	273930.6	63998.9	472160.3	2587.9	4961.8	1037.8	275.1	43.0

2. Total load	2. Total load by land uses (with BMP)									
Sources	N Load	P Load	BOD Load	Sediment						
	(lb/yr)	(lb/yr)	(lb/yr)	Load (t/yr)						
Urban	8810.39	1360.50	34239.01	202.29						
Cropland	249921.19	60608.06	403205.69	2315.97						
Pastureland	9349.81	726.20	30286.21	25.17						
Forest	291.14	145.01	725.41	1.52						
Feedlots	384.79	38.48	2565.28	0.00						
User Defined	0.00	0.00	0.00	0.00						
Septic	211.48	82.83	863.53	0.00						
Gully	0.00	0.00	0.00	0.00						
Streambank	0.00	0.00	0.00	0.00						
Groundwater	0.00	0.00	0.00	0.00						
Total	268968.80	62961.08	471885.13	2544.94						

Gullies & Streambanks

- Let's say the project also restores 2,000 feet of severely eroding streambank
- From the BMP worksheet, click the button to view the Gully and Streambank erosion worksheet
- Add the BMP and calculate the new total load reductions for the watershed.
 - Assume bank is 2 ft high and soil class is Fine Sandy Loam

2. Impaired streamb	. Impaired streambank dimensions in the different watersheds							
Watershed	Strm	Length	Height	Lateral Recession	Rate	Rate	BMP	Soil Textural Class
	Bank	(ft)	(ft)		Range	(ft/yr)	Efficiency	
					(ft/yr)		(0-1)	
	Bank1	2000	2	🧿 3. Severe 🚆	0.3 - 0.5	0.4	0.95	🧿 Fine Sandy Ioam 🔛

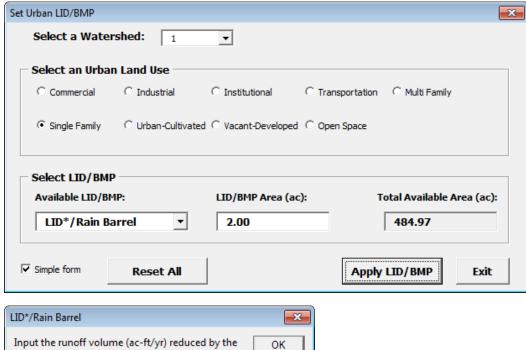

♣ Note this is just one bank, whereas you will normally model them in pairs

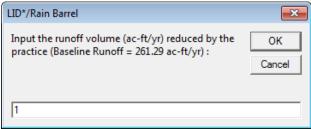
1. Total load	by subwaters	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
	BMP)	BMP)	(no BMP)	Load (no			Reduction	Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	274039.4	64040.8	472377.9	2667.9	5065.2	1077.6	481.9	119.0
W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	274039.4	64040.8	472377.9	2667.9	5065.2	1077.6	481.9	119.0

2. Total load	2. Total load by land uses (with BMP)									
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)						
Urban	8810.39	1360.50	34239.01	202.29						
Cropland	249921.19	60608.06	403205.69	2315.97						
Pastureland	9349.81	726.20	30286.21	25.17						
Forest	291.14	145.01	725.41	1.52						
Feedlots	384.79	38.48	2565.28	0.00						
User Defined	0.00	0.00	0.00	0.00						
Septic	211.48	82.83	863.53	0.00						
Gully	0.00	0.00	0.00	0.00						
Streambank	5.44	2.09	10.88	4.00						
Groundwater	0.00	0.00	0.00	0.00						
Total	268974.24	62963.18	471896.01	2548.94						

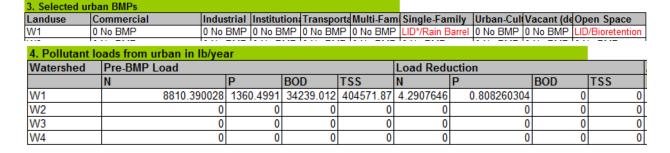
Apply Urban BMPs/LIDs.

- Save Exercise 4 as Exercise 5 (make sure to save Exercise 4 before saving it as Exercise 5)
 - Select Excel Macro-Enabled Workbook (*.xlsm) save option
- In the example watershed, what % of urban land use is open space?
 - **4** 5%
- Next we will apply LID/Bioretention to 5 acres of Open Space
- Click Urban BMP Tool
 - Select Open Space under urban land use options->Select LID/Bioretention under Available LID/BMP -> Click Apply LID/BMP

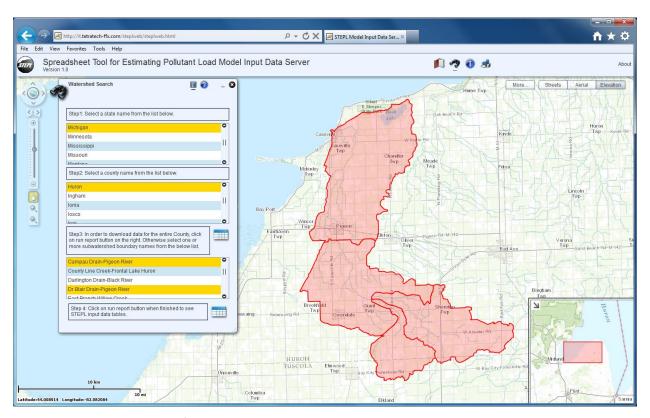

- Note that the LID/BMP Area is the area treated by the practice
- · Review results on Urban worksheet


4. Pollutant loads from urban in lb/year										
Watershed	Pre-BMP L	.oad			Load Reduction					
	N	Р	BOD	TSS	N	Р	BOD	TSS		
W1	8810.39	1360.4991	34239.012	404571.87	4.2907646	0.8082603	0	0		
W2	0	0	0	0	0	0	0	0		
W3	0	0	0	0	0	0	0	0		
W4	0	0	0	0	0	0	0	0		

Note: The LID practices with an * require runoff volume input (Cisterns and Rain Barrels)


5B) Residential BMPs Project

- The project aims to install rain barrels in 20 single family homes
- The average size of each home's total rooftop area is ~4,000 sq ft (0.1 acres)
- The total runoff volume from the rooftops is 43,560 cubic ft (1 ac-ft) per year



Review results on Urban worksheet

To clear/delete the existing urban BMPs/LIDs in the urban worksheet, click on "Reset All" button available on the Urban BMP Tool.

- Save Exercise 5 as Exercise 6 (make sure to save Exercise 5 before saving it as Exercise 6)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Download data for all 4 subwatersheds making up the Pigeon River drainage in Huron County, MI
 - West Branch Extension-Pigeon River
 - Dr Blair Drain-Pigeon River
 - Campau Drain-Pigeon River
 - Little Pigeon River

- Save and open data file in Excel
- Copy and paste input data into your STEPL workbook
 - Enter data for the selected watersheds in the same order as shown below
 - West Branch Extension-Pigeon River
 - Dr Blair Drain-Pigeon River
 - Campau Drain-Pigeon River
 - Little Pigeon River
- Land cover, agricultural animals, septics
- Change Hydrologic Soils Groups if necessary (Optional Input Table #5)
- What required piece of information was not provided?
 - # of months manure applied

1. Input watershed land use area (ac) and precipitation (in)											
					User						
Watershed	Urban	Cropland	Pastureland	Forest	Defined	Feedlots					
W1	1616.582	22635.702	1742.012	1402.861	0	1.074					
W2	1131.095	13391.452	2864.212	2300.666	0	1.741					
W3	2764.358	29911.543	3369.491	492.157	0	2.077					
W4	558.209	6807.034	1609.243	906.033	0	0.77					

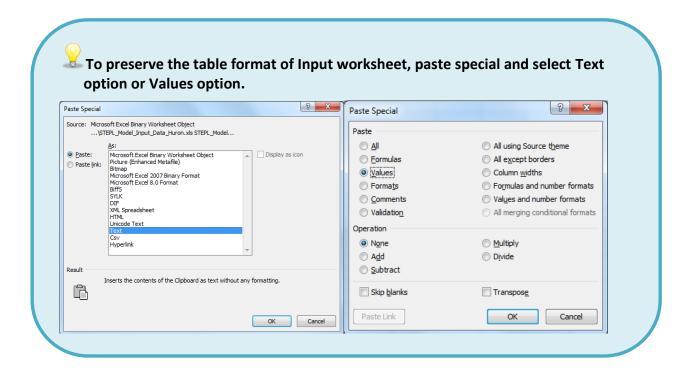
2. Input agricultural animals

	bantarar ammi							
Watershed	Beef Cattle	Dairy Cattle	Swine (Hog)	Sheep	Horse	Chicken	Turkey	Duck
W1	36	742	1005	41	17	0	3	6
W2	60	1206	1616	67	28	2	6	9
W3	70	1436	1944	80	32	0	7	11
W4	40	495	755	32	25	0	4	6
Total	206	3879	5320	220	102	2	20	32

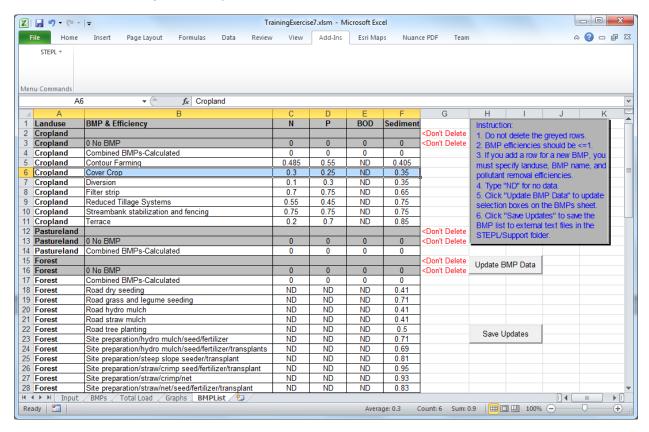
3. Input septic system and illegal direct wastewater

Watershed	No. of Septic Systems	Population per Septic System	Septic Failure Rate, %
W1	725	2	1.14
W2	366	2	1.14
W3	1213	2	1.14
W4	130	2	1.14

Optional Data Input:

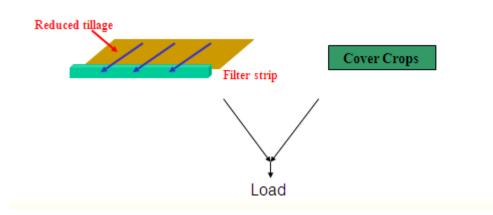

5. Select average soil hydrologic group (SHG), SHG A = highest infiltration and									
Watershed	ershed SHGA SHGB		SHG C	SHG D	SHG				
	<u></u>				Selected				
W1	(©	0	•	С				
W2	(©	(<u> </u>	В				
W3	<u> </u>		0	•	С				
W4		0			В				

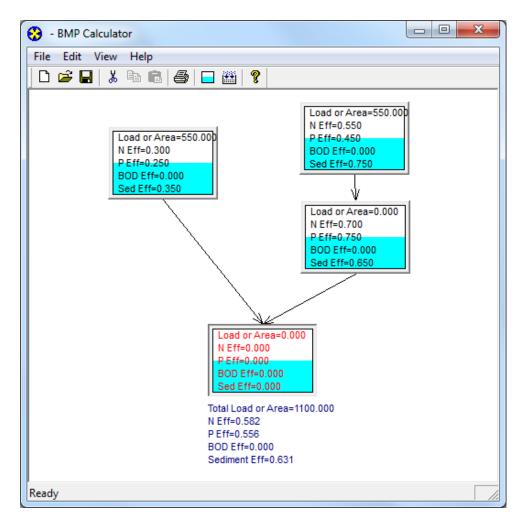
• Review results on Total Load worksheet


1. Total load	by subwater	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
	BMP)	BMP)	(no BMP)	Load (no			Reduction	Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	274039.4	64040.8	472377.9	2667.9	5069.4	1078.4	481.9	119.0
W2	55897.8	9378.0	135292.5	1689.7	0.0	0.0	0.0	0.0
W3	148807.5	24355.0	357517.3	3268.4	0.0	0.0	0.0	0.0
W4	29105.0	4920.2	70765.7	1010.5	0.0	0.0	0.0	0.0
Total	507849.6	102694.0	1035953.4	8636.5	5069.4	1078.4	481.9	119.0

13

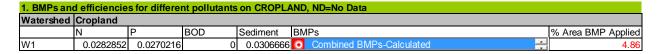
2. Total load	by land uses	(with BMP)			
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)	
Urban	31517.66	4862.69	122126.29	723.85	
Cropland	417979.78	91011.51	755220.48	7638.22	
Pastureland	43164.59	3381.65	139703.01	145.47	
Forest	799.02	397.30	1987.94	6.01	
Feedlots	8603.73	1682.27	13523.86	0.00	
User Defined	0.00	0.00	0.00	0.00	
Septic	709.98	278.07	2899.08	0.00	
Gully	0.00	0.00	0.00	0.00	
Streambank	5.44	2.09	10.88	4.00	
Groundwater	0.00	0.00	0.00	0.00	
Total	502780.20	101615.59	1035471.55	8517.55	


- Save Exercise 6 as Exercise 7 (make sure to save Exercise 6 before saving it as Exercise 7)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- From STEPL customized menu, select View/Edit BMP List option
 - ¥ You can also unhide **BMPList** worksheet (see Exercise 2 to unhide a worksheet)
- Insert a new row after the Cropland Contour Farming BMP on the BMPList worksheet
- Enter **Cropland** under Landuse column and **Cover Crop** BMP with the following efficiencies: Nitrogen 0.3, Phosphorus 0.25, Sediment 0.35
- Click on Update BMP Data and view in Cropland BMP dropdown list on BMP worksheet
- Click on Save Updates to update the BMP list for BMP calculator (for next exercise)


Ensure you have set the STEPL installation folder as default file location (see Exercise 1) before you click "Save Updates" button otherwise the newly added BMPs will not appear in the BMP list of BMP calculator.

Use of BMP Calculator

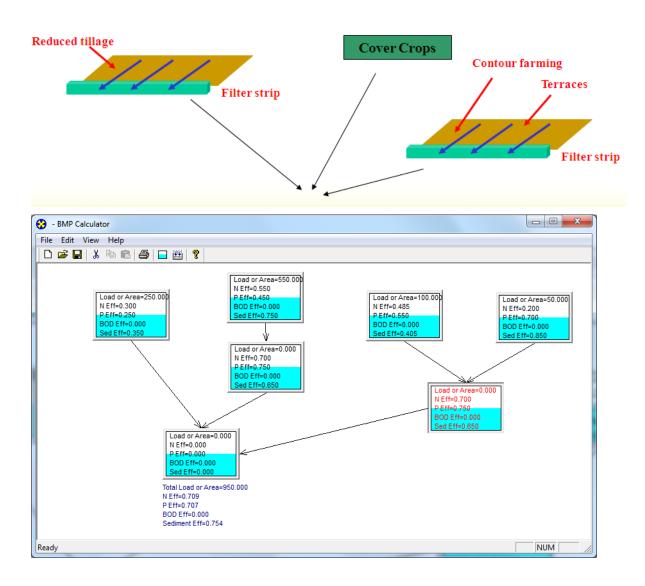
- Save Exercise 7 as Exercise 8 (make sure to save Exercise 7 before saving it as Exercise 8)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Estimate total annual load and load reduction with reduced tillage and filter strips (shown below) applied to 550 acres cropland and cover crops applied to another 550 acres.


- Enter BMP data in BMP worksheet
 - In Table 1, which is for cropland areas, select "Combined-BMP calculated" under BMP column to indicate that we have multiple BMPs applied to cropland.
 - Note that the N, P, BOD, and Sediment BMP efficiencies remained zero.
 - If you had the combined efficiency values for this particular BMP train, you would enter them in Table 7 (number in red).
 - We do not have the values, so we will use the BMP calculator (next step)
- Run the BMP Calculator by selecting the STEPL/BMP Calculator menu of the STEPL spreadsheet.
 - If the system cannot find the BMP Calculator program, navigate to /STEPL folder and select BMPCalculator.exe
- Using the BMP Calculator interface, do the following
 - Add 4 BMP boxes (one for each BMP plus the Combined total)
 - Enter BMP information (type, area, etc.) for each BMP box by double-clicking the box
 - Left click and hold to draw a connection between boxes. You may move the boxes around.
 - Click the Run button to calculate the Combine efficiency

Enter the combined efficiencies in Table 7 of STEPL spreadsheet.

7. Combine	7. Combined watershed BMP efficiencies from the BMP calculator									
Watershed	ned Watershed Combined BMP Efficiencies									
	Z	Ρ	BOD	Sediment	BMPs					
W1-Crop	0.582	0.556	0	0.631	Combined BMPs					

Also note the Total Area treated. Calculate the new % Area BMP Applied


To copy the combined efficiency value from the BMP calculator click right mouse button on the combined efficiency number and select the copy option. You have to copy those values one at a time.

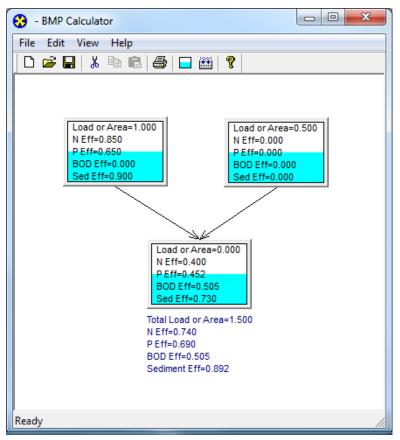
• Review results on Total Load worksheet

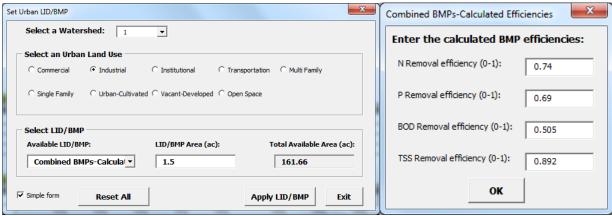
1. Total load	by subwater	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
	BMP)	BMP)	(no BMP)	Load (no			Reduction	Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	274039.4	64040.8	472377.9	2667.9	8830.7	2053.9	669.7	148.3
W2	55897.8	9378.0	135292.5	1689.7	0.0	0.0	0.0	0.0
W3	148807.5	24355.0	357517.3	3268.4	0.0	0.0	0.0	0.0
W4	29105.0	4920.2	70765.7	1010.5	0.0	0.0	0.0	0.0
Total	507849.6	102694.0	1035953.4	8636.5	8830.7	2053.9	669.7	148.3

2. Total load	by land uses	(with BMP)			
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)	
Urban	31517.66	4862.69	122126.29	723.85	
Cropland	414218.55	90036.00	755032.65	7608.87	
Pastureland	43164.59	3381.65	139703.01	145.47	
Forest	799.02	397.30	1987.94	6.01	
Feedlots	8603.73	1682.27	13523.86	0.00	
User Defined	0.00	0.00	0.00	0.00	
Septic	709.98	278.07	2899.08	0.00	
Gully	0.00	0.00	0.00	0.00	
Streambank	5.44	2.09	10.88	4.00	
Groundwater	0.00	0.00	0.00	0.00	
Total	499018.96	100640.08	1035283.71	8488.20	

- Save Exercise 8 as Exercise 9 (make sure to save Exercise 8 before saving it as Exercise 9)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Multiple cropland practices are applied in W2
- Estimate total annual load and load reduction with reduced tillage and filter strips applied to 550 acres, cover crops applied to another 250 acres, contour farming on 100 acres, and terraces on 50 acres
- Filter strips are in place to treat runoff from the upland terraces and contoured fields

1. BMPs and	1. BMPs and efficiencies for different pollutants on CROPLAND, ND=No Data											
Watershed	Cropland											
	N	Р	BOD	Sediment	BMPs	% Area BMP Applied						
W1	0.0282852	0.0270216	0	0.0306666	Combined BMPs-Calculated	4.86						
W2	0.050339	0.050197	0	0.053534	Combined BMPs-Calculated	7.1						


7. Combine	7. Combined watershed BMP efficiencies from the BMP calculator										
Watershed	Watershed Watershed Combined BMP Efficiencies										
	N	Р	BOD	Sediment	BMPs						
W1-Crop	0.582	0.556	0	0.631	Combined BMPs						
W2-Crop	0.709	0.707	0	0.754	Combined BMPs						


• Review results on Total Load worksheet

1. Total load	by subwater	shed(s)						
Watershed	N Load (no	P Load (no	BOD Load	Sediment	N Reduction	P Reduction	BOD	Sediment
	BMP)	BMP)	(no BMP)	Load (no			Reduction	Reduction
				BMP)				
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	274039.4	64040.8	472377.9	2667.9	8830.7	2053.9	669.7	148.3
W2	55897.8	9378.0	135292.5	1689.7	1887.8	356.7	522.2	81.6
W3	148807.5	24355.0	357517.3	3268.4	0.0	0.0	0.0	0.0
W4	29105.0	4920.2	70765.7	1010.5	0.0	0.0	0.0	0.0
Total	507849.6	102694.0	1035953.4	8636.5	10718.5	2410.6	1191.9	229.9

2. Total load	by land uses	(with BMP)		
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)
Urban	31517.66	4862.69	122126.29	723.85
Cropland	412330.71	89679.34	754510.43	7527.27
Pastureland	43164.59	3381.65	139703.01	145.47
Forest	799.02	397.30	1987.94	6.01
Feedlots	8603.73	1682.27	13523.86	0.00
User Defined	0.00	0.00	0.00	0.00
Septic	709.98	278.07	2899.08	0.00
Gully	0.00	0.00	0.00	0.00
Streambank	5.44	2.09	10.88	4.00
Groundwater	0.00	0.00	0.00	0.00
Total	497131.13	100283.43	1034761.49	8406.60

- Save Exercise 9 as Exercise 10 (make sure to save Exercise 9 before saving it as Exercise 10)
 - ♣ Select Excel Macro-Enabled Workbook (*.xlsm) save option
- Congratulations, you secured grant funding to retrofit a 1.5-acre industrial parking lot. The project will replace 1 acre of concrete with porous pavement. The entire parking lot will be bordered by vegetated filter strips to capture runoff. Add these BMPs to watershed 1.
 - Hint: you will need to use the BMP Calculator

• Review results on Urban worksheet

2a. Effectiv	ve BMP applic	cation area	(ac)						
Landuse	Commercial	Industrial	Institutiona	Transporta	Multi-Fam	Single-Family	Urban-Cult	Vacant (de	Open Space
W1	242.4873	1.5	161.6582	161.6582	161.6582	2	80.8291	80.8291	5
W2	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0
W4	0	0	0	0	0	0	0	0	0

3. Selected u	3. Selected urban BMPs								
Landuse	Commercial	Industrial	Institutiona	Transporta	Multi-Fami	Single-Family	Urban-Cult	Vacant (de	Open Space
W1	0 No BMP	Combined I	0 No BMP	0 No BMP	0 No BMP	LID*/Rain Barrel	0 No BMP	0 No BMP	LID/Bioretention
W2	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP
W3	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP
W4	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP

4. Pollutant I	4. Pollutant loads from urban in Ib/year											
Watershed	Pre-BMP Load			Load Reduction								
	N	Р	BOD	TSS	N	P	BOD	TSS				
W1	8810.390028	1360.4991	34239.012	404571.87	11.492883	1.88273858	17.693854	416.71071				
W2	5119.32894	787.77169	19643.972	235220	0	0	0	0				
W3	15065.7821	2326.4558	58548.77	691818.59	0	0	0	0				
W4	2526.450465	388.77481	9694.5365	116083.9	0	0	0	0				

• Review results on Total Load worksheet

1. Total load	by subwater	shed(s)						
Watershed	,	P Load (no	BOD Load		N Reduction	P Reduction		Sediment
	BMP)	BMP)	(no BMP)	Load (no BMP)			Reduction	Reduction
	lb/year	lb/year	lb/year	t/year	lb/year	lb/year	lb/year	t/year
W1	274039.4	64040.8	472377.9	2667.9	8837.9	2055.0	687.4	148.5
W2	55897.8	9378.0	135292.5	1689.7	1887.8	356.7	522.2	81.6
W3	148807.5	24355.0	357517.3	3268.4	0.0	0.0	0.0	0.0
W4	29105.0	4920.2	70765.7	1010.5	0.0	0.0	0.0	0.0
Total	507849.6	102694.0	1035953.4	8636.5	10725.7	2411.6	1209.6	230.1

2. Total load				
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)
Urban	31510.46	4861.62	122108.60	723.64
Cropland	412330.71	89679.34	754510.43	7527.27
Pastureland	43164.59	3381.65	139703.01	145.47
Forest	799.02	397.30	1987.94	6.01
Feedlots	8603.73	1682.27	13523.86	0.00
User Defined	0.00	0.00	0.00	0.00
Septic	709.98	278.07	2899.08	0.00
Gully	0.00	0.00	0.00	0.00
Streambank	5.44	2.09	10.88	4.00
Groundwater	0.00	0.00	0.00	0.00
Total	497123.92	100282.35	1034743.80	8406.40