

2121 Innovation Court, Suite 100 P.O. Box 5095 De Pere, WI 54115-5095 (920) 497-2500 foth.com

February 18, 2025

- TO: Stephen Bourn Rio Tinto
- CC: Leland Roberts Rio Tinto Steve Donohue – Foth Infrastructure & Environment, LLC
- FR: Mark Ciardelli Foth Infrastructure & Environment, LLC Nick Glander – Foth Infrastructure & Environment, LLC Bill Adams – Red Cap Consulting Bob Gensemer – GEI Consultant, Inc. Jennifer Lynch – GEI Consultants, Inc. Ashley Romero – GEI Consultants, Inc.
- RE: 2024 Stream C Data Evaluation Reclaimed Flambeau Mine – Ladysmith, Wisconsin

1. Introduction

Foth Infrastructure & Environment, LLC (Foth) and GEI Consultants, Inc. (GEI) prepared a plan to evaluate Stream C, located on the Reclaimed Flambeau Mine site in Ladysmith, Wisconsin (WI). Figure 1 provides the location of the Reclaimed Flambeau Mine. The *Stream C Evaluation Work Plan – Revision 2 (Work Plan)* (Foth and GEI, 2024) was submitted to the Wisconsin Department of Natural Resources (Department) on August 30, 2024.

As outlined in the Work Plan, the 2024 scope of work included the following:

- Flow monitoring
- Water chemistry

This memorandum presents the activities and results from the Stream C 2024 sampling year. The memorandum is organized into the following sections:

- Section 2 provides an overview of the data collection and results.
- Section 3 provides the data assessment.
- Section 4 provides the conclusions and recommendations.
- Section 5 list the references uses in development of this memorandum.

1.1 Flow

Flow monitoring consisted of visual observations and flow rate determination. Visual observations were conducted at a frequency of twice per month from April through June 2024 – prior to increasing the frequency to weekly starting in July 2024 using a combination of field notes and photos.

When flow was present, the flow rate was manually monitored near the mouth of Stream C with a hand-held velocimeter unit (one velocity measurement collected at the deepest point within the stream). The location of flow monitoring near the mouth of Stream C, at SW-STM, was established during the first event based on field observations; and the same location was used during subsequent flow monitoring. Its location is shown on Figure 2.

Dedicated transducers were installed at the Highway (Hwy) 27 and Copper Park Lane culverts to allow for continuous monitoring (Figure 2). The pressure transducers were installed on the eastern side of the Hwy 27 culvert and the northern side of the Copper Park Lane culvert at the location of the existing staff gauge brackets.

1.2 Water Chemistry

When there was visible surface flow within Stream C, water quality monitoring was completed at 10 locations approximately every 14 days. The monitoring locations are shown on Figure 2. Based on flow conditions in 2024, water quality samples were collected twice in May, once in July, once in August, and once in November. One duplicate sample was collected during each sampling event.

Water quality sampling protocols consist of two subsections:

- Collecting a surface water sample
- Measuring the field parameters

Field and analytical laboratory analysis were utilized to assess the quality of surface water for the parameters as summarized in Tables 2 and 3 of the *Work Plan*. The four main Stream C locations (SW-C9, SW-C5, SW-C1, and SW-STM) were analyzed for parameters summarized in Table 2, and the remaining six locations were analyzed for parameters summarized in Table 3 of the Work Plan.

Laboratory analytical activities were performed by Pace Analytical Services (Pace), located in Green Bay, Wisconsin. Pace is a Wis. Admin. Code NR 149-certified laboratory.

Where appropriate, elements of the 2020 *Quality Assurance Project Plan (QAPP)* (Foth, 2020) was utilized to manage quality through all phases of each sampling event including sample collection, sample custody and transportation, and data validation and management.

1.3 Toxicity

Toxicity testing occurred once during the spring and once during fall 2024 on water samples collected at four Stream C locations (SW-C9, SW-C5, SW-C1, and SW-STM coinciding with water quality sampling events. Toxicity tests were conducted using two standard testing species, the water flea *Ceriodaphnia dubia (C. dubia)*, and the fathead minnow *Pimephales promelas (P. promelas)*. Whole Effluent Toxicity (WET) testing was performed by Cove Environmental, located

in Stillwater, Oklahoma, following the State of Wisconsin's Aquatic Life Toxicity Testing Methods Manual (Wisconsin Department of Natural Resources [WDNR], 2004) and Whole Effluent Toxicity (WET) Program Guidance Document (WDNR, 2022a). While this study does not entail toxicity testing in waters collected from a regulated effluent outfall, standard WET testing methods are widely used and recommended for conducting reliable tests in ambient waters.

1.3.1 Acute Toxicity Criterion (ATC)

Surface water quality data collected were used to calculate the ATC, which is calculated based on water hardness, as prescribed in Wisconsin Administrative Code (Wis. Admin. Code) NR 105 Table 2. ATC is defined within Wis. Admin. Code NR 105 as "the maximum daily concentration of a substance which ensures adequate protection of sensitive species of aquatic life from the acute toxicity of that substance and will adequately protect the designated fish and aquatic life use of the surface water if not exceeded more than once every 3 years." ATC were assessed for both copper and zinc. For instances where measured hardness is below the copper and zinc ATC applicable range (Wis. Admin. Code NR 105 Table 2A), the lower bound of the range were utilized for hardness within the calculation.

1.3.2 Biotic Ligand Model (BLM)

Surface water quality data collected for Stream C locations SW-C9, SW-C5, SW-C1, and SW-STM were further assessed for copper toxicity using the U.S. Environmental Protection Agency (USEPA) BLM, as described in the USEPA water quality criteria for copper (USEPA, 2007).

The BLM uses the dissolved chemistry of the receiving water body to develop site-specific water quality criteria based on predicted metal bioavailability. The BLM generates a set of site-specific surface water copper criteria, including the Criterion Maximum Concentration (CMC), and the Criterion Continuous Concentration (CCC). The CMC is the applicable criteria to be utilized for comparison to the ATC at the site.

2. Data Collection and Results

2.1 Sample Collection Summary

When there was visible surface flow within Stream C, water quality monitoring was completed at 10 locations. The monitoring locations are shown on Figure 2. In 2024, water quality samples were collected on the following dates:

- May 8, 2024 (WET testing completed)
- May 23, 2024
- July 24, 2024
- August 30, 2024
- November 21, 2024 (WET testing completed)

The May, July and August 2024 water quality sample collection event summaries and analytical reports were submitted in the Stream C April – August 2024 Sampling Result Summary Memorandum.

On November 21, 2024, a sampling event was completed following 1.01 inches of rain that started on November 19, 2024. This provided enough precipitation volume to induce flow

throughout Stream C. Field parameters and surface water samples were collected from the 10 sample locations. The WET testing samples were also collected during this event.

Field parameters were measured and recorded using a water quality meter. Water samples were collected using a peristaltic pump and new tubing for each sample was used to minimize the potential for sediment disturbance and cross-contamination between samples following the guidance outlined in the *Work Plan*.

2.2 Flow Results

Flow observations were completed on a frequency of twice per month from April through June 2024 and then increased to a frequency to weekly starting in July 2024. The inspection forms for April through August 2024 were provided in the Stream C April – August 2024 Sampling Result Summary Memorandum. Flow was monitored with a hand-held velocimeter unit during inspections when flow was present. The September 2024 through December 2024 inspection forms are provided in Attachment 1.

The pressure transducers were installed on April 12, 2024, in the existing staff gauge brackets at the two culverts and were set to record water depth every 15 minutes. Pressure-to-flow conversion was accomplished with a combination of continuous depth monitoring and known flow hydraulics associated with the culvert characteristics using the standard operating procedure (SOP) established in the *Work Plan*. The 2024 Hwy 27 culvert flow graph is provided on Figure 3, and the Copper Park Lane culvert flow graph is provided on Figure 4.

Some points to note are as follows:

- The daily cycling observed in the Hwy 27 culvert is most likely explained by a temperature-related effect related to evapotranspiration.
- No daily cycling is observed at the Copper Park Lane culvert. This is likely because there
 is no standing water in or adjacent to this culvert; therefore, evapotranspiration effects
 are not as prominent.
- The storm events noted show a maximum flow of about 5 cubic feet per second (cfs) in the Hwy 27 culvert and are relatively short-lived.
- The Copper Park Lane culvert shows low flow during the runoff events, and events last for only a few hours at most. The maximum flow noted was about 4.55 cfs. Zero flow is observed during the majority of the season.
- The flow observed at Copper Park Lane during storm events compared to Hwy 27 suggests that flow dissipates (infiltrates, evaporates, gets lost to storage, etc.) between the two culverts.

2.3 Water Chemistry Results

The analytical laboratory water samples were collected first to assure the sample was clean and no residual contamination could occur from the field instrumentation. Field parameters were measured and recorded using a water quality meter. Water samples were collected using a peristaltic pump with new tubing at each sample to minimize the potential for sediment disturbance and cross-contamination between samples. The water quality data (field parameters and analytical data) collected during the five 2024 sampling events are tabulated in Table 1. The field forms related to the November sampling event are provided in Attachment 2. The Pace analytical laboratory report, dated November 21, 2024, is provided in Attachment 3. Note that the field forms and analytical reports relating to the May, July, and August 2024 events were provided previously in the Stream C April – August 2024 Sampling Result Summary Memorandum.

Surface water quality data collected (to date) was used to calculate the ATC which is provided in Table 2.

2.4 Whole-Effluent Toxicity Results

The WET testing samples were collected on May 9, 2024 and November 21, 2024, from sample locations SW-C9, -C5, -C1, and -STM. The samples were sent to Cove Environmental for analysis. The May 2024 analysis results show 100% survival for the *C. dubia* and *P. promelas* species at all locations. The May 2024 Cove Environmental WET test report forms were provided in the Stream C April – August 2024 Sampling Result Summary Memorandum.

The November 2024 Cove Environmental WET test report forms are provided in Attachment 4.

3. Data Assessment

3.1 ATC

Surface water quality data collected under Section 2.3 was used to calculate the ATC, which is a hardness-based water quality criterion as prescribed in Wis. Admin. Code NR 105 Table 2. ATC is defined within Wis. Admin. Code NR 105 as "the maximum daily concentration of a substance which ensures adequate protection of sensitive species of aquatic life from the acute toxicity of that substance and will adequately protect the designated fish and aquatic life use of the surface water if not exceeded more than once every 3 years." ATC was assessed for both total copper and zinc concentrations from April 2023 through November 2024 and are summarized in Table 2. For instances where measured hardness is below the copper and zinc ATC applicable range (Wis. Admin. Code NR 105 Table 2A), the lower bound of the range was utilized for hardness within the calculation.

The total copper concentrations of all 10 monitoring locations exceeded the acute ATC on April 10, 2023 and May 8, 2024. In general, the majority of the sites exceeded the acute ATC in all timeframes with sites SW-NB and SW-NBOUT more consistently meeting the copper criterion. The zinc acute ATC was exceeded only five times with one exceedance occurring on April 19 and April 29, 2023, at sites SW-C9 and -HWY27E, respectively, and three exceedances occurring on November 21, 2024, at the SW-C9, -HWY27E, and -HWY27W sites. The acute ATC was then compared to dissolved copper concentrations in Table 3 from April 29, 2023 through November 21, 2024. Multiple exceedances occurred for all samples, however, the SW-STM site only exceeded two of the six sampling events.

3.2 BLM

Surface water quality data collected under Section 2.3 were also evaluated through the use of the BLM as described in the USEPA water quality criteria for copper (USEPA, 2007). The copper

BLM derives site-specific water quality criteria by taking into account the influences of several water quality parameters on copper bioavailability and toxicity. These water parameters include: temperature, pH, dissolved organic carbon (DOC), humic acid, calcium, magnesium, sodium (Na), potassium (K), sulfate (SO₄), chloride (Cl), alkalinity, and sulfide. Humic acid was estimated to be 10% of DOC as recommended by the BLM guidance document (Windward, 2015). These data in dissolved form were input into the BLM to generate a set of site-specific surface copper criteria, including the CMC and the CCC. For this evaluation, the resulting CMC was used to compare to the copper ATC summarized in Table 2.

Water quality data for all BLM parameters were assessed from four monitoring locations: SW-C9, SW-C5, SW-C1, and SW-STM and collected between April 2023 and November 2024 generating a total of six samples. All BLM parameters were also collected for the SW-HWY27W and -HWY27E locations between April 2023 and May 2024, however, analysis was reduced to a limited set of parameters for the remaining three sampling events as it was determined in a meeting with the Department on May 8, 2024 that analysis of all BLM parameters were necessary for only four locations north and south of Copper Park Lane. The results of the BLM analysis and predicted criteria are presented in Table 3.

For the SW-C1, SW-C5, and SW-C9 monitoring locations, fewer exceedances of the BLM derived CMC occurred as compared to exceedances of the ATC, which occurred in all timeframes with the exception of the SW-C1 sampled in July of 2024. Every sample collected at these sites from May 2024 to November 2024, with the exception of SW-C5 site in November, resulted in BLM-based criteria concentrations being greater (i.e., less stringent) than the current hardness-based ATC. In contrast, samples in April 2023 from these three locations did have BLM-based criteria less than the ATC. There were no exceedances of the BLM derived CMC criteria in all timeframes at the SW-STM monitoring location whereas two out of six samples exceeded the ATC criteria in May 2024. In addition, BLM-based criteria were much higher than the ATC in all timeframes.

The parameters that are most influential to copper bioavailability and have come to be considered of primary importance for bioavailability modeling are organic carbon, pH, and hardness (Mebane, 2023). Therefore, DOC, pH, and calcium and magnesium concentrations, which are the primary contributors to water hardness, were assessed to further evaluate the potential impacts of these parameters on copper bioavailability at each site. As noted on Figures 5 through 8, calcium and magnesium concentrations from the site furthest upstream, SW-C9, to the site furthest downstream, SW-STM, significantly increased, with average concentrations three to four times higher at the STM site compared to the C9 site. The pH also significantly increased from sites upstream to downstream (1-way ANOVA, p < 0.05), with the STM site having a pH that was significantly higher than at the SW-C1 site (one-tailed t-test, p < 0.05), and that was 1 SU above the C9 and C5 sites on average (Figure 7). The DOC concentrations at all four sites were similar with little apparent gradient from upstream to downstream sites. (Figure 8). Therefore, most of the spatial differences in BLM-based criteria concentrations result from a decreasing trend in copper bioavailability owing to increases in pH and hardness cations.

3.3 WET

Concurrent acute WET testing using the *C. dubia* and *P. promelas* species was conducted on samples from the SW-C9, -C5, -C1, and -STM monitoring locations where all BLM parameters were analyzed on May 8, 2024 and November 21, 2024. As summarized in Section 2.4, the May

2024 analysis results show 100% survival for the *C. dubia* and *P. promelas* species at all locations.

The November 2024 analysis results show a 100% survival for the *C. dubia* species at all locations. The analysis results show 100% survival for *P. promelas* at sample location SW-C9, 95% survival at sample locations SW-C5 and -STM, and 90% survival at SW-C1.

4. Conclusions and Recommendations

In general, the BLM copper criteria concentrations were higher, i.e. less stringent, than hardnessbased ATC at all locations and sampling dates. This is because in addition to hardness, the BLM takes into account all water quality parameters that control copper bioavailability, most importantly pH, DOC, calcium, and magnesium cations. Dissolved copper concentrations exceeded both hardness- and BLM-based criteria at the same three to four monitoring locations in the April 2023 and November 2024 sampling events. However, copper concentrations exceeded the BLM criteria at fewer locations compared to the ATC in all other timeframes, with no exceedances of the BLM criteria occurring in the July 2024 sampling event. There was only one exceedance of the zinc ATC which occurred in the November 2024 sampling event at the SW-C9 monitoring location.

With respect to water quality, there was a notable downstream trend of increasing pH and hardness cation concentrations from sites SW-C9 down to SW-STM. This was particularly evident with pH which exhibited a significant increasing trend, with pH at the most downstream monitoring location, SW-STM, being significantly higher than any of the upstream sites. As a result, the BLM-based copper criteria were not exceeded at the SW-STM site in any timeframe, as opposed to the hardness-based ATC which were exceeded in the two May 2024 sampling events. Given that water quality data for the main stem of Stream C is only represented by two locations at the lower and upper most ends of the segment, it is unknown how much of the stream segment exhibits pH conditions which favor low copper bioavailability and no BLM criteria exceedances (i.e., higher pH at the SW-STM site), as opposed to conditions that favor higher copper bioavailability and some BLM criteria exceedances (i.e., lower pH at the SW-C1 site)..

Therefore, additional data collection is needed to better characterize how much of the lower Stream C segment would be in attainment with BLM-based criteria for copper. It is recommended that a field pH survey first be conducted with a handheld pH probe to establish pH conditions along the entire mainstem of Stream C south of Copper Park Lane rather than just relying on data from sites SW-C1 and SW-STM. Based on this pH gradient, 2-3 additional sampling locations could be selected for full BLM water quality parameter monitoring to better establish how much of Stream C would attain BLM-based copper criteria.

5. References

- Foth Infrastructure & Environment, LLC, 2020. *Quality Assurance Project Plan: Long Term Care Monitoring for the Reclaimed Flambeau Mine.* August 10, 2020.
- Foth Infrastructure & Environment, LLC and GEI Consultants, Inc., 2024. Stream C Evaluation Work Plan – Revision 2. August 30, 2024.
- Mebane, C.A., 2023. Bioavailability and Toxicity Models of Copper to Freshwater Life: The State of Regulatory Science. *Environmental Toxicology and Chemistry*, 42(12):2529-2563.
- U.S. Environmental Protection Agency, 2007. Aquatic Life Ambient Freshwater Quality Criteria Copper; EPA/822/R-07/001; 544 USEPA, Office of Water: Washington, D.C., 545 2007; p 204 pp. February 2007.
- Windward Environmental LLC, 2015. BLM User's Guide and Reference Manual Research Version 3.1.2.37. Seattle, Washington.
- Wisconsin Department of Natural Resources, 2004. Aquatic Life Toxicity Testing Methods Manual, 2nd Edition. November 2004.
- Wisconsin Department of Natural Resources, 2012. Surface Water Quality Assessment of the Flambeau Mine Site. April 2012.
- Wisconsin Department of Natural Resources, 2022a. Whole Effluent Toxicity (WET) Program Guidance Document, Edition No. 13. October 13, 2022.

Attachments:

Tables	Table 1 – 2024 Analytical Data Summary
	Table 2 – ATC Summary
	Table 3 – BLM Summary
Figures	Figure 1 – Site Location Map
	Figure 2 – Stream C Evaluation Locations
	Figure 3 – HWY 27 Culvert Flow Graph
	Figure 4 – Copper Park Lane Culvert Flow Graph
	Figure 5 – Summary of Dissolved Calcium Data
	Figure 6 – Summary of Dissolved Magnesium Data
	Figure 7 – Summary of pH Data
	Figure 8 – Summary of Dissolved Organic Carbon Data
Attachment 1	Flow Inspection Forms
Attachment 2	Field Forms – November 2024
Attachment 3	Pace Laboratory Analytical Reports
Attachment 4	Cove Environmental WET Test Report Forms

Tables

Table 1 – 2024 Analytical Data Summary Table 2 – ATC Summary Table 3 – BLM Summary

Table 12024 Analytical Data Summary

		Location	CP-04	SW-C1	SW-C1	SW-C1						
Chemical Name	Total / Dissolved	Units	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024	11/21/2024	4/19/2023	4/29/2023	5/8/2024
Alkalinity as CaCO ₃	Total	mg/L	60.0	39.5	154	141				10	17.3	15.9
Alkalinity as CaCO ₃	Dissolved	mg/L		34.5	148	143					15.6	13.0
Calcium	Total	ua/L	5370	12900	16800	13100				3160	6470	5150
Calcium	Dissolved	ug/L		11900	19100	14800					6320	5350
Chloride	Total	mg/L	52.3	167	127	66.0				15.0	27.0	8.1
Chloride	Dissolved	mg/L		165	128	69.9					27.2	7.6
Copper	Total	ug/L	19.0	12.7	28.4	28.0	33.7	6.1	30.5	6.3	7.3	16.8
Copper	Dissolved	ug/L		10.1	22.8	24.7	22.2	5.4	21.8		5.8	14.5
Dissolved Organic Carbon	Dissolved	mg/L		9.4	13.0	18.1	24.0	10.5	12.4		7.8	15.6
Dissolved Oxygen	Total	mg/L	7.56	1.64	1.78	2.28	1.63	0.9	1.33	11.01	9.71	6.76
Hardness	Total	mg/L	27.7	60.5	78.8	59.5	61.0	87.8	64.2	13.1	27.4	21.0
Hardness	Dissolved	mg/L		58.9	86.9	67.5	62.8	90.4	59.6		26.9	21.4
Iron	Total	ug/L	577	478	720	736				681	291	915
Iron	Dissolved	ug/L		< 58.0	95.7	190					130	324
Magnesium	Total	ug/L	3480	6860	8970	6500				1270	2720	1980
Magnesium	Dissolved	ug/L		7060	9510	7400					2700	1960
Manganese	Total	ug/L	21.2	103	33.0	95.3				13.8	17.8	18.8
Manganese	Dissolved	ug/L		89.9	22.2	18.1					14.5	9.3
рН	Total	S.U.	7.66	6.13	6.99	7.28	7.19	7.34	7	6.63	6.19	6.57
Potassium	Total	ug/L	1130	2300	1670	1400				994	1090	792
Potassium	Dissolved	ug/L		2240	1690	1500					1040	741
Redox Potential	Total	mV	42.9	54.3	168.7	178.7	163.6	165.6	137.7	37.6	74.3	178.4
Sodium	Total	ug/L	40900	101000	126000	78600				9650	16500	6870
Sodium	Dissolved	ug/L		104000	129000	93500					17000	7320
Specific Conductance	Total	umhos/cm	287	784	736	462	376	288	294	74	130	66
Sulfate	Total	mg/L	5.0	8.2	4.5	2.8				2.6	3.7	1.5
Sulfate	Dissolved	mg/L		7.5	4.5	< 2.2					3.7	1.4
Sulfide	Total	mg/L	< 1.2	< 1.2	1.6	< 1.2				< 1.2	< 1.2	1.2
Sulfide	Dissolved	mg/L		< 1.2	< 1.2	1.2					< 1.2	< 1.2
Temperature	Total	deg c	1.17	7.83	15.8	13.02	19.76	18.47	3.11	2.01	6.57	15.88
Total Suspended Solids	Total	mg/L	2.9	5.2	3.0	4.6				3.8	0.93	4.0
Zinc	Total	ug/L	15.2	10.4	< 10.3	< 10.3	16.6	< 10.3	< 10.3	< 10.3	< 10.3	12.8
Zinc	Dissolved	ug/L		< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3		< 10.3	12.2
Comment - Sample Color	Total	None	Stained light									
			brown									
Comment - Sample Odor	Total	None	None	None	None	None	None	None	None	None	None	None
Comment - Sample Turbidity	Total	None	None	Slight	Slight	Slight	Slight	Slight	Slight	None	None	Slight

		Location	SW-C1	SW-C1	SW-C1	SW-C1	SW-C1	SW-C5	SW-C5	SW-C5	SW-C5	SW-C5
Chemical Name	Total / Dissolved	Units	5/23/2024	7/24/2024	8/30/2024	11/21/2024	5/8/2024	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024
Alkalinity as CaCO ₃	Total	mg/L	11.1	35.1	29.2	24.2	17.3	8.6	11.1	16.3	10	43.2
Alkalinity as CaCO ₃	Dissolved	mg/L	10.8	32.2	31.0	25.3	13.1		14.9	11.0	8.6	20.5
Calcium	Total	ug/L	4910	11700	8920	11800	5230	2900	4650	4150	3980	5930
Calcium	Dissolved	ug/L	5270	12000	8880	12600	5490		4760	4700	4400	6040
Chloride	Total	mg/L	5.4	29.3	23.0	35.5	7.9	12.5	20.8	6.5	3.6	12.0
Chloride	Dissolved	mg/L	5.4	28.4	22.3	37.4	7.9		24.2	6.4	3.9	11.4
Copper	Total	ug/L	13.6	11.8	12.9	14.7	17.1	7.6	6.7	15.9	13.2	12.5
Copper	Dissolved	ug/L	12.5	6.7	8.5	11.8	14.5		6.4	13.9	11.8	5.0
Dissolved Organic Carbon	Dissolved	mg/L	16.2	10.3	11.3	8.2	15.6		7.6	15.8	16.6	11.0
Dissolved Oxygen	Total	mg/L	3.93	2.68	1.25	1.33		10.78	8.07	6.14	3.37	1.15
Hardness	Total	mg/L	19.5	48.8	37.8	50.4	21.4	12.2	19.7	17.3	15.7	24.2
Hardness	Dissolved	mg/L	21.0	49.7	37.6	53.7	22.3		20.4	18.8	17.3	24.8
Iron	Total	ug/L	914	2320	1740	1280	841	972	265	866	865	1700
Iron	Dissolved	ug/L	557	603	427	307	308		126	350	528	661
Magnesium	Total	ug/L	1770	4730	3760	5100	2030	1220	1970	1680	1410	2280
Magnesium	Dissolved	ug/L	1900	4790	3750	5390	2090		2080	1720	1540	2350
Manganese	Total	ug/L	27.3	562	116	64.4	20.5	33.9	7.5	14.3	22.0	571
Manganese	Dissolved	ug/L	21.2	557	102	52.2	9.2		5.0	7.2	16.3	586
рН	Total	s.u.	6.41	6.64	6.72	6.74		6.43	6.01	6.54	6.17	6.31
Potassium	Total	ug/L	418	556	1690	2150	804	1030	976	721	349	377
Potassium	Dissolved	ug/L	414	534	1590	2260	784		1020	715	358	378
Redox Potential	Total	mV	174.4	160.7	101.2	145		31.1	78.1	232.3	183.4	88
Sodium	Total	ug/L	3590	11200	12700	14900	7080	8650	13600	5900	2880	7010
Sodium	Dissolved	ug/L	3970	11200	12800	17000	7210		14900	6470	3130	7240
Specific Conductance	Total	umhos/cm	48	159	140	175		65	103	56	39	84
Sulfate	Total	mg/L	< 2.2	3.3	2.4	8.5	1.5	2.2	3.1	1.4	< 2.2	2.1
Sulfate	Dissolved	mg/L	< 2.2	3.5	2.3	8.8	1.5		3.2	1.3	< 2.2	2.2
Sulfide	Total	mg/L	1.8	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	1.2	< 1.2	< 1.2
Sulfide	Dissolved	mg/L	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2	< 1.2
Temperature	Total	deg c	13.29	17.33	18.04	4.15		2.16	6.85	15.26	13.52	17.6
Total Suspended Solids	Total	mg/L	1.7	6.9	5.3	1.8	4.1	10.5	0.51	1.8	1.6	4.8
Zinc	Total	ug/L	14.7	18.7	< 10.3	19.9	13.8	11.7	< 10.3	13.9	13.9	19.3
Zinc	Dissolved	ug/L	14.4	14.9	< 10.3	19.2	< 10.3		< 10.3	24.4	13.7	20.8
Comment - Sample Color	Total	None	Stained light	Stained light	Stained light	Stained light		Stained light				
			brown	brown	brown	brown		brown	brown	brown	brown	brown
Comment - Sample Odor	Total	None	None	None	None	None		None	None	None	None	None
Comment - Sample Turbidity	Total	None	Slight	Slight	Slight	Slight		None	None	None	None	None

		Location	SW-C5	SW-C5	SW-C5	SW-C5	SW-C9	SW-C9	SW-C9	SW-C9	SW-C9	SW-C9
Chemical Name	Total / Dissolved	Units	8/30/2024	11/21/2024	4/29/2023	7/24/2024	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024
Alkalinity as CaCO ₃	Total	mg/L	23.6	14.4	12.9	18.5	7.2	< 7.4	10.3	< 7.4	10.3	10.7
Alkalinity as CaCO ₃	Dissolved	mg/L	27.2	14.9	12.1	19.7		< 7.4	< 7.4	< 7.4	8.4	12.0
Calcium	Total	ug/L	7610	6930	4760	6470	2220	2520	3370	3100	2930	2750
Calcium	Dissolved	ug/L	7410	7370	4440	6100		2400	3460	2890	2860	2630
Chloride	Total	mg/L	19.0	24.4	21.2	11.9	49.2	11.0	3.7	< 3.0	7.9	5.2
Chloride	Dissolved	mg/L	19.4	25.3	23.8	11.5		10.6	3.2	< 3.0	7.5	5.1
Copper	Total	ug/L	12.2	15.8	7.2	13.1	17.7	5.0	9.7	6.5	16.6	14.0
Copper	Dissolved	ug/L	8.5	12.9	6.1	5.2		3.8	8.2	4.6	11.7	11.4
Dissolved Organic Carbon	Dissolved	mg/L	10.9	8.5	8.2	10.9		8.7	15.8	17.2	12.3	13.5
Dissolved Oxygen	Total	mg/L	1.18	1.48			11.49	7.77	4.9	3.88	3.16	1.17
Hardness	Total	mg/L	31.5	30.7	19.9	26.0	8.4	10.3	13.4	12.0	11.4	10.8
Hardness	Dissolved	mg/L	31.2	32.5	19.3	24.7		9.8	13.5	11.5	11.1	10.1
Iron	Total	ug/L	1530	1300	268	1760	689	741	1300	1260	3100	2610
Iron	Dissolved	ug/L	536	329	153	690		290	587	459	960	1000
Magnesium	Total	ug/L	3030	3260	1940	2400	684	983	1220	1020	990	954
Magnesium	Dissolved	ug/L	3070	3420	2000	2310		919	1190	1040	953	859
Manganese	Total	ug/L	91.6	30.3	7.2	598	31.6	24.9	45.7	57.7	143	117
Manganese	Dissolved	ug/L	84.0	16.0	4.9	583		17.5	24.4	46.6	90.3	99.6
рН	Total	s.u.	6.36	6.27			6.76	5.55	6.31	6.15	6.29	6.05
Potassium	Total	ug/L	1530	2120	1000	384	738	770	938	797	668	1250
Potassium	Dissolved	ug/L	1530	2190	955	389		684	854	764	629	1160
Redox Potential	Total	mV	32.2	177.2			74.7	85.7	174	214.5	89.7	197.6
Sodium	Total	ug/L	11100	12000	13600	7250	29000	7010	3910	1840	7420	6410
Sodium	Dissolved	ug/L	11300	13500	14000	6980		7140	4180	1950	7700	6530
Specific Conductance	Total	umhos/cm	119	126			52	54	36	26	170	41
Sulfate	Total	mg/L	1.8	7.8	3.2	2.1	6.4	1.3	0.74	< 2.2	1.7	1.4
Sulfate	Dissolved	mg/L	1.9	8.2	3.3	2.2		1.3	0.72	< 2.2	1.6	1.3
Sulfide	Total	mg/L	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Sulfide	Dissolved	mg/L	< 1.2	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Temperature	Total	deg c	18.11	4.09			4.12	6.77	11.94	13.69	18.97	18.13
Total Suspended Solids	Total	mg/L	3.6	1.2	1.3	6.4	3.3	6.4	6.6	3.4	9.2	5.2
Zinc	Total	ug/L	11.9	23.4	16.3	21.3	20.7	11.6	15.5	15.5	< 10.3	13.6
Zinc	Dissolved	ug/L	< 10.3	22.8	< 10.3	19.6		< 10.3	13.6	15.4	< 10.3	13.2
Comment - Sample Color	Total	None	Stained light	Stained light	Stained light		Stained light	Stained light				
			brown	brown	brown		brown	brown	brown	brown	brown	brown
Comment - Sample Odor	Total	None	None	None	None		None	None	None	None	Slight organic	None
Comment - Sample Turbidity	Total	None	None	None	None		None	None	Moderate	Moderate	Slight	Slight

		Location	SW-C9	SW-C9	SW-EB	SW-EB	SW-EB	SW-EB	SW-EB	SW-EB	SW-EB	SW-EB
Chemical Name	Total / Dissolved	Units	11/21/2024	5/23/2024	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024	11/21/2024	11/21/2024
Alkalinity as CaCO ₃	Total	mg/L	14.2	< 7.4	17.5	36.0	33.0	29.4				
Alkalinity as CaCO ₃	Dissolved	mg/L	< 7.4	< 7.4		35.5	31.2	31.7				
Calcium	Total	ug/L	2340	3120	6300	11200	8850	9220				
Calcium	Dissolved	ug/L	2550	2950		10800	10500	10000				
Chloride	Total	mg/L	9.9	3.2	36.1	61.1	25.2	12.3				
Chloride	Dissolved	mg/L	10.1	< 3.0		68.0	12.7	11.6				
Copper	Total	ug/L	18.1	6.6	6.9	6.3	14.1	11.3	3.7	12.4	7.8	8.0
Copper	Dissolved	ug/L	15.2	5.2		4.9	11.8	9.2	3.0	7.5	6.3	5.3
Dissolved Organic Carbon	Dissolved	mg/L	9.9	17.2		7.2	11.0	18.4	12.4	7.7	7.4	7.5
Dissolved Oxygen	Total	mg/L	1.44		10.77	10.18	7.69	3.79	1.21	1.22	1.81	
Hardness	Total	mg/L	9.9	12.0	25.8	47.6	36.5	39.8	54.5	49.8	60.7	61.6
Hardness	Dissolved	mg/L	9.9	11.5		46.9	43.5	42.0	56.2	50.3	58.2	56.7
Iron	Total	ug/L	2250	1290	707	480	1170	1470				
Iron	Dissolved	ug/L	1200	442		93.6	547	708				
Magnesium	Total	ug/L	976	1030	2460	4740	3500	4060				
Magnesium	Dissolved	ug/L	858	1010		4810	4220	4140				
Manganese	Total	ug/L	59.2	59.8	27.7	24.1	29.3	99.5				
Manganese	Dissolved	ug/L	46.6	49.4		17.8	8.3	92.6				
рН	Total	S.U.	6.14		6.68	6.75	7.15	7.02	6.48	6.81	6.91	
Potassium	Total	ug/L	2020	807	1730	1560	1100	957				
Potassium	Dissolved	ug/L	1960	764		1470	1130	954				
Redox Potential	Total	mV	133.9		22.3	28.3	228.4	161.8	49.2	59.3	170.2	
Sodium	Total	ug/L	7290	1890	19700	37000	14800	9440				
Sodium	Dissolved	ug/L	8100	2400		37600	7870	9950				
Specific Conductance	Total	umhos/cm	64		164	273	121	107	214	156	240	
Sulfate	Total	mg/L	4.0	< 2.2	4.1	6.8	2.1	< 2.2				
Sulfate	Dissolved	mg/L	4.6	< 2.2		6.9	4.5	< 2.2				
Sulfide	Total	mg/L	< 1.2	< 1.2	< 1.2	< 1.2	1.8	< 1.2				
Sulfide	Dissolved	mg/L	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2				
Temperature	Total	deg c	4.54		2.45	7.50	14.86	13.62	21.16	19.51	3.29	
Total Suspended Solids	Total	mg/L	4.3	2.9	4.3	2.8	3.4	4.1				
Zinc	Total	ug/L	23.8	17.7	< 10.3	< 10.3	14.6	10.4	< 10.3	< 10.3	< 10.3	< 10.3
Zinc	Dissolved	ug/L	19.6	18.4		< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3
Comment - Sample Color	Total	None	Stained light		Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	
			brown		brown	brown	brown	brown	brown	brown	brown	
Comment - Sample Odor	Total	None	None		None	Slight Organic						
Comment - Sample Turbidity	Total	None	Slight		Slight	Slight	Slight	Slight	Slight	Slight	Slight	

		Location	SW-HWY27E	SW-HWY27E	SW-HWY27E	SW-HWY27E	SW-HWY27E	SW-HWY27E	SW-HWY27E	SW-HWY27W	SW-HWY27W	SW-HWY27W
Chemical Name	Total / Dissolved	Units	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024	11/21/2024	4/19/2023	4/29/2023	5/8/2024
Alkalinity as CaCO ₃	Total	mg/L	5.4	< 7.4	10	< 7.4				5.5	< 7.4	10.4
Alkalinity as CaCO ₃	Dissolved	mg/L		< 7.4	< 7.4	< 7.4					< 7.4	8.1
Calcium	Total	ug/L	2120	2220	2830	2750				6890	10200	5690
Calcium	Dissolved	ug/L		1930	3090	2990					10200	5700
Chloride	Total	mg/L	5.9	4.1	2.1	< 3.0				95.6	121	51.7
Chloride	Dissolved	mg/L		4.8	2.5	< 3.0					131	51.8
Copper	Total	ug/L	4.1	4.1	8.9	5.4	8.2	13.7	13.3	6.0	4.2	16.5
Copper	Dissolved	ug/L		3.6	7.5	5.0	6.8	9.5	9.8		3.6	14.0
Dissolved Organic Carbon	Dissolved	mg/L		8.3	15.5	17.7	9.1	10.1	6.9		10.8	28.1
Dissolved Oxygen	Total	mg/L	10.63	11.02	3.43	4.23	3.17	1.22	1.69	9.66	8.62	3.58
Hardness	Total	mg/L	8.5	9.1	11.6	10.9	8.9	8.1	44.9	26.2	40.5	21.4
Hardness	Dissolved	mg/L		7.9	12.2	11.5	8.5	6.5	41.4		40.4	21.3
Iron	Total	ug/L	683	584	1150	930				431	528	1930
Iron	Dissolved	ug/L		214	450	611					284	1270
Magnesium	Total	ug/L	780	856	1110	972				2180	3660	1740
Magnesium	Dissolved	ug/L		756	1080	974					3640	1710
Manganese	Total	ug/L	15.1	17.6	24.3	33.5				77.3	63.1	23.4
Manganese	Dissolved	ug/L		11.5	14.5	29.8					57.0	19.6
рН	Total	s.u.	6.13	5.73	6.38	6.12	6.17	6.03	6.28	5.92	6.55	6.29
Potassium	Total	ug/L	922	699	1010	697				1790	1760	1250
Potassium	Dissolved	ug/L		635	996	679					1640	1250
Redox Potential	Total	mV	68.2	83.1	177	210.6	21.4	176.6	151.4	71.8	64.4	174.4
Sodium	Total	ug/L	4340	3680	2490	932				49100	59000	36500
Sodium	Dissolved	ug/L		3080	2840	998					58400	35900
Specific Conductance	Total	umhos/cm	23	30	25	21	31	25	39	324	387	200
Sulfate	Total	mg/L	1.6	1.2	0.84	< 2.2				5.0	3.2	0.94
Sulfate	Dissolved	mg/L		1.4	0.88	< 2.2					3.1	0.92
Sulfide	Total	mg/L	< 1.2	< 1.2	< 1.2	< 1.2				< 1.2	< 1.2	< 1.2
Sulfide	Dissolved	mg/L		< 1.2	< 1.2	< 1.2					< 1.2	< 1.2
Temperature	Total	deg c	4.09	6.56	11.6	15.08	19.17	17.86	4.41	2.68	6.77	12.56
Total Suspended Solids	Total	mg/L	2.4	1.4	4.0	1.7				0.80	3.3	1.1
Zinc	Total	ug/L	< 10.3	25.5	12.0	12.9	12.4	13.9	99.3	24.8	30.3	30.4
Zinc	Dissolved	ug/L		< 10.3	< 10.3	13.3	11.0	< 10.3	92.8		30.2	27.7
Comment - Sample Color	Total	None	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light
			brown	brown	brown	brown	brown	brown	brown	brown	brown	brown
Comment - Sample Odor	Total	None	None	None	Slight organic	None	Slight Organic	Slight organic				
Comment - Sample Turbidity	Total	None	Slight	Slight	Moderate	Moderate	Moderate	Moderate	Moderate	Slight	Slight	None

		Location	SW-HWY27W	SW-HWY27W	SW-HWY27W	SW-HWY27W	SW-HWY27W	SW-NB	SW-NB	SW-NB	SW-NB	SW-NB
Chemical Name	Total / Dissolved	Units	5/23/2024	7/24/2024	8/30/2024	11/21/2024	8/30/2024	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024
Alkalinity as CaCO ₃	Total	mg/L	10.1					6.7	< 7.4	10.5	15.3	
Alkalinity as CaCO ₃	Dissolved	mg/L	9.2						< 7.4	10.1	15.4	
Calcium	Total	ug/L	5490					7000	8800	7340	7500	
Calcium	Dissolved	ug/L	5990						8250	7760	7400	
Chloride	Total	mg/L	24.2					74.9	75.4	38.4	19.1	
Chloride	Dissolved	mg/L	23.2						86.0	38.4	17.7	
Copper	Total	ug/L	9.8	14.7	20.4	9.5	19.8	15.3	5.6	18.0	16.8	4.6
Copper	Dissolved	ug/L	8.0	7.1	11.5	6.6	11.5		4.5	15.6	15.0	3.2
Dissolved Organic Carbon	Dissolved	mg/L	31.1	13.3	15.5	7.8	15.4		10.0	24.6	24.8	11.2
Dissolved Oxygen	Total	mg/L	2.24	3.36	1.12	1.82		10.79	7.77	5.94	3.21	4.76
Hardness	Total	mg/L	20.2	28.2	27.6	10.3	27.8	27.5	36.6	29.7	29.4	38.5
Hardness	Dissolved	mg/L	22.2	27.1	27.2	8.5	27.3		35.0	31.0	29.9	37.8
Iron	Total	ug/L	2600					694	392	1680	2110	
Iron	Dissolved	ug/L	1780						169	774	1200	
Magnesium	Total	ug/L	1570					2430	3550	2760	2600	
Magnesium	Dissolved	ug/L	1760						3490	2820	2760	
Manganese	Total	ug/L	34.6					36.4	29.3	40.8	73.1	
Manganese	Dissolved	ug/L	34.1						26.0	30.9	65.9	
рН	Total	s.u.	6.28	5.78	5.74	5.71		6.63	6.54	6.21	6.44	6.5
Potassium	Total	ug/L	779					1690	1460	1010	650	
Potassium	Dissolved	ug/L	834						1390	995	613	
Redox Potential	Total	mV	152	176.1	107.5	174.1		63.8	63.7	130.3	132.7	147.7
Sodium	Total	ug/L	16000					35700	35500	23400	11500	
Sodium	Dissolved	ug/L	18000						36000	23600	12600	
Specific Conductance	Total	umhos/cm	120	154	304	343		267	264	159	104	237
Sulfate	Total	mg/L	< 2.2					4.1	2.4	1.1	< 2.2	
Sulfate	Dissolved	mg/L	< 2.2						2.5	1.1	< 2.2	
Sulfide	Total	mg/L	< 1.2					< 1.2	< 1.2	1.2	< 1.2	
Sulfide	Dissolved	mg/L	< 1.2						< 1.2	< 1.2	< 1.2	
Temperature	Total	deg c	14.56	21.21	19.18	4.09		3.17	7.68	13.91	12.02	28.02
Total Suspended Solids	Total	mg/L	3.5					1.9	< 0.49	2.6	4.6	
Zinc	Total	ug/L	22.4	33.6	24.3	19.2	27.1	23.4	18.2	30.5	24.7	< 10.3
Zinc	Dissolved	ug/L	23.4	27.0	25.9	16.4	20.7		19.0	24.3	24.8	< 10.3
Comment - Sample Color	Total	None	Stained light	Stained light	Stained light	Stained light		Stained light				
			brown	brown	brown	brown		brown	brown	brown	brown	brown
Comment - Sample Odor	Total	None	Slight organic	Slight organic	Slight organic	Slight organic		Slight Organic				
Comment - Sample Turbidity	Total	None	Slight	Slight	Slight	Slight		Slight	Slight	Slight	Slight	Slight

		Location	SW-NB	SW-NB	SW-NB	SW-NBOUT						
Chemical Name	Total / Dissolved	Units	8/30/2024	11/21/2024	4/19/2023	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024	11/21/2024
Alkalinity as CaCO ₃	Total	mg/L			6.8	18.6	20.7	40.2	45.2			
Alkalinity as CaCO ₃	Dissolved	mg/L					21.0	35.6	43.7			
Calcium	Total	ug/L			6790	5540	9950	10600	12000			
Calcium	Dissolved	ug/L					8970	11100	12600			
Chloride	Total	mg/L			67.5	5.8	48.6	7.5	6.7			
Chloride	Dissolved	mg/L					53.9	6.3	6.9			
Copper	Total	ug/L	7.5	5.6	7.8	6.1	3.7	9.9	8.0	2.6	4.7	6.3
Copper	Dissolved	ug/L	4.3	4.6			3.2	8.1	7.2	< 1.9	3.4	5.1
Dissolved Organic Carbon	Dissolved	mg/L	13.3	5.6			9.2	15.4	16.5	9.9	12.7	7.2
Dissolved Oxygen	Total	mg/L	0.95	1.83		11.00	8.30	6.17	3.40	2.62	1.48	1.82
Hardness	Total	mg/L	46.7	64.8	26.9	22.9	42.8	45.5	51.5	54.4	61.6	60.4
Hardness	Dissolved	mg/L	47.5	60.2			38.8	48.3	54.1	54.5	60.9	58.4
Iron	Total	ug/L			760	652	370	755	988			
Iron	Dissolved	ug/L					116	179	456			
Magnesium	Total	ug/L			2420	2200	4360	4640	5220			
Magnesium	Dissolved	ug/L					3990	5010	5500			
Manganese	Total	ug/L			38.6	10.8	32.1	15.9	46.0			
Manganese	Dissolved	ug/L					13.1	8.6	42.6			
рН	Total	s.u.	6.27	6.93		6.77	6.42	6.75	6.86	6.58	6.81	6.96
Potassium	Total	ug/L			1720	1980	1370	1060	518			
Potassium	Dissolved	ug/L					1240	1050	505			
Redox Potential	Total	mV	82.5	159.9		46.1	68.5	224.9	172	156.3	109.1	162
Sodium	Total	ug/L			34200	3740	25300	5610	5030			
Sodium	Dissolved	ug/L					24400	5390	5460			
Specific Conductance	Total	umhos/cm	273	307		58	199	102	111	217	218	267
Sulfate	Total	mg/L			3.8	2.8	3.1	2.7	< 2.2			
Sulfate	Dissolved	mg/L					3.2	2.7	< 2.2			
Sulfide	Total	mg/L			< 1.2	< 1.2	< 1.2	1.8	< 1.2			
Sulfide	Dissolved	mg/L					< 1.2	< 1.2	< 1.2			
Temperature	Total	deg c	18.2	3.26		2.97	7.26	13.58	12.04	21.28	19.05	3.34
Total Suspended Solids	Total	mg/L			1.5	2.4	0.82	2.0	2.2			
Zinc	Total	ug/L	< 10.3	32.3	25.9	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	12.4
Zinc	Dissolved	ug/L	< 10.3	33.8			< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3
Comment - Sample Color	Total	None	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light	Stained light
			brown	brown	brown	brown	brown	brown	brown	brown	brown	brown
Comment - Sample Odor	Total	None	Slight organic	Slight organic	None	Slight Organic						
Comment - Sample Turbidity	Total	None	Slight	Slight	None	Slight						

		Location	SW-STM						
Chemical Name	Total / Dissolved	Units	4/19/2023	4/29/2023	5/8/2024	5/23/2024	7/24/2024	8/30/2024	11/21/2024
Alkalinity as CaCO ₃	Total	mg/L	10	16.8	15.4	10.8	31.9	33.5	22.1
Alkalinity as CaCO ₃	Dissolved	mg/L		18.9	13.1	10.3	30.1	34.4	22.2
Calcium	Total	ug/L	3410	7440	5430	4850	12800	12000	13800
Calcium	Dissolved	ug/L		7110	5670	5320	12900	11800	14500
Chloride	Total	mg/L	15.6	31.1	10.6	7.4	38.4	35.4	51.0
Chloride	Dissolved	mg/L		31.6	10.5	7.1	37.1	34.3	53.4
Copper	Total	ug/L	6.0	6.2	15.6	13.0	7.6	8.6	8.8
Copper	Dissolved	ug/L		4.9	12.8	12.6	5.5	5.9	8.3
Dissolved Organic Carbon	Dissolved	mg/L		8.7	16.0	16.0	10.5	9.9	8.0
Dissolved Oxygen	Total	mg/L	11.86	11.12	8.76	2.99	4.39	1.39	1.11
Hardness	Total	mg/L	13.8	31.5	22.1	19.8	53.3	50.4	59.2
Hardness	Dissolved	mg/L		30.3	22.5	21.6	53.6	49.4	62.6
Iron	Total	ug/L	718	371	1090	1010	1010	1130	904
Iron	Dissolved	ug/L		130	319	500	184	315	194
Magnesium	Total	ug/L	1280	3150	2070	1860	5220	4970	6020
Magnesium	Dissolved	ug/L		3050	2030	2020	5200	4820	6400
Manganese	Total	ug/L	20.6	16.5	35.3	24.0	99.7	52.9	15.0
Manganese	Dissolved	ug/L		10.3	11.5	16.3	13.2	28.7	5.7
рН	Total	s.u.	6.53	7.64	7.16	6.83	7.21	7.43	6.94
Potassium	Total	ug/L	1110	1180	1070	823	1210	1770	2170
Potassium	Dissolved	ug/L		1070	1030	853	1250	1690	2260
Redox Potential	Total	mV	66.6	49.3	191.1	157.6	161.5	125.5	142.1
Sodium	Total	ug/L	9520	17900	8660	4930	13700	16600	18800
Sodium	Dissolved	ug/L		17700	9300	5670	14000	16200	21200
Specific Conductance	Total	umhos/cm	72	147	74	52	185	174	221
Sulfate	Total	mg/L	2.5	3.6	1.7	< 2.2	7.9	3.0	8.7
Sulfate	Dissolved	mg/L		3.8	1.7	< 2.2	4.1	2.9	8.9
Sulfide	Total	mg/L	< 1.2	< 1.2	1.2	< 1.2	< 1.2	< 1.2	< 1.2
Sulfide	Dissolved	mg/L		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Temperature	Total	deg c	3.71	6.30	17.60	12.80	18.23	18.09	3.71
Total Suspended Solids	Total	mg/L	9.0	2.1	8.1	4.6	7.1	4.1	0.72
Zinc	Total	ug/L	< 10.3	< 10.3	13.3	12.7	< 10.3	< 10.3	< 10.3
Zinc	Dissolved	ug/L		< 10.3	< 10.3	< 10.3	< 10.3	< 10.3	< 10.3
Comment - Sample Color	Total	None	Stained light						
			brown						
Comment - Sample Odor	Total	None	None	None	None	None	None	None	None
Comment - Sample Turbidity	Total	None	None	None	Slight	Slight	Slight	Slight	None

< = less than CaCO3 = calcium carbonate deg c = Degree Celcius mg/L = milligrams per liter mV = millivolts NA = Not Applicable NS = Not Sampled s.u. = Standard Unit ug/L = micrograms per liter umhos/cm = micromhos per centimeter

Table 2ATC Summary - Copper and Zinc

				Tota	l Copper		To	tal Zinc	
				Cu			Zn		
	Hardness			(ATC)	Cu Samp	ole	(ATC)	Zn Samp	ple
Sampling Event	(mg/L)	Cu ln H	Zn ln H	(µg/L)	results (µg	;/L)	(µg/L)	results (µ	g/L)
Sampling Event 4/19/2023									
SW-HWY27E	8.5	2.56	2.48	2.26	4.1	J	18.9	10.3	<
SW-HWY27W	26.2	3.27	3.27	4.38	6.0	J	37.3	24.8	J
SW-NB	27.5	3.31	3.31	4.59	15.3		38.9	23.4	J
SW-NBOUT	22.9	3.13	3.13	3.86	6.1	J	33.2	10.3	<
SW-EB	25.8	3.25	3.25	4.32	6.9		36.8	10.3	<
CP-04	27.2	3.30	3.30	4.54	19.0		38.6	15.2	J
SW-C9	8.4	2.56	2.48	2.26	17.7		18.9	20.7	J
SW-C5	12.2	2.56	2.50	2.26	7.6		19.1	11.7	J
SW-C1	13.1	2.57	2.57	2.28	6.3	J	20.4	10.3	<
SW-STM	13.8	2.62	2.62	2.39	6.0	J	21.3	10.3	<
Sampling Event 4/29/2023									
SW-HWY27E	9.1	2.56	2.48	2.26	4.1	J	18.9	25.5	J
SW-HWY27W	40.5	3.70	3.70	6.61	4.2	J	54.6	30.3	J
SW-NB	36.6	3.60	3.60	6.01	5.6	J	50.0	18.2	J
SW-NBOUT	42.8	3.76	3.76	6.97	3.7	J	57.3	10.3	<
SW-EB	47.6	3.86	3.86	7.7	6.3	J	62.9	10.3	<
CP-04	60.5	4.10	4.10	9.66	12.7		77.6	10.4	J
SW-C9	10.3	2.56	2.48	2.26	5.0	J	18.9	11.6	J
SW-C5	19.7	2.98	2.98	3.35	6.7		29.1	10.3	<
SW-C1	27.4	3.31	3.31	4.57	7.3		38.8	10.3	<
SW-STM	31.5	3.45	3.45	5.22	6.2	J	43.8	10.3	<
Sampling Event 5/8/2024									
SW-HWY27E	11.6	2.56	2.48	2.26	8.9		18.9	12.0	J
SW-HWY27W	21.4	3.06	3.06	3.62	16.5		31.3	30.4	J
SW-NB	29.7	3.39	3.39	4.93	18.0		41.6	30.5	J
SW-NBOUT	45.5	3.82	3.82	7.38	9.9		60.5	10.3	<
SW-EB	36.5	3.60	3.60	5.99	14.1		49.9	14.6	J
CP-04	78.8	4.37	4.37	12.39	28.4		97.7	10.3	<
SW-C9	13.4	2.60	2.60	2.33	9.7		20.8	15.5	J
SW-C5	17.3	2.85	2.85	2.96	15.9		26.0	13.9	J
SW-C1	21.0	3.04	3.04	3.56	16.8		30.8	12.8	J
SW-STM	22.1	3.10	3.10	3.73	15.6		32.2	13.3	J
Sampling Event 5/23/2024							-		
SW-HWY27E	10.9	2.56	2.48	2.26	5.4	J	18.9	12.9	J
SW-HWY27W	20.2	3.01	3.01	3.43	9.8		29.7	22.4	J
SW-NB	29.4	3.38	3.38	4.89	16.8		41.3	24.7	J
SW-NBOUT	51.5	3.94	3.94	8.3	8.0		67.4	10.3	<
SW-EB	39.8	3.68	3.68	6.5	11.3		53.8	10.4	J
 CP-04	59.5	4.09	4.09	9,51	28.0		76.5	10.3	<
SW-C9	12.0	2.56	2.48	2.26	6.5		18.9	15.5	J
SW-C5	15.7	2.75	2.75	2.7	13.2		23.8	13.9	l
SW-C1	19.5	2.97	2.97	3.32	13.6		28.8	14.7	Ţ
SW-STM	19.8	2.99	2.99	3.37	13.0		29.2	12.7	J

				Tota	l Copper		To	tal Zinc	
				Cu			Zn		
	Hardness			(ATC)	Cu Samp	ole	(ATC)	Zn Samj	ple
Sampling Event	(mg/L)	Cu ln H	Zn In H	(µg/L)	results (µg	g/L)	(µg/L)	results (µ	g/L)
Sampling Event 7/24/2024			_						
SW-HWY27E	8.9	2.56	2.48	2.26	8.2		18.9	12.4	J
SW-HWY27W	28.2	3.34	3.34	4.7	14.7		39.8	33.6	J
SW-NB	38.5	3.65	3.65	6.3	4.6	J	52.2	10.3	<
SW-NBOUT	54.4	4.00	4.00	8.74	2.6	J	70.7	10.3	<
SW-EB	54.5	4.00	4.00	8.75	3.7	J	70.8	10.3	<
CP-04	61.0	4.11	4.11	9.73	33.7		78.1	16.6	J
SW-C9	11.4	2.56	2.48	2.26	16.6		18.9	10.3	<
SW-C5	24.2	3.19	3.19	4.07	12.5		34.8	19.3	J
SW-C1	48.8	3.89	3.89	7.88	11.8		64.3	18.7	J
SW-STM	53.3	3.98	3.98	8.57	7.6		69.4	10.3	<
Sampling Event 8/30/2024									
SW-HWY27E	8.1	2.56	2.48	2.26	13.7		18.9	13.9	J
SW-HWY27W	27.6	3.32	3.32	4.6	20.4		39.1	24.3	J
SW-NB	46.7	3.84	3.84	7.56	7.5		61.9	10.3	<
SW-NBOUT	61.6	4.12	4.12	9.82	4.7	J	78.8	10.3	<
SW-EB	49.8	3.91	3.91	8.04	12.4		65.4	10.3	<
CP-04	87.8	4.48	4.48	13.72	6.1	J	107.4	10.3	<
SW-C9	10.8	2.56	2.48	2.26	14.0		18.9	13.6	J
SW-C5	31.5	3.45	3.45	5.22	12.2		43.8	11.9	J
SW-C1	37.8	3.63	3.63	6.2	12.9		51.4	10.3	<
SW-STM	50.4	3.92	3.92	8.13	8.6		66.1	10.3	<
Sampling Event 11/21/2024									
SW-HWY27E	44.9	3.80	3.80	7.29	13.3		59.8	99.3	
SW-HWY27W	10.3	2.56	2.48	2.26	9.5		18.9	19.2	J
SW-NB	64.8	4.17	4.17	10.3	5.6	J	82.4	32.3	J
SW-NBOUT	60.4	4.10	4.10	9.64	6.3	J	77.5	12.4	J
SW-EB	60.7	4.11	4.11	9.69	7.8		77.8	10.3	<
CP-04	64.2	4.16	4.16	10.21	30.5		81.7	10.3	<
SW-C9	9.9	2.56	2.48	2.26	18.1		18.9	23.8	J
SW-C5	30.7	3.42	3.42	5.09	15.8		42.9	23.4	J
SW-C1	50.4	3.92	3.92	8.13	14.7		66.1	19.9	J
SW-STM	59.2	4.08	4.08	9.46	8.8		76.1	10.3	<

Notes:

ATC = Acute Toxicity Criteria (Wisconsin Administrative Code NR 105)

Cu = Copper; Zn=Zinc; mg/L = milligrams per liter; μ g/L = micrograms/liter

J = estimated concentration at or above the limit of detection and below the limit of quantitation.

< = less than limit of detection.

Red formatting indicates ATC standard exceedance.

Gray formatting indicates hardness value for sample was below the water quality parameter range given in NR 105.06 Table 2A. The end point of the range nearest to that value was used to determine the criteria in accordance with NR 105.05(3)(L). Minimum H values: Cu=13; Zn=12.

4

Reference Formula:

Acute Toxicity Criteria (ATC) is calculated by the formula shown in WAC NR 105.05(3)(L):

NR 105.06 Table 2 Acute Toxicity Criteria for Substances With Toxicity Related to Water Quality (all in µg/L).

Total Recoverable Copper V=0.9436; ln ACI=-1.6036. Total Recoverable Zinc V=0.8745; ln ACI=0.7634

(ACI = Acute Criterion Intercept; V = constant defined in NR 105.06(8); table 2)

$$ATC = e^{(V \ln H + \ln ACI)}$$

Prepared by: MCC2 Checked by: KMC2

2.26

Table 3Biotic Ligand Model Results

			Mod	el Inputs ¹								Mode	el Outputs ²		
				Сорре	er Criteria									BLM-based Criterion	Current Criiterion
Location	Temperature	pН	Dissolved Cu	Dissolved Organi Carbon	^c Humic Acid	Dissolved Ca	Dissolved Mg	Dissolved Na	Dissolved K	Dissolved SO ₄	S	FAV	ссс	CMC ³	ATC ⁴
units	°C	S.U.	μg/L	mg C/L	%	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L
Sampling Event 4/29/2023															
SW-HWY27E	6.56	5.73	3.6	8.3	10	1.93	0.76	3.08	0.635	1.4	1.2	1.92	0.59	0.96	2.26
SW-HWY27W	6.77	6.55	3.6	10.8	10	10.20	3.64	58.4	1.64	3.1	1.2	28.14	8.74	14.07	6.61
SW-C9	6.77	5.55	3.8	8.7	10	2.40	0.92	7.14	0.684	1.3	1.2	1.31	0.41	0.65	2.26
SW-C5	6.85	6.01	6.4	7.6	10	4.76	2.08	14.9	1.02	3.2	1.2	3.99	1.24	2.00	3.35
SW-C1	6.57	6.19	5.8	7.8	10	6.32	2.70	17	1.04	3.7	1.2	6.78	2.10	3.39	4.57
SW-STM	6.30	7.64	4.9	8.7	10	7.11	3.05	17.7	1.07	3.8	1.2	85.97	26.70	42.98	5.22
Sampling Event 5/08/2024															
SW-HWY27E	11.60	6.38	7.5	15.5	10	3.09	1.08	2.84	0.996	0.88	1.2	21.56	1.64	10.78	2.26
SW-HWY27W	12.56	6.29	14	28.1	10	5.70	1.71	35.9	1.25	0.92	1.2	45.01	2.77	22.51	3.62
SW-C9	11.94	6.31	8.2	15.8	10	3.46	1.19	4.18	0.854	0.72	1.2	18.53	1.85	9.26	2.33
SW-C5	15.26	6.54	13.9	15.8	10	4.70	1.72	6.47	0.715	1.3	1.2	30.69	2.31	15.34	2.96
SW-C1	15.88	6.57	14.5	15.6	10	5.35	1.96	7.32	0.741	1.4	1.2	31.92	2.72	15.96	3.56
SW-STM	17.60	7.16	12.8	16.0	10	5.67	2.03	9.30	1.03	1.7	1.2	89.53	2.84	44.77	3.73
Sampling Event 5/23/2024															
SW-HWY27E	15.08	6.12	5	17.7	10	2.99	0.97	0.998	0.679	2.2	1.2	12.77	1.55	6.39	2.26
SW-HWY27W	14.56	6.28	8	31.1	10	5.99	1.76	18	0.834	2.2	1.2	41.77	2.63	20.89	3.43
SW-C9	13.69	6.15	4.6	17.2	10	2.89	1.04	1.95	0.764	2.2	1.2	13.45	1.69	6.73	2.26
SW-C5	13.52	6.17	11.8	16.6	10	4.40	1.54	3.13	0.358	2.2	1.2	12.90	2.12	6.45	2.70
SW-C1	13.29	6.41	12.5	16.2	10	5.27	1.90	3.97	0.414	2.2	1.2	22.54	2.56	11.27	3.32
SW-STM	12.8	6.83	12.6	16	10	5.32	2.02	5.67	0.853	2.2	1.2	52.07	2.59	26.03	3.37
Sampling Event 7/24/2024															
SW-HWY27E	19.17	6.17	6.8	9.1	10										
SW-HWY27W	21.21	5.78	7.1	13.3	10										
SW-C9	18.97	6.29	11.7	12.3	10	2.86	0.953	7.7	0.629	1.6	1.2	14.03	1.81	7.02	2.26
SW-C5	17.6	6.31	5	11	10	6.04	2.35	7.24	0.378	2.2	1.2	11.80	3.07	5.90	4.07
SW-C1	17.33	6.64	6.7	10.3	10	12	4.79	11.2	0.534	3.5	1.2	22.86	5.60	11.43	7.88
SW-STM	18.23	7.21	5.5	10.5	10	12.9	5.2	14	1.25	4.1	1.2	58.83	6.04	29.42	8.57
Sampling Event 8/30/2024				1											
SW-HWY27E	17.86	6.03	9.5	10.1	10										
SW-HWY27W	19.18	5.74	11.5	15.5	10										
SW-C9	18.13	6.05	11.4	13.5	10	2.63	0.859	6.53	1.16	1.3	1.2	8.18	1.81	4.09	2.26
SW-C5	18.11	6.36	8.5	10.9	10	8.5	3.07	11.3	1.53	1.9	1.2	13.68	3.85	6.84	5.22
SW-C1	18.04	6.72	8.5	11.3	10	8.88	3.75	12.8	1.59	2.3	1.2	29.78	4.50	14.89	6.20
SW-STM	18.09	7.43	5.9	9.9	10	11.8	4.82	16.2	1.69	2.9	1.2	75.84	5.76	37.92	8.13
Sampling Event 11/21/2024											I				
SW-HWY27E	4.41	6.28	9.8	6.9	10										
SW-HWY27W	4.09	5.71	6.6	7.8	10										
SW-C9	4.54	6.14	15.2	9.9	10	2.55	0.858	8.1	1.96	4.6	1.2	7.38	1.81	3.69	2.26
SW-C5	4.09	6.27	12.9	8.5	10	7.37	3.42	13.5	2.19	8.2	1.2	8.64	3.77	4.32	5.09
SW-C1	4.15	6.74	11.8	8.2	10	12.6	5.39	17	2.26	8.8	1.2	22.48	5.76	11.24	8.13
SW-STM	3.71	6.94	8.3	8	10	14.5	6.4	21.2	2.26	8.9	1.2	31.09	6.61	15.55	9.46

Notes:

1 Model inputs correspond to concentrations measured within collected samples with the exception of humic acid. For non-detectable results, the method detection limit is used as the model inputs. Humic acid was not measured and the input percentage of 10% follows the Biotic Ligand Model User's Guide recommended input limit.

2 Criteria Maximum Concentration (CMC) is an estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed briefly without resulting in an unacceptable effect. The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. The CMC and CCC are just two of the six parts of an aquatic life criterion; the other four parts are the acute averaging period, acute frequency of allowed exceedance. Because 304(a) aquatic life criteria are national guidance, they are intended to be protective of the vast majority of the aquatic communities in the United States. (EPA National Recommended Water Quality Criteria, Office of Science and Technology 4304T, 2006, https://nepis.epa.gov/Exe/ZyPDF.cgi/P1003R9X.PDF)

3 Criterion Maximum Concentration is the EPA national water quality criteria recommendation for the highest instream concentration of a toxicant or an effluent to which organisms can be exposed for a brief period of time without causing an acute effect. This is usually defined as the LD₅₀ concentration. (http://www.cormix.info/glossary.php)

4 ATC was calculated according to WDNR NR 105 using measured hardness values and dissolved (filtered) copper concentrations.

ATC = Acute toxicity criterion means the maximum daily concentration of a substance which ensures adequate protection of sensitive species of aquatic life from the acute toxicity of that substance and will adequately protect the designated fish and aquatic life use of the surface water if not exceeded more than once every 3 years. (WDNR Chapter NR 105)

BLM = Biotic Ligand Model

CMC = Criterion Maximum Concentration or Acute Instantaneous Water Quality Criteria (IWQC), equal to FAV/2, can be used in place of ATC (WI NR 105)

CCC = Criterion Continuous Concentration, equal to FAV/Acute-to-chronic Ratio (ACR)

FAV = Final Acute Value, the level of a chemical or mixture of chemicals that does not allow the mortality or other specified response of aquatic organisms to exceed 50% when exposed for 96 hours, except where a shorter time period is appropriate for certain species. % = percent

°C = degrees Celsius

 $CaCO_3 = calcium carbonate$

mg/L = milligrams per liter

S.U. = standard unit

 $\mu g/L = micrograms per liter$

= measured copper concentration exceeds the BLM CMC = measured copper concentration exceeds the ATC

Figures

Figure 1 – Site Location Map Figure 2 – Stream C Evaluation Locations Figure 3 – HWY 27 Culvert Flow Graph Figure 4 – Copper Park Lane Culvert Flow Graph Figure 5 – Summary of Dissolved Calcium Data Figure 6 – Summary of Dissolved Magnesium Data Figure 7 – Summary of pH Data

NOTES:

- Base imagery from esri.com, courtesy of the Microsoft Corporation and its data suppliers.
 Horizontal datum based on NAD 1983. Horizontal coordinates based on Wisconsin State Plane North (Feet).

LEGEND

- Surface Water Sampling Locations
- Groundwater Wells MONITORED FOR WATER LEVELS ONLY ▲
- Groundwater Wells
- Flambeau River Surface Water Monitoring Location
- Approximate Culvert Location
- Approximate Rail Spur -+-
- Intermittent Stream -----
- Flambeau Project Area
 - Intermittent Stream C Drainage Area
- N PREPARED BY: BJW1 *** Foth** CHECKED BY: APPROVED BY:

REVISED DATE BY

NMG1

MCC2

Path: (Q:\Flambeau Mining	Company\17F777\GIS\mxd\202	4 Stream C Data Evaluation/Figu	re 1 - Site Location Map.mxd	Date: 2/6/2025
---------	--------------------	----------------------------	---------------------------------	------------------------------	----------------

nvironr	ment. LLC		MREAL			
DESCRIPTION						
			-	FIGUR	E 1	
						ON
	DATE: FEB.'25		350	700		
	DATE: FEB.'25	Scale:		Feet	Date: MAR	CH 2023
		Duef: 11				1757776

Attachment 1

Flow Inspection Forms

pw:\Flambeau Mining\0017F777\4000 Regulatory Agency Correspondence\2024 Stream C Data Evaluation\M-Bourn, 2024 Stream C Data Evaluation.docx

Client:	Flambeau Mining Company	Scope ID	17F777.24	
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent	
Date:	9/5/2024	Prepared by:	Nick Glander / Foth	
Weather:	High of 76°, Mostly cloudy, 5-10mph northwest wind			

Inspection Notes

Stream C was inspected today with 0.82-inch of precipitation during the week. Small amount of flow at the Copper Park Lane culvert. No continuous flow to the Flambeau River was noted. Pools of ponded water were consistent throughout the waterway.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	9/13/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 80°, Fair, 5-10mph east wind		

Inspection Notes

Stream C was inspected today. Unable to measure flow with meter. No continuous flow to the Flambeau River was noted. Pools of ponded water were observed in the Stream C waterway.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24	
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent	
Date:	9/23/2024	Prepared by:	Nick Glander / Foth	
Weather:	High of 69°, partly cloudy, 5-10mph southeast wind			

Inspection Notes

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24	
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent	
Date:	9/30/2024	Prepared by: Nick Glander / Foth		
Weather:	High of 78°, Cloudy, 10-15mph south wind			

Inspection Notes

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River. ***END OF NOTES***

Client:	Flambeau Mining Company	Scope ID	17F777.24	
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent	
Date:	10/7/2024	Prepared by: Nick Glander / Foth		
Weather:	High of 67°, Fair, 9-14mph southwest wind			

Inspection Notes

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River.

END OF NOTES

https://merjent1-my.sharepoint.com/personal/jim_engelhardt_merjent_com/Documents/Desktop/Flambeau Mine Monitoring/Photos/230419sampling/2023_Photo_Log_Template.docx

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	10/14/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 50°, Cloudy, 7-12mph north wind		

Inspection Notes

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River. ***END OF NOTES***

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	10/21/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 80°, Cloudy, 8-13mph south / southwest wind		

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River. Dry conditions.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	10/28/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 72°, Fair, 12-17mph south / southeast wind		

Stream C was inspected today. Unable to measure flow with a meter and there was no continuous flow to the Flambeau River.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	11/1/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 46°, Fair, 0-5mph south wind		

Inspection Notes

Stream C was inspected today after 0.8 inches of rain on October 31, 2024. Unable to measure flow with a meter. Stream C system is not a capacity with no continuous flow to the Flambeau River.

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	11/6/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 44°, Cloudy, 5-10mph northwest wind		

Inspection Notes

Stream C was inspected today after 0.58 inches of rain on November 6, 2024. Unable to measure flow with a meter. Stream C system is not a capacity with no continuous flow to the Flambeau River.

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	11/13/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 48°, Fair, 5-10mph east wind		

Inspection Notes

Stream C was inspected today. Unable to measure flow with a meter with no continuous flow to the Flambeau River. Conditions still dry following recent precipitation events.

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	11/19/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 57°, Cloudy, 10-15mph south wind		

Inspection Notes

Stream C was inspected today with 0.69-inch of precipitation beginning on November 19th. Unable to measure flow with a meter. Stream C system still not a capacity with no continuous flow to the Flambeau River.

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	12/3/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 27°, Cloudy, 7-12mph west southwest wind		

Stream C was inspected today. Unable to measure flow with a meter. No continuous flow to the Flambeau River. Once again, recent precipitation has not saturated the soils and snow cover is now present with overnight freezing conditions.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	12/10/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 27°, Cloudy, 5-10mph west wind		

Stream C was inspected today. Unable to measure flow with a meter and no continuous flow to the Flambeau River. Stream C system is starting to ice over. Temperatures are starting to drop consistently below freezing – especially in the overnights.

END OF NOTES

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	12/17/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 31°, Cloudy, 5-10mph west wind		

Stream C was inspected today. Unable to measure flow with a meter and no continuous flow to the Flambeau River. Stream C system is starting to freeze over. ***END OF NOTES***

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	12/24/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 31°, Cloudy, 5-10mph south wind		

Stream C was inspected today. Unable to measure flow with a meter and no continuous flow to the Flambeau River. Stream C system is frozen over. ***END OF NOTES***

Client:	Flambeau Mining Company	Scope ID	17F777.24
Project:	Stream C – Flow Monitoring	Inspected by:	Jim Engelhardt / Merjent
Date:	12/28/2024	Prepared by:	Nick Glander / Foth
Weather:	High of 41°, Cloudy to partly cloudy, 7-12mph west wind		

Inspection Notes

Stream C was inspected today. Precipitation event with 0.89-inches of rain on December 27th. Unable to measure flow with meter. No continuous flow to the Flambeau River. Short period of warm weather and precipitation melted snow, but did not melt ice in the ditches or Steam C system. Monitoring will discontinue due to time of year.

Attachment 2

Field Forms – November 2024

Flambeau Mining Co	Project ID: 17F777.24
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/21/2024
NMG1 / Foth	Date: 12/2/2024

TECHNICIAN(S) NAME (INITIALS), COMPANY

Jin Engelhardt / Merjent

SUMMARY OF SAMPLING ACTIVITIES

Sample Date(s): 11/21/2024 Activities: Collected field parameter measurements, and water quality samples for laboratory analysis by Pace Analytical. Collected field quality control samples for laboratory analysis by Pace Analytical

Weather, Stream Conditions and Comments: Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

Stream C Samples:	Total Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness
	Dissolved Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness
	Total Alkalinity (EPA310.2), Cl, Sulfate
	Dissolved Alkalinity (EPA310.2), Cl, Sulfate
	DOC
	TSS
	Total Sulfide
	Dissolved Sulfide

Velocity Measurements (collecteed at US end of culverts and at SW-STM near confluence of Flambeau River):

Location:	Velocity (ft/sec)	Depth (ft)
HWY 27 Culvert	None	1.11
Copper Park Lane Culvert	0.6	0.21
SW-STM Confluence	0.4	0.48

FIELD REPORT ATTACHMENTS

Summary of Field Parameters Summary of Field Quality Control Samples Field Forms

COMMENTS

The data collected during this event was conducted under the "Stream C Evaluation Work Plan" dated March 10, 2023.

Flambeau Mining Co	Project ID: 17F777.24
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/21/2024
NMG1 / Foth	Date: 12/2/2024

SUMMARY OF FIELD PARAMETERS

Location	Sample Date	Sample Time	pH (SU)	Specific Conductance (mS/cm)	Temperature (⁰ C)	ORP (mV)	DO (mg/l)	Odor	Turbidity (visual)	Color (visual)
SW-C9	11/21/2024	11:30	6.14	0.064	4.54	133.9	1.44	None	Slight	Stained lt. Brown
SW-C1	11/21/2024	8:30	6.74	0.175	4.15	145.0	1.33	None	Slight	Stained lt. Brown
SW-STM	11/21/2024	8:00	6.94	0.221	3.71	142.1	1.11	None	None	Stained lt. Brown
SW-C5	11/21/2024	9:40	6.27	0.126	4.09	177.2	1.48	None	None	Stained lt. Brown
SW-EB	11/21/2024	10:15	6.91	0.240	3.29	170.2	1.81	Slt. Organic	Slight	Stained lt. Brown
SW-NB	11/21/2024	11:15	6.93	0.307	3.26	159.9	1.83	Slt. Organic	Slight	Stained lt. Brown
SW-NBOUT	11/21/2024	10:40	6.96	0.267	3.34	162.0	1.82	Slt. Organic	Slight	Stained lt. Brown
SW-HWY27W	11/21/2024	11:45	5.71	0.343	4.09	174.1	1.82	Slt. Organic	Slight	Stained lt. Brown
SW-HWY27E	11/21/2024	12:00	6.28	0.039	4.41	151.4	1.69	Slt. Organic	Moderate	Stained lt. Brown
CP-04	11/21/2024	8:45	7.00	0.294	3.11	137.7	1.33	None	Slight	Stained lt. Brown

Note:

ORP = Oxidation Reduction Potential µmhos/cm = micromhos/centimeter SU = Standard Unit mV = Millivolts °C = Degrees Celsius NA = not applicable

SUMMARY OF FIELD QUALITY CONTROL SAMPLES

Sample ID	Sample Date	Description
SW-EB-DUP_20241121	11/21/2024	Duplicate Taken at SW-EB sampling location

Flambeau Mining Co	Project ID:	17F777.24
Flambeau Stream C		
Jim Engelhardt/Merjent	Date:	11/21/2024
NMG1 / Foth	Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-C9
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
11:30	6.14	0.064	4.54	133.90	1.44	None	Slight	Stained lt. Brown

Flambeau Mining Co	Project ID: 17F777.24
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/21/2024
NMG1 / Foth	Date: 12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-C1
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	N	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
8:30	6.74	0.175	4.15	145.00	1.33	None	Slight	Stained lt. Brown

Flambeau Mining Co	Project ID: 17
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11
NMG1 / Foth	Date: 12

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-STM
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
8:00	6.94	0.221	3.71	142.10	1.11	None	None	Stained lt. Brown

Flambeau Mining Co	Project ID: 171
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/
NMG1 / Foth	Date: 12/

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-C5
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
 9:40	6.27	0.126	4.09	177.20	1.48	None	None	Stained lt. Brown

Flambeau Mining Co	Project ID: 17
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11
NMG1 / Foth	Date: 12

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-EB
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
10:15	6.91	0.240	3.29	170.20	1.81	Slt. Organic	Slight	Stained It. Brown

Flambeau Mining Co	Project ID: 17F77
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/21/
NMG1 / Foth	Date: 12/2/2

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-NBOUT
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
10:40	6.96	0.267	3.34	162.00	1.82	Slt. Organic	Slight	Stained lt. Brown

Flambeau Mining Co	Project ID: 17
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11
NMG1 / Foth	Date: 12

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-NB
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter	
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)	
1	Y	Plastic 250 mL	ic 250 mL HNO ₃ Dissolved (Ca, Cu, Fe, Mg, Mn,		
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate	
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate	
1	Ν	Plastic 250 mL	None	TSS	
1	Y	Amber 125 mL	H2SO4	DOC	
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide	
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide	

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
11:15	6.93	0.307	3.26	159.90	1.83	Slt. Organic	Slight	Stained lt. Brown

Flambeau Mining Co	Project ID:
Flambeau Stream C	
Jim Engelhardt/Merjent	Date:
NMG1 / Foth	Date:

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-HWY27W
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter	
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)	
1	Y	Plastic 250 mL	Plastic 250 mL HNO ₃ Dissolved (Ca, Cu, Fe		
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate	
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate	
1	Ν	Plastic 250 mL	None	TSS	
1	Y	Amber 125 mL	H2SO4	DOC	
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide	
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide	

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
11:45	5.71	0.343	4.09	174.10	1.82	Slt. Organic	Slight	Stained lt. Brown

Flambeau Mining Co	Project ID:
Flambeau Stream C	
Jim Engelhardt/Merjent	Date:
NMG1 / Foth	Date:

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	SW-HWY27E
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter	
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)	
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)	
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate	
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate	
1	Ν	Plastic 250 mL	None	TSS	
1	Y	Amber 125 mL	H2SO4	DOC	
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide	
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide	

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
12:00	6.28	0.039	4.41	151.40	1.69	Slt. Organic	Moderate	Stained lt. Brown

Flambeau Mining Co	Project ID: 171
Flambeau Stream C	
Jim Engelhardt/Merjent	Date: 11/
NMG1 / Foth	Date: 12/

Date:	11/21/2024
Date:	12/2/2024

Equipment: GPS, Multi-parameter probe, Camera, Peristaltic pump, Disposable Filters, Battery

FIELD NOTES

Site ID:	CP-04
Date:	11/21/2024
Technician(s) Initials:	Jim Engelhardt / Merjent

Weather, Stream Conditions and Comments:

Temp: High of 45 degrees Fahrenheit, Cloudy, 10-15 mph Northwest Wind.

LABORATORY ANALYTICAL PARAMETERS

#Collected	Filtered (Y/N)	Bottle	Preservative	Parameter
1	Ν	Plastic 250 mL	HNO ₃	TOTAL (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Y	Plastic 250 mL	HNO ₃	Dissolved (Ca, Cu, Fe, Mg, Mn, K, Na, Zn, Hardness)
1	Ν	Plastic 250 mL	None	Total Alkalinity, Chloride, Sulfate
1	Y	Plastic 250 mL	None	Dissolved Alkalinity, Chloride, Sulfate
1	Ν	Plastic 250 mL	None	TSS
1	Y	Amber 125 mL	H2SO4	DOC
1	Ν	Plastic 500 mL	Zinc Acetate & NaOH	Total Sulfide
1	Y	Plastic 500 mL	Zinc Acetate & NaOH	Dissolved Sulfide

FIELD PARAMETERS

Time	pH (SU)	Specifc Conductance (mS/cm)	Temperature (⁰ C)	Redox Potential (mV)	Dissolved Oxygen (mg/l)	Odor	Turbidity	Color
8:45	7.00	0.294	3.11	137.70	1.33	None	Slight	Stained lt. Brown

Attachment 3

Pace Laboratory Analytical Reports

December 10, 2024

Nick Glander Foth Infrastructure & Environment, LLC 2121 Innovation Court Suite 300 De Pere, WI 54115

RE: Project: FMC-2024_04 FLAMBEAU MINE CO. Pace Project No.: 40287968

Dear Nick Glander:

Enclosed are the analytical results for sample(s) received by the laboratory on November 22, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod holtemeyor

Tod Noltemeyer tod.noltemeyer@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: MARK CIARDELLI, Foth Infrastructure & Environment, LLC Krystal Clark, Foth Infrastructure & Environment SHARON KOZICKI, Foth Infrastructure & Environment, LLC

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE SUMMARY

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No .:

40287968

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40287968001	SW-C9_20241121	Water	11/21/24 11:30	11/22/24 12:10
40287968002	SW-C1_20241121	Water	11/21/24 08:30	11/22/24 12:10
40287968003	SW-STM_20241121	Water	11/21/24 08:00	11/22/24 12:10
40287968004	SW-C5_20241121	Water	11/21/24 09:40	11/22/24 12:10
40287968005	SW-EB_20241121	Water	11/21/24 10:15	11/22/24 12:10
40287968006	SW-NBOUT_20241121	Water	11/21/24 10:40	11/22/24 12:10
40287968007	SW-NB_20241121	Water	11/21/24 11:15	11/22/24 12:10
40287968008	SW-HWY27W_20241121	Water	11/21/24 11:45	11/22/24 12:10
40287968009	SW-HWY27E_20241121	Water	11/21/24 12:00	11/22/24 12:10
40287968010	CP-04_20241121	Water	11/21/24 08:45	11/22/24 12:10
40287968011	SW-EB-DUP_20241121	Water	11/21/24 10:15	11/22/24 12:10

SAMPLE ANALYTE COUNT

Project:	FMC-2024_04 FLAMBEAU MINE CO.
Pace Project No.:	40287968

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40287968001	SW-C9_20241121	EPA 6020B	кхs	9
		EPA 6020B	KXS	9
		SM 2540D	LMB	1
		SM 4500-S F (2000)	LMB	1
		SM 4500-S F (2000)	LMB	1
		EPA 300.0	HMB	2
		EPA 300.0	HMB	2
		EPA 310.2	MT	1
		EPA 310.2	MT	1
		SM 5310C	TJJ	1
40287968002	SW-C1_20241121	EPA 6020B	KXS	9
		EPA 6020B	KXS	9
		SM 2540D	LMB	1
		SM 4500-S F (2000)	LMB	1
		SM 4500-S F (2000)	LMB	1
		EPA 300.0	HMB	2
		EPA 300.0	HMB	2
		EPA 310.2	MT	1
		EPA 310.2	MT	1
		SM 5310C	TJJ	1
40287968003	SW-STM_20241121	EPA 6020B	KXS	9
		EPA 6020B	KXS	9
		SM 2540D	LMB	1
		SM 4500-S F (2000)	LMB	1
		SM 4500-S F (2000)	LMB	1
		EPA 300.0	HMB	2
		EPA 300.0	HMB	2
		EPA 310.2	MT	1
		EPA 310.2	MT	1
		SM 5310C	TJJ	1
40287968004	SW-C5_20241121	EPA 6020B	KXS	9
		EPA 6020B	KXS	9
		SM 2540D	LMB	1
		SM 4500-S F (2000)	LMB	1
		SM 4500-S F (2000)	LMB	1
		EPA 300.0	HMB	2
		EPA 300.0	HMB	2

SAMPLE ANALYTE COUNT

Project:	FMC-2024_04 FLAMBEAU MINE CO.
Pace Project No .:	40287968

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 310.2	MT	1
		EPA 310.2	MT	1
		SM 5310C	TJJ	1
40287968005	SW-EB_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968006	SW-NBOUT_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968007	SW-NB_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968008	SW-HWY27W_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968009	SW-HWY27E_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968010	CP-04_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1
40287968011	SW-EB-DUP_20241121	EPA 6020B	KXS	3
		EPA 6020B	KXS	3
		SM 5310C	TJJ	1

PASI-G = Pace Analytical Services - Green Bay

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 6020B

Description:6020B MET ICPMSClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

11 samples were analyzed for EPA 6020B by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 6020B

Description:6020B MET ICPMS, DissolvedClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

11 samples were analyzed for EPA 6020B by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: SM 2540D

Description:2540D Total Suspended SolidsClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for SM 2540D by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 491214

- R1: RPD value was outside control limits.
 - DUP (Lab ID: 2812481)
 - Total Suspended Solids

Additional Comments:

Analyte Comments:

QC Batch: 491214

- PP: The mass of dried residue obtained did not meet the test method requirements based on volume used.
 - SW-C1_20241121 (Lab ID: 40287968002)
 - Total Suspended Solids
 - SW-STM_20241121 (Lab ID: 40287968003)
 - Total Suspended Solids
- T3: Insufficient sample received from client to perform the analysis per EPA method requirements.
 - SW-C1_20241121 (Lab ID: 40287968002)
 - Total Suspended Solids
 - SW-STM_20241121 (Lab ID: 40287968003)
 - Total Suspended Solids

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: SM 4500-S F (2000)

Description:4500S2F Sulfide, lodometricClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for SM 4500-S F (2000) by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 491283

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40287897001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 2813035)
- Sulfide
- MSD (Lab ID: 2813036)
 - Sulfide

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: SM 4500-S F (2000)

Description:4500S2F Sulfide,Diss IodometrcClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for SM 4500-S F (2000) by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 300.0

Description:300.0 IC AnionsClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for EPA 300.0 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 491771

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40288034010,40288077003

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

• MS (Lab ID: 2815187) • Sulfate

Additional Comments:

Analyte Comments:

QC Batch: 491771

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

• SW-C1_20241121 (Lab ID: 40287968002)

- Sulfate
- SW-C5_20241121 (Lab ID: 40287968004)
 - Sulfate
- SW-C9_20241121 (Lab ID: 40287968001)
 - Chloride
 - Sulfate
- SW-STM_20241121 (Lab ID: 40287968003)
 - Sulfate

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 300.0

Description:300.0 IC Anions, DissolvedClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for EPA 300.0 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 491770

- D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
 - SW-C1_20241121 (Lab ID: 40287968002)
 - Sulfate, Dissolved
 - SW-C5_20241121 (Lab ID: 40287968004)
 - Sulfate, Dissolved
 - SW-C9_20241121 (Lab ID: 40287968001)
 - Sulfate, Dissolved
 - SW-STM_20241121 (Lab ID: 40287968003)
 - · Sulfate, Dissolved

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 310.2

Description:310.2 AlkalinityClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for EPA 310.2 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: EPA 310.2

Description:310.2 Alkalinity, DissolvedClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

4 samples were analyzed for EPA 310.2 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Method: SM 5310C

Description:5310C Dissolved Organic CarbonClient:Foth Infrastructure & EnvironmentDate:December 10, 2024

General Information:

11 samples were analyzed for SM 5310C by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Matrix: Water

Received: 11/22/24 12:10

ANALYTICAL RESULTS

Collected: 11/21/24 11:30

Project: FMC-2024_04 FLAMBEAU MINE CO.

Lab ID: 40287968001

Pace Project No.: 40287968

Sample: SW-C9_20241121

LOQ LOD DF Parameters Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 6020B Preparation Method: EPA 3010A 6020B MET ICPMS Pace Analytical Services - Green Bay Calcium 2340 ug/L 254 76.2 11/26/24 07:24 11/27/24 21:50 7440-70-2 1 Copper 18.1 ug/L 6.4 1.9 1 11/26/24 07:24 11/27/24 21:50 7440-50-8 Iron 2250 ug/L 250 58.0 1 11/26/24 07:24 11/27/24 21:50 7439-89-6 Magnesium 976 ug/L 250 31.2 1 11/26/24 07:24 11/27/24 21:50 7439-95-4 Manganese 59.2 ug/L 4.0 12 11/26/24 07:24 11/27/24 21:50 7439-96-5 1 Potassium 2020 ug/L 789 237 11/26/24 07:24 11/27/24 21:50 7440-09-7 1 Sodium 7290 ug/L 250 42.0 1 11/26/24 07:24 11/27/24 21:50 7440-23-5 Total Hardness by 2340B 9.9 mg/L 1.7 0.32 1 11/26/24 07:24 11/27/24 21:50 23.8J 10.3 11/26/24 07:24 11/27/24 21:50 7440-66-6 **Zinc** ug/L 34.4 1 6020B MET ICPMS, Dissolved Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay Calcium, Dissolved 2550 76.2 ug/L 254 1 11/26/24 07:24 12/03/24 20:53 7440-70-2 D9 Copper, Dissolved 15.2 ug/L 6.4 1.9 1 11/26/24 07:24 12/03/24 20:53 7440-50-8 Iron, Dissolved 1200 ug/L 250 58.0 1 11/26/24 07:24 12/03/24 20:53 7439-89-6 Magnesium, Dissolved 858 ug/L 250 31.2 11/26/24 07:24 12/03/24 20:53 7439-95-4 1 Manganese, Dissolved 11/26/24 07:24 12/03/24 20:53 7439-96-5 46.6 ug/L 4.0 1.2 1 Potassium, Dissolved 1960 ug/L 789 237 1 11/26/24 07:24 12/03/24 20:53 7440-09-7 11/26/24 07:24 12/03/24 20:53 7440-23-5 Sodium. Dissolved 8100 ua/L 250 42.0 1 D9 Total Hardness by 2340B, 9.9 0.32 11/26/24 07:24 12/03/24 20:53 mg/L 1.7 1 Dissolved Zinc, Dissolved 19.6J ug/L 34.4 10.3 1 11/26/24 07:24 12/03/24 20:53 7440-66-6 Analytical Method: SM 2540D 2540D Total Suspended Solids Pace Analytical Services - Green Bay **Total Suspended Solids** 4.3 mg/L 1.0 0.48 1 11/26/24 13:34 Analytical Method: SM 4500-S F (2000) 4500S2F Sulfide, Iodometric Pace Analytical Services - Green Bay 4.0 Sulfide <1.2 mg/L 1.2 1 11/27/24 16:23 4500S2F Sulfide, Diss Iodometrc Analytical Method: SM 4500-S F (2000) Pace Analytical Services - Green Bay

Sulfide, Dissolved	<1.2	mg/L	4.0	1.2	1	11/27/24 15:56
300.0 IC Anions	Analytical	Method: EPA	300.0			
	Pace Anal	ytical Services	s - Green Bay			
Chloride	9.9J	mg/L	10.0	3.0	5	12/06/24 17:07 16887-00-6 D3
Sulfate	4.0J	mg/L	10.0	2.2	5	12/06/24 17:07 14808-79-8 D3
300.0 IC Anions, Dissolved	Analytical	Method: EPA	300.0			
	Pace Anal	ytical Services	s - Green Bay			
Chloride, Dissolved	10.1	mg/L	10.0	3.0	5	12/06/24 18:14 16887-00-6 D9
Sulfate, Dissolved	4.6J	mg/L	10.0	2.2	5	12/06/24 18:14 14808-79-8 D3

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-C9_20241121	Lab ID:	40287968001	Collected	: 11/21/24	11:30	Received: 11/2	22/24 12:10 Ma	trix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
	Pace Ana	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	14.2J	mg/L	25.0	7.4	1		12/02/24 14:00		
310.2 Alkalinity, Dissolved	Analytical	Method: EPA 3	10.2						
-	Pace Ana	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3, Dissolved	<7.4	mg/L	25.0	7.4	1		12/02/24 12:17		
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
-	Pace Ana	lytical Services	- Green Bay						
Dissolved Organic Carbon	9.9	mg/L	0.50	0.19	1		12/03/24 02:49		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.:

oject No.: 40287968

Sample: SW-C1_20241121	Lab ID: 40287968002 Collected: 11/21/24 08:30 Received: 11/22/24 12:10 Matrix: Wate								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Ana	lytical Services	- Green Bag	у					
Calcium	11800	ua/L	254	76.2	1	11/26/24 07:24	11/27/24 20:26	7440-70-2	
Copper	14.7	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 20:26	7440-50-8	
Iron	1280	ug/L	250	58.0	1	11/26/24 07:24	11/27/24 20:26	7439-89-6	
Magnesium	5100	ug/L	250	31.2	1	11/26/24 07:24	11/27/24 20:26	7439-95-4	
Manganese	64.4	ug/L	4.0	1.2	1	11/26/24 07:24	11/27/24 20:26	7439-96-5	
Potassium	2150	ug/L	789	237	1	11/26/24 07:24	11/27/24 20:26	7440-09-7	
Sodium	14900	ug/L	250	42.0	1	11/26/24 07:24	11/27/24 20:26	7440-23-5	
Total Hardness by 2340B	50.4	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 20:26		
Zinc	19.9J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 20:26	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: E	PA 3010A			
	Pace Ana	lytical Services	- Green Bag	у					
Calcium, Dissolved	12600	ug/L	254	76.2	1	11/26/24 07:24	12/03/24 20:24	7440-70-2	D9
Copper, Dissolved	11.8	ug/L	6.4	1.9	1	11/26/24 07:24	12/03/24 20:24	7440-50-8	
Iron. Dissolved	307	ua/L	250	58.0	1	11/26/24 07:24	12/03/24 20:24	7439-89-6	
Magnesium. Dissolved	5390	ua/L	250	31.2	1	11/26/24 07:24	12/03/24 20:24	7439-95-4	D9
Manganese, Dissolved	52.2	ug/L	4.0	1.2	1	11/26/24 07:24	12/03/24 20:24	7439-96-5	
Potassium. Dissolved	2260	ug/L	789	237	1	11/26/24 07:24	12/03/24 20:24	7440-09-7	D9
Sodium, Dissolved	17000	ug/L	250	42.0	1	11/26/24 07:24	12/03/24 20:24	7440-23-5	D9
Total Hardness by 2340B, Dissolved	53.7	mg/L	1.7	0.32	1	11/26/24 07:24	12/03/24 20:24		
Zinc, Dissolved	19.2J	ug/L	34.4	10.3	1	11/26/24 07:24	12/03/24 20:24	7440-66-6	
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
	Pace Ana	lytical Services	- Green Ba	у					
Total Suspended Solids	1.8	mg/L	1.0	0.48	1		11/26/24 13:34		PP,T3
4500S2F Sulfide, lodometric	Analytical Pace Ana	Method: SM 45 lytical Services	500-S F (20 - Green Ba	00) y					
Sulfide	<1.2	mg/L	4.0	1.2	1		11/27/24 16:24		
4500S2F Sulfide, Diss Iodometrc	Analytical	Method: SM 45	500-S F (20	00)					
	Pace Ana	lytical Services	- Green Ba	y					
Sulfide, Dissolved	<1.2	mg/L	4.0	1.2	1		11/27/24 16:03		
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bag	у					
Chloride	35.5	ma/l	10.0	3.0	5		12/06/24 17:18	16887-00-6	
Sulfate	8.5J	mg/L	10.0	2.2	5		12/06/24 17:18	14808-79-8	D3
300.0 IC Anions, Dissolved	Analytical Pace Ana	Method: EPA 3 lytical Services	00.0 - Green Ba	v					
Chlorida, Dissolve i	07 (40.0		~		40/00/04 40 05	40007 00 0	DO
Sulfate Dissolved	37.4 8 8.1	mg/L mg/l	10.0	3.U 2.2	ວ 5		12/06/24 18:25	1000/-00-0	D9 D3
	0.00	1119/ L	10.0	<u> </u>	0		12/00/27 10.20	1-1000-10-0	20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-C1_20241121	Lab ID:	40287968002	Collected	: 11/21/24	08:30	Received: 11	/22/24 12:10 Ma	trix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3	24.2J	mg/L	25.0	7.4	1		12/02/24 14:01		
310.2 Alkalinity, Dissolved	Analytical	Method: EPA 3	10.2						
	Pace Anal	ytical Services	- Green Bay						
Alkalinity, Total as CaCO3, Dissolved	25.3	mg/L	25.0	7.4	1		12/02/24 12:20		
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
-	Pace Anal	ytical Services	- Green Bay						
Dissolved Organic Carbon	8.2	mg/L	0.50	0.19	1		12/03/24 03:06		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-STM_20241121 Lab ID: 40287968003 Collected: 11/21/24 08:00 Received: 11/22/24 12:10 Matrix: Water LOQ DF Parameters Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 6020B Preparation Method: EPA 3010A 6020B MET ICPMS Pace Analytical Services - Green Bay Calcium 13800 ug/L 254 76.2 11/26/24 07:24 11/27/24 21:00 7440-70-2 1 Copper 8.8 ug/L 6.4 1.9 1 11/26/24 07:24 11/27/24 21:00 7440-50-8 Iron 904 ug/L 250 58.0 11/26/24 07:24 11/27/24 21:00 7439-89-6 1 11/26/24 07:24 11/27/24 21:00 7439-95-4 Magnesium 6020 ug/L 250 31.2 1 Manganese 15.0 ug/L 4.0 1.2 11/26/24 07:24 11/27/24 21:00 7439-96-5 1 Potassium 2170 ug/L 789 237 11/26/24 07:24 11/27/24 21:00 7440-09-7 1 Sodium 18800 ug/L 250 42.0 1 11/26/24 07:24 11/27/24 21:00 7440-23-5 Total Hardness by 2340B 59.2 mg/L 1.7 0.32 1 11/26/24 07:24 11/27/24 21:00 11/26/24 07:24 11/27/24 21:00 7440-66-6 **Zinc** <10.3 ug/L 34.4 10.3 1 Analytical Method: EPA 6020B Preparation Method: EPA 3010A 6020B MET ICPMS, Dissolved Pace Analytical Services - Green Bay 76.2 Calcium, Dissolved 14500 ug/L 254 1 11/26/24 07:24 12/03/24 20:40 7440-70-2 D9 Copper, Dissolved 8.3 ug/L 6.4 1.9 1 11/26/24 07:24 12/03/24 20:40 7440-50-8 Iron, Dissolved 194J ug/L 250 58.0 1 11/26/24 07:24 12/03/24 20:40 7439-89-6 Magnesium, Dissolved 6400 ug/L 250 31.2 11/26/24 07:24 12/03/24 20:40 7439-95-4 D9 1 Manganese, Dissolved 11/26/24 07:24 12/03/24 20:40 7439-96-5 5.7 ug/L 4.0 1.2 1 Potassium, Dissolved 2260 ug/L 789 237 1 11/26/24 07:24 12/03/24 20:40 7440-09-7 D9 Sodium. Dissolved 21200 ua/L 250 42.0 1 11/26/24 07:24 12/03/24 20:40 7440-23-5 D9 Total Hardness by 2340B, 62.6 0.32 11/26/24 07:24 12/03/24 20:40 mg/L 1.7 1 Dissolved Zinc, Dissolved <10.3 ug/L 34.4 10.3 1 11/26/24 07:24 12/03/24 20:40 7440-66-6 Analytical Method: SM 2540D 2540D Total Suspended Solids Pace Analytical Services - Green Bay **Total Suspended Solids** 0.72J mg/L 1.0 0.49 1 11/26/24 13:34 PP,T3 Analytical Method: SM 4500-S F (2000) 4500S2F Sulfide, Iodometric Pace Analytical Services - Green Bay Sulfide <1.2 mg/L 4.0 1.2 1 11/27/24 16:25 4500S2F Sulfide, Diss Iodometrc Analytical Method: SM 4500-S F (2000) Pace Analytical Services - Green Bay Sulfide, Dissolved 11/27/24 16:04 <1.2 mg/L 4.0 1.2 1 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 51.0 10.0 3.0 5 12/06/24 18:02 16887-00-6 mg/L 2.2 12/06/24 18:02 14808-79-8 Sulfate 8.7J mg/L 10.0 5 D3 300.0 IC Anions, Dissolved Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride, Dissolved 53.4 10.0 12/06/24 18:36 16887-00-6 mg/L 3.0 5 D9 Sulfate, Dissolved 8.9J mg/L 10.0 2.2 5 12/06/24 18:36 14808-79-8 D3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-STM_20241121	Lab ID:	40287968003	Collecte	d: 11/21/24	08:00	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
310.2 Alkalinity	Analytical Pace Anal	Method: EPA 3 ytical Services	10.2 - Green Ba	у					
Alkalinity, Total as CaCO3	22.1J	mg/L	25.0	7.4	1		12/02/24 14:02		
310.2 Alkalinity, Dissolved	Analytical Pace Anal	Method: EPA 3 ytical Services	10.2 - Green Ba	у					
Alkalinity, Total as CaCO3, Dissolved	22.2J	mg/L	25.0	7.4	1		12/02/24 12:21		
5310C Dissolved Organic Carbon	Analytical Pace Anal	Method: SM 53 ytical Services	310C - Green Ba	у					
Dissolved Organic Carbon	8.0	mg/L	0.50	0.19	1		12/03/24 03:23		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.:

40287968

Sample: SW-C5_20241121	Lab ID:	40287968004	Collected:	11/21/24	4 09:40	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytica	I Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	alytical Services	- Green Bay						
Calcium	6930	ua/L	254	76.2	1	11/26/24 07:24	11/27/24 21:08	7440-70-2	
Copper	15.8	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:08	7440-50-8	
Iron	1300	ug/L	250	58.0	1	11/26/24 07:24	11/27/24 21:08	7439-89-6	
Magnesium	3260	ug/L	250	31.2	1	11/26/24 07:24	11/27/24 21:08	7439-95-4	
Manganese	30.3	ug/L	4.0	1.2	1	11/26/24 07:24	11/27/24 21:08	7439-96-5	
Potassium	2120	ug/L	789	237	1	11/26/24 07:24	11/27/24 21:08	7440-09-7	
Sodium	12000	ug/L	250	42.0	1	11/26/24 07:24	11/27/24 21:08	7440-23-5	
Total Hardness by 2340B	30.7	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:08		
Zinc	23.4J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:08	7440-66-6	
6020B MET ICPMS, Dissolved	Analytica	I Method: EPA 6	020B Prepa	ration Met	thod: EF	PA 3010A			
	Pace Ana	alytical Services	- Green Bay						
Calcium, Dissolved	7370	ug/L	254	76.2	1	11/26/24 07:24	12/03/24 20:49	7440-70-2	D9
Copper, Dissolved	12.9	ug/L	6.4	1.9	1	11/26/24 07:24	12/03/24 20:49	7440-50-8	
Iron, Dissolved	329	ua/L	250	58.0	1	11/26/24 07:24	12/03/24 20:49	7439-89-6	
Magnesium. Dissolved	3420	ua/L	250	31.2	1	11/26/24 07:24	12/03/24 20:49	7439-95-4	D9
Manganese, Dissolved	16.0	ua/L	4.0	1.2	1	11/26/24 07:24	12/03/24 20:49	7439-96-5	
Potassium, Dissolved	2190	ug/L	789	237	1	11/26/24 07:24	12/03/24 20:49	7440-09-7	D9
Sodium, Dissolved	13500	ug/L	250	42.0	1	11/26/24 07:24	12/03/24 20:49	7440-23-5	D9
Total Hardness by 2340B, Dissolved	32.5	mg/L	1.7	0.32	1	11/26/24 07:24	12/03/24 20:49		
Zinc, Dissolved	22.8J	ug/L	34.4	10.3	1	11/26/24 07:24	12/03/24 20:49	7440-66-6	
2540D Total Suspended Solids	Analytica Pace Ana	l Method: SM 25 alytical Services	540D - Green Bay						
Total Suspended Solids	1.2	mg/L	1.0	0.48	1		11/26/24 13:34		
4500S2F Sulfide, Iodometric	Analytica Pace Ana	l Method: SM 45 alytical Services	500-S F (2000 - Green Bay	0)					
Sulfide	<1.2	mg/L	4.0	1.2	1		11/27/24 16:26		
4500S2F Sulfide,Diss Iodometrc	Analytica Pace Ana	l Method: SM 45 alytical Services	500-S F (2000 - Green Bay	0)					
Sulfide, Dissolved	<1.2	mg/L	4.0	1.2	1		11/27/24 16:09		
300.0 IC Anions	Analytica Pace Ana	l Method: EPA 3 alytical Services	00.0 - Green Bay						
Chloride	24.4	mg/L	10.0	3.0	5		12/06/24 18:12	16887-00-6	
Sulfate	7.8J	mg/L	10.0	2.2	5		12/06/24 18:12	14808-79-8	D3
300.0 IC Anions, Dissolved	Analytica Pace Ana	l Method: EPA 3 alytical Services	00.0 - Green Bay						
Chloride, Dissolved	25.3	mg/L	10.0	3.0	5		12/06/24 18:46	16887-00-6	D9
Sulfate, Dissolved	8.2J	mg/L	10.0	2.2	5		12/06/24 18:46	14808-79-8	D3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-C5_20241121	Lab ID:	40287968004	Collected	: 11/21/24	09:40	Received: 11/	22/24 12:10 Ma	trix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
310.2 Alkalinity	Analytical	Method: EPA 3	10.2						
	Pace Ana	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3	14.4J	mg/L	25.0	7.4	1		12/02/24 14:03		
310.2 Alkalinity, Dissolved	Analytical	Method: EPA 3	10.2						
-	Pace Ana	lytical Services	- Green Bay						
Alkalinity, Total as CaCO3, Dissolved	14.9J	mg/L	25.0	7.4	1		12/02/24 12:22		
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
-	Pace Ana	lytical Services	- Green Bay						
Dissolved Organic Carbon	8.5	mg/L	0.50	0.19	1		12/03/24 03:39		

Project:	FMC-2024_04 FLAMBEAU MINE CO.
----------	-------------------------------

Pace Project No.: 40287968

Sample: SW-EB_20241121	Lab ID:	40287968005	Collecte	d: 11/21/24	10:15	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper	7.8	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 20:51	7440-50-8	
Total Hardness by 2340B	60.7	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 20:51		
Zinc	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 20:51	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper, Dissolved	6.3J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 17:40	7440-50-8	
Total Hardness by 2340B, Dissolved	58.2	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 17:40		
Zinc, Dissolved	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 17:40	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	10C						
	Pace Anal	ytical Services	- Green Ba	у					
Dissolved Organic Carbon	7.4	mg/L	0.50	0.19	1		12/03/24 03:55		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

Sample: SW-NBOUT_20241121	Lab ID:	40287968006	Collecte	d: 11/21/24	4 10:40	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper	6.3J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:12	7440-50-8	
Total Hardness by 2340B	60.4	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:12		
Zinc	12.4J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:12	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper, Dissolved	5.1J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 17:57	7440-50-8	
Total Hardness by 2340B, Dissolved	58.4	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 17:57		
Zinc, Dissolved	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 17:57	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Green Ba	у					
Dissolved Organic Carbon	7.2	mg/L	0.50	0.19	1		12/03/24 04:13		

Project:	FMC-2024_04 FLAMBEAU MINE CO.
----------	-------------------------------

Pace Project No.: 40287968

Sample: SW-NB_20241121	Lab ID:	40287968007	Collecte	d: 11/21/24	11:15	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper	5.6J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:16	7440-50-8	
Total Hardness by 2340B	64.8	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:16		
Zinc	32.3J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:16	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper, Dissolved	4.6J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 18:01	7440-50-8	
Total Hardness by 2340B, Dissolved	60.2	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 18:01		
Zinc, Dissolved	33.8J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 18:01	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Green Ba	у					
Dissolved Organic Carbon	5.6	mg/L	0.50	0.19	1		12/03/24 04:29		

Project: FMC-2024_04 FLAMBEAU MINE CO.

i iojoot.

Pace Project No.: 40287968

Sample: SW-HWY27W_20241121	Lab ID:	40287968008	Collected	d: 11/21/24	4 11:45	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Bay	/					
Copper	9.5	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:20	7440-50-8	
Total Hardness by 2340B	10.3	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:20		
Zinc	19.2J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:20	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prepa	aration Me	thod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Bay	/					
Copper, Dissolved	6.6	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 18:05	7440-50-8	
Total Hardness by 2340B, Dissolved	8.5	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 18:05		
Zinc, Dissolved	16.4J	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 18:05	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	10C						
	Pace Anal	ytical Services	- Green Bay	/					
Dissolved Organic Carbon	7.8	mg/L	0.50	0.19	1		12/03/24 05:06		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287

		-
t No.:	40287968	

Sample: SW-HWY27E_20241121	Lab ID:	40287968009	Collected: 11/21/24 12:00			Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper	13.3	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:25	7440-50-8	
Total Hardness by 2340B	44.9	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:25		
Zinc	99.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:25	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: El	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper, Dissolved	9.8	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 18:10	7440-50-8	
Total Hardness by 2340B, Dissolved	41.4	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 18:10		
Zinc, Dissolved	92.8	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 18:10	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	10C						
	Pace Anal	ytical Services	- Green Ba	у					
Dissolved Organic Carbon	6.9	mg/L	0.50	0.19	1		12/03/24 05:24		

Project:	FMC-2024_04 FLAMBEAU MINE CO.
----------	-------------------------------

Pace Project No.: 40287968

Sample: CP-04_20241121	Lab ID:	40287968010	Collected	d: 11/21/24	1 08:45	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	y					
Copper	30.5	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 21:29	7440-50-8	
Total Hardness by 2340B	64.2	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 21:29		
Zinc	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 21:29	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	y					
Copper, Dissolved	21.8	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 18:14	7440-50-8	
Total Hardness by 2340B, Dissolved	59.6	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 18:14		
Zinc, Dissolved	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 18:14	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	810C						
	Pace Anal	ytical Services	- Green Ba	y					
Dissolved Organic Carbon	12.4	mg/L	0.50	0.19	1		12/03/24 05:40		

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.:

ject No.: 40287968

Sample: SW-EB-DUP_20241121	Lab ID:	40287968011	Collecte	d: 11/21/24	4 10:15	Received: 11/	22/24 12:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	thod: El	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper	8.0	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 20:55	7440-50-8	
Total Hardness by 2340B	61.6	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 20:55		
Zinc	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 20:55	7440-66-6	
6020B MET ICPMS, Dissolved	Analytical	Method: EPA 6	020B Prep	aration Met	thod: El	PA 3010A			
	Pace Anal	ytical Services	- Green Ba	у					
Copper, Dissolved	5.3J	ug/L	6.4	1.9	1	11/26/24 07:24	11/27/24 18:26	7440-50-8	
Total Hardness by 2340B, Dissolved	56.7	mg/L	1.7	0.32	1	11/26/24 07:24	11/27/24 18:26		
Zinc, Dissolved	<10.3	ug/L	34.4	10.3	1	11/26/24 07:24	11/27/24 18:26	7440-66-6	
5310C Dissolved Organic Carbon	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Green Ba	у					
Dissolved Organic Carbon	7.5	mg/L	0.50	0.19	1		12/03/24 05:56		

Project:	FMC-2	024_04 FLA	MBEAU MINE C	Э.										
Pace Project No.:	402879	68												
QC Batch:	49115	54		Analy	ysis Metho	od:	EF	PA 6020B						
QC Batch Method:	EPA 3	8010A		Analy	ysis Descr	iption:	60	20B MET						
				Labo	oratory:	•	Pa	ace Analvti	cal Servic	ces - Green	Bav			
Associated Lab Sar	nples:	402879680 402879680	001, 40287968002 008, 40287968009	2, 4028796 9, 4028796	58003, 402 58010, 402	287968004 287968011	, 40)2879680()5, 40287	968006, 40	287968007	,		
METHOD BLANK:	281223	80			Matrix: W	/ater								
Associated Lab Sar	nples:	402879680 402879680	001, 40287968002 008, 40287968009	2, 4028796 9, 4028796	8003, 402 8010, 402	287968004 287968011	, 40	028796800)5, 40287	968006, 40	287968007	7,		
Dama			11-26-	Blar	nk	Reporting		A		0	_			
Paran	neter		Units	Res		Limit		Analy	zed	Qualifier	S			
Calcium			ug/L		<76.2	2	54	11/27/24	20:01					
Copper			ug/L		<1.9	6	6.4	11/27/24	20:01					
Iron			ug/L		<58.0	2	50	11/27/24	20:01					
Magnesium			ug/L		<31.2	2	50	11/27/24	20:01					
Manganese			ug/L		<1.2		4.0	11/27/24	20:01					
Potassium			ug/L		<237	7	89	11/27/24	20:01					
Sodium	2400		ug/L		<42.0	2	1 7	11/27/24	20:01					
Zinc	2340D		ng/∟		<0.32	3/	1.7	11/27/24	20.01					
Zino			ug/L		<10.5	0-	 .	11/21/2-	20.01					
LABORATORY CO	NTROL	SAMPLE:	2812231											
				Spike	LC	CS		LCS	% F	Rec				
Parar	neter		Units	Conc.	Re	sult		% Rec	Lim	its	Qualifiers	_		
Calcium			ug/L	1000	00	9550		95	5	80-120				
Copper			ug/L	25	50	245		98	3	80-120				
Iron			ug/L	1000	00	9920		99)	80-120				
Magnesium			ug/L	1000	00	10200		102	2	80-120				
Manganese			ug/L	25	0	246		98	5	80-120				
Potassium			ug/L	1000	0	9890		95	,	80-120				
Total Hardnoss by 2	240B		ug/L	1000	0	9750		97		80-120				
Zinc	.540B		ug/L	25	50	255		102)	80-120				
			ug/L	20		200		101	-	00 120				
MATRIX SPIKE & M	ATRIX S		LICATE: 28122	232		281223	33							
				MS	MSD									
Parameter	r	Units	40287968002 Result	Spike Conc.	Spike Conc.	MS Result		MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium		ug/L	11800	10000	10000	21300)	21100	95	93	75-125	1	20	
Copper		ug/L	14.7	250	250	257	7	259	97	98	75-125	1	20	
Iron		ug/L	1280	10000	10000	11300)	11400	100	101	75-125	1	20	
Magnesium		ug/L	5100	10000	10000	15100)	15400	100	103	75-125	2	20	
Manganese		ug/L	64.4	250	250	308	3	313	97	99	75-125	1	20	
Potassium		ug/L	2150	10000	10000	12100)	12200	99	101	75-125	1	20	
Sodium		ug/L	14900	10000	10000	24700)	24900	98	100	75-125	1	20	
Total Hardness by 2	340B	mg/L	50.4			115	5	116				1	20	
Zinc		ug/L	19.9J	250	250	271	1	274	100	102	75-125	1	20	
Re	esults nres	ented on this r	age are in the units in	ndicated by th	ne "Units" co	lumn excent	whe	re an alterna	te unit is pr	esented to the	right of the r	esult.		

pag

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Pace Project No.:	FMC-2 402879	024_04 FLA 968	MBEAU MINE C	0.										
QC Batch:	49115	53		Anal	vsis Metł	hod:	F	PA 6020B						
QC Batch Method:	FPA 3	3010A		Anal	vsis Des	cription:	60	020B MET	Dissolved	1				
				Labo	pratory.	0.19.00.11	P	ace Analvt	ical Servic	:es - Green	Bay			
Associated Lab Sar	nples:	402879680 402879680	001, 4028796800 008, 4028796800	2, 4028796 9, 4028796	68003, 40 68010, 40	028796800 028796801)4, 4) 1	02879680	05, 40287	968006, 40	287968007	7,		
METHOD BLANK:	281222	25			Matrix:	Water								
Associated Lab Sar	nples:	402879680 402879680	001, 4028796800 008, 4028796800	2, 4028796 9, 4028796	68003, 40 68010, 40	028796800 028796801)4, 4(1	02879680	05, 40287	968006, 40	287968007	',		
Paran	notor		Linite	Blai	nk	Reportin	g	Analy	/zed	Qualifier	c			
	netei					Linin	254	12/02/2	1 20.15	Quaimer				
Calcium, Dissolved			ug/L		0.2</td <td></td> <td>204 6 4</td> <td>12/03/24</td> <td>4 20:15</td> <td></td> <td></td> <td></td> <td></td> <td></td>		204 6 4	12/03/24	4 20:15					
Iron Dissolved			ug/L		<58.0		250	12/03/24	4 20:15					
Magnesium, Dissolv	ved		ug/L		<31.2		250	12/03/24	4 20:15					
Manganese, Dissolv	ved		ug/L		<1.2		4.0	12/03/24	4 20:15					
Potassium, Dissolve	ed		ug/L		<237		789	12/03/24	4 20:15					
Sodium, Dissolved			ug/L		<42.0		250	12/03/24	4 20:15					
Total Hardness by 2	2340B,		mg/L		<0.32		1.7	12/03/24	4 20:15					
Dissolved Zinc, Dissolved			ug/L		<10.3	:	34.4	12/03/24	4 20:15					
LABORATORY CO	NTROLS	SAMPLE:	2812226	Spike		LCS		LCS	% R	lec				
Parar	neter		Units	Conc.	R	Result		% Rec	Lim	its	Qualifiers	_		
Calcium, Dissolved			ug/L	1000	00	10400		104	4	80-120				
Copper, Dissolved			ug/L	25	50	262		105	5	80-120				
Iron, Dissolved			ug/L	1000	00	10600		106	5	80-120				
Magnesium, Dissol	ved		ug/L	1000	50	10800		108	3	80-120				
Manganese, Dissol	vea		ug/L	25	50 20	10900		109	9	80-120				
Sodium Dissolved	eu		ug/L	1000	00 10	10800		100	2	80-120 80-120				
Total Hardness by 2	2340B,		mg/L	1000	50	70.4		100	5	00 120				
Zinc, Dissolved			ug/L	25	50	266		106	6	80-120				
MATRIX SPIKE & M	ATRIX S	SPIKE DUPI	_ICATE: 28122	227 MS	Med	28122	228							
			40287968002	Spike	Spike	MS		MSD	MS	MSD	% Rec		Мах	
Parameter	r	Units	Result	Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium, Dissolved		ug/L	12600	10000	1000	2290	00	23100	103	105	75-125	1	20	
Copper, Dissolved		ug/L	11.8	250	25	50 27	70	269	103	103	75-125	0	20	
Iron, Dissolved		ug/L	307	10000	1000	00 1080	00	10800	105	105	75-125	0	20	
Magnesium, Dissolv	/ed	ug/L	5390	10000	1000	0 1620	00	16200	108	108	75-125	0	20	
Manganese, Dissolv	/ed	ug/L	52.2	250	25	50 32	22	321	108	107	75-125	0	20	
Potassium, Dissolve	ed	ug/L	2260	10000	1000	00 1300	00	12800	108	106	75-125	2	20	
Sodium, Dissolved		ug/L	17000	10000	1000	00 2810	00	28100	110	111	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

MATRIX SPIKE & MATRIX S		2812228										
Parameter	Units	40287968002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Total Hardness by 2340B, Dissolved	mg/L	53.7			124	125				0	20	
Zinc, Dissolved	ug/L	19.2J	250	250	284	283	106	106	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	FMC-2024_04 FL	AMBEAU MINE CO.						
Pace Project No.:	40287968							
QC Batch:	491214		Analysis Me	ethod:	SM 2540D			
QC Batch Method:	SM 2540D		Analysis De	escription:	2540D Total Su	spended Solid	S	
			Laboratory:		Pace Analytica	Services - Gre	en Bay	
Associated Lab Sar	mples: 40287968	001, 40287968002,	40287968003,	40287968004				
METHOD BLANK:	2812479		Matrix	: Water				
Associated Lab Sar	nples: 40287968	001, 40287968002,	40287968003,	40287968004				
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Suspended So	olids	mg/L	<0.48	. 1.	0 11/26/24 13	3:33		
LABORATORY CO	NTROL SAMPLE:	2812480						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Suspended So	olids	mg/L	107	90.0	84	80-120		
SAMPLE DUPLICA	TE: 2812481							
			40287922001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Suspended Se	olids	mg/L	17.6	i 14.	8	17	10 R1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	FMC-2024_04 FLA	MBEAU MINE C	О.									
Pace Project No.:	40287968											
QC Batch:	491284		Anal	ysis Metho	d:	SM 4500-S	F (2000)					
QC Batch Method:	SM 4500-S F (20	00)	Analy	ysis Descri	ption:	4500S2F Su	ulfide, Diss	olved lodo	metric			
			Labo	oratory:		Pace Analyt	ical Servic	es - Green	Bay			
Associated Lab Sar	nples: 40287968	001, 4028796800	2, 4028796	8003, 402	87968004							
METHOD BLANK:	2813037			Matrix: W	ater							
Associated Lab Sar	mples: 40287968	001, 4028796800	2, 4028796	68003, 402	87968004							
			Blai	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifier	S			
Sulfide		mg/L		<1.2	4	.0 11/27/24	4 15:51					
LABORATORY CO	NTROL SAMPLE:	2813038										
			Spike	LC	S	LCS	% R	ec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Lim	its	Qualifiers	_		
Sulfide		mg/L	42	.8	38.8	91	1	90-110				
MATRIX SPIKE & N	ATRIX SPIKE DUP	LICATE: 2813	039		281304	0						
			MS	MSD								
_	<i></i>	40287968001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	a <i>i</i>
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfide	mg/L	<1.2	42.8	42.8	40.8	38.0	95	89	80-120	7	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	FMC-2024_04 FLA	MBEAU MINE C	О.									
Pace Project No.:	40287968											
QC Batch:	491283		Anal	ysis Metho	d:	SM 4500-S	F (2000)					
QC Batch Method:	SM 4500-S F (20	00)	Anal	ysis Descri	ption:	4500S2F St	ulfide, Iodo	metric				
			Labo	oratory:		Pace Analyt	ical Service	es - Green	Bay			
Associated Lab Sar	nples: 40287968	001, 4028796800	2, 4028796	68003, 402	87968004							
METHOD BLANK:	2813033			Matrix: W	ater							
Associated Lab Sar	nples: 40287968	001, 4028796800	2, 4028796	68003, 402	87968004							
			Bla	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifier	S			
Sulfide		mg/L		<1.2	4	.0 11/27/24	16:13					
LABORATORY CO	NTROL SAMPLE:	2813034										
			Spike	LC	s	LCS	% R	ес				
Parar	neter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Sulfide		mg/L		12	40.0	99	5 9	90-110				
MATRIX SPIKE & N	IATRIX SPIKE DUP	LICATE: 2813	035		281303	6						
			MS	MSD								
_		40287897001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	- ·
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfide	mg/L	<1.2	42	42	24.8	27.2	59	64	80-120	9	10	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	FMC-2024_04 FL 40287968	AMBEAU MINE CO	D.										
QC Batch:	491770		Anal	ysis Metho	d:	EF	PA 300.0						
QC Batch Method:	EPA 300.0		Anal	ysis Descri	iption:	30	0.0 IC Ani	ons,Disso	lved				
			Labo	oratory:		Pa	ace Analyti	cal Servic	es - Green	Bay			
Associated Lab San	nples: 40287968	8001, 40287968002	2, 4028796	68003, 402	87968004	4							
METHOD BLANK:	2815179			Matrix: W	/ater								
Associated Lab San	nples: 40287968	8001, 40287968002	2, 4028796	287968003, 40287968004									
			Bla	nk	Reporting)							
Paran	neter	Units	Res	ult	Qualifiers	6							
Chloride		mg/L		<0.59		2.0	12/06/24	14:44					
Sulfate		mg/L		<0.44		2.0	12/06/24	14:44					
LABORATORY CON	NTROL SAMPLE:	2815180											
_			Spike	LC	CS		LCS	% R	ec				
Paran	neter	Units	Conc.	Res	sult	Ċ	% Rec	Lim	ts (Qualifiers	_		
Chloride		mg/L	2	20	20.8		104		90-110				
Sulfate		mg/L	2	20	21.1		105		90-110				
MATRIX SPIKE & M		PLICATE: 28151	81		28151	82							
			MS	MSD									
		40287876001	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	r Units	s Result	Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/l	0.88J	20	20	21.	8	21.9	104	105	90-110	0	15	
Sulfate	mg/l	- 3.5	20	20	25.	0	25.0	108	108	90-110	0	15	
			02		20151	01							
WAINA SFINE & W	ATRIA SPIRE DUI	LIGATE. 20131	MS	MSD	201310	04							
		40287971007	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	r Units	s Result	Conc.	Conc.	Result		Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	ma/l		100	100	11:	2	114	105	107	90-110	2	15	
Sulfate	mg/L	40.7	100	100	14	7	150	107	109	90-110	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	FMC-2024_04 F 40287968	AMBEAU MINE CO	Э.									
QC Batch:	491771		Anal	ysis Metho	d:	EPA 300.0						
QC Batch Method:	EPA 300.0		Analy	ysis Descri	ption:	300.0 IC A	nions					
			Labo	oratory:		Pace Analy	tical Servic	es - Green	Bay			
Associated Lab Sar	mples: 4028796	8001, 40287968002	2, 4028796	68003, 402	87968004							
METHOD BLANK:	2815185			Matrix: W	ater							
Associated Lab Sar	mples: 4028796	8001, 40287968002	2, 4028796	68003, 402	87968004							
	Blai	nk	Reporting									
Parar	meter	Units	Res	ult	Limit	Ana	lyzed	Qualifier	S			
Chloride		mg/L		<0.59	2	2.0 12/06/2	24 14:32					
Sulfate		mg/L		<0.44	2	2.0 12/06/2	24 14:32					
LABORATORY CO	NTROL SAMPLE:	2815186										
_			Spike	LC	S	LCS	% R	ec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Lim	its (Qualifiers	_		
Chloride		mg/L	2	20	20.0	1(00	90-110				
Sulfate		mg/L	2	20	20.9	1()4	90-110				
MATRIX SPIKE & N		PLICATE: 28151	87		281518	38						
			MS	MSD	201010							
		40288077003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/	L <0.59	20	20	21.3	3 20.6	104	101	90-110	3	15	
Sulfate	mg,	L <0.44	20	20	22.8	3 21.9	114	109	90-110	4	15	MO
			190		291510	00						
	MATRIX OF IRE DU	LIOATE. 20131	MS	MSD	201318							
		40288034010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Uni	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	ma	L 446	400	400	839	866	98	105	90-110	3	15	
Sulfate	mg,	L 19.1	100	100	126	6 125	106	106	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: F	-MC-20	24_04 FLA	MBEAU MINE C	О.									
Pace Project No.: 4	1028796	88											
QC Batch:	49143	5		Anal	sis Method	d:	EPA 310.2						
QC Batch Method:	EPA 31	0.2		Anal	ysis Descrij	ption:	310.2 Alkali	nity					
				Labo	ratory:		Pace Analyt	ical Servic	es - Green	Bay			
Associated Lab Samp	oles:	402879680	001, 4028796800	2, 4028796	8003, 402	87968004							
METHOD BLANK: 2	2813917	,			Matrix: W	ater							
Associated Lab Samp	oles:	402879680	001, 4028796800	2, 4028796	8003, 402	87968004							
				Bla	lank Reporting								
Parameter Units			Res	ult	Limit	Anal	yzed	Qualifiers	6				
Alkalinity, Total as CaCO3 mg/L			mg/L		<7.4	25	.0 12/02/2	4 11:15					
LABORATORY CONT	FROL S	AMPLE:	2813918										
			Spike	LC	S	LCS	% R	ec					
Parame	eter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_		
Alkalinity, Total as Ca	CO3		mg/L	10	100 10		10	7 9	90-110				
MATRIX SPIKE & MA	TRIX S	PIKE DUP	LICATE: 2813	919 MS	MSD	281392	D						
			40287801021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as Ca	CO3	mg/L	382	100	100	491	485	109	103	90-110	1	20	
MATRIX SPIKE & MA	TRIX S	PIKE DUP	LICATE: 2813	921		281392	2						
				MS	MSD								
Doromotor		l Inite	40287801024 Recult	Spike	Spike	MS Booult	MSD Booult	MS % Rec	MSD % Boc	% Rec	חחם	Max	Qual
								/0 Rec	/0 REC				Qual
Alkalinity, Total as Ca	203	mg/L	334	100	100	433	429	99	95	90-110	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	FMC-2	FMC-2024_04 FLAMBEAU MINE CO.															
Pace Project No.:	402879	968															
QC Batch:	4914	38		Anal	ysis Method	d:	EPA 310.2										
QC Batch Method:	EPA 3	310.2		Anal	ysis Descrij	otion:	310.2 Alkalinity, Dissolved										
				Labo	oratory:		Pace Analyt	tical Servic	es - Green	Bay							
Associated Lab Sar	nples:	402879680	01, 4028796800	02, 4028796	68003, 4028	87968004											
METHOD BLANK:	281393	32			Matrix: W	ater											
Associated Lab Sar	nples:	402879680	01, 4028796800	02, 4028796	40287968003, 40287968004												
			Bla	nk l	Reporting												
Parameter Units			Res	ult Limit Analyzed Qualifiers													
Alkalinity, Total as CaCO3, mg/L Dissolved				<7.4	25	.0 12/02/2	4 12:15										
LABORATORY CO	NTROL	SAMPLE:	2813933														
		Spike	LC	S	LCS	% R	ec										
Paran	neter		Units	Conc.	Res	sult	% Rec	Limi	ts	Qualifiers							
Alkalinity, Total as C Dissolved	CaCO3,		mg/L	100		105	10	5 9	90-110								
MATRIX SPIKE & M	IATRIX		_ICATE: 2813	934		281393	5										
				MS	MSD												
			40287968001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max					
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual				
Alkalinity, Total as C Dissolved	aCO3,	mg/L	<7.4	100	100	110	113	105	107	90-110	2	20					
MATRIX SPIKE & M			_ICATE: 2813	936		281393	7										
				MS	MSD												
			40287971016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max					
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual				
Alkalinity, Total as C Dissolved	aCO3,	mg/L	409	200	200	612	606	101	99	90-110	1	20					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	FMC-2	024_04 FLA	MBEAU MINE C	Ο.									
Pace Project No.:	402879	968											
QC Batch:	4915	18		Anal	ysis Metho	od:	SM 5310C						
QC Batch Method:	SM 5	310C		Anal	ysis Descr	ription:	5310C Diss	olved Orga	nic Carbor	1			
				Labo	oratory:		Pace Analy	tical Servic	es - Green	Bay			
Associated Lab Sam	001, 4028796800 008, 4028796800	2, 4028796 9, 4028796	68003, 402 68010, 402	287968004, 287968011	, 402879680	05, 402879	968006, 40	287968007	,				
METHOD BLANK:	281414	48			Matrix: V	Vater							
Associated Lab Sam	001, 4028796800 008, 4028796800	2, 40287968003, 40287968004, 40287968005, 40287968006, 40287968007, 9, 40287968010, 40287968011											
				Bla	nk	Reporting							
Parameter Units			Units	Res	sult	Limit	Anal	yzed	Qualifier	S			
Dissolved Organic Carbon			mg/L		<0.19	0.8	50 12/02/2	4 23:16					
LABORATORY CON	NTROL	SAMPLE:	2814149										
Param	neter		Units	Spike Conc.	L(Re	CS esult	LCS % Rec	% R Limi	ec its (Qualifiers			
Dissolved Organic C	Carbon		mg/L	12	2.5	12.5	100		80-120				
MATRIX SPIKE & M	IATRIX	SPIKE DUP	LICATE: 2814	150		281415	1						
				MS	MSD								
Demonstra		11-26-	10716404001	Spike	Spike	MS	MSD	MS	MSD	% Rec	000	Max	
Parameter			Result	Conc.	Conc.	Result	Result	% Rec	% Rec	LIMITS			Quai
Dissolved Organic C	arbon	mg/L	1.1	6	6	6.9	6.9	95	96	80-120	1	20	
MATRIX SPIKE & M	IATRIX	SPIKE DUP	LICATE: 2814	152		281415	3						
				MS	MSD					_			
Parameter		Units	10716232001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Dissolved Organic C	arbon	mg/L	1.3	6	6	6.9	7.0	94	95	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: FMC-2024_04 FLAMBEAU MINE CO.

Pace Project No.: 40287968

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- D9 Dissolved result is greater than the total. Data is within laboratory control limits.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- PP The mass of dried residue obtained did not meet the test method requirements based on volume used.
- R1 RPD value was outside control limits.
- T3 Insufficient sample received from client to perform the analysis per EPA method requirements.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FMC-2024_04 FLAMBEAU MINE CO. Pace Project No.: 40287968

Analytical **QC Batch Method** QC Batch Lab ID Sample ID **Analytical Method** Batch 40287968001 SW-C9_20241121 491154 491260 EPA 3010A EPA 6020B 40287968002 SW-C1 20241121 EPA 3010A 491154 EPA 6020B 491260 40287968003 SW-STM_20241121 EPA 3010A 491154 EPA 6020B 491260 40287968004 SW-C5_20241121 491154 EPA 3010A EPA 6020B 491260 40287968005 SW-EB_20241121 EPA 3010A 491154 EPA 6020B 491260 40287968006 SW-NBOUT_20241121 EPA 3010A 491154 EPA 6020B 491260 40287968007 SW-NB_20241121 EPA 3010A 491154 EPA 6020B 491260 40287968008 SW-HWY27W_20241121 EPA 3010A 491154 EPA 6020B 491260 40287968009 SW-HWY27E_20241121 491154 EPA 6020B EPA 3010A 491260 40287968010 CP-04 20241121 491154 EPA 6020B EPA 3010A 491260 SW-EB-DUP_20241121 40287968011 EPA 3010A 491154 EPA 6020B 491260 40287968001 SW-C9 20241121 EPA 3010A 491153 EPA 6020B 491259 40287968002 SW-C1_20241121 491153 **FPA 3010A** FPA 6020B 491259 40287968003 SW-STM_20241121 491153 EPA 3010A EPA 6020B 491259 40287968004 SW-C5_20241121 491153 EPA 6020B EPA 3010A 491259 40287968005 SW-EB_20241121 EPA 3010A 491153 EPA 6020B 491259 40287968006 SW-NBOUT_20241121 EPA 3010A 491153 EPA 6020B 491259 40287968007 SW-NB_20241121 EPA 3010A 491153 EPA 6020B 491259 40287968008 SW-HWY27W 20241121 EPA 3010A 491153 EPA 6020B 491259 SW-HWY27E_20241121 EPA 6020B 40287968009 EPA 3010A 491153 491259 40287968010 CP-04 20241121 EPA 3010A 491153 EPA 6020B 491259 40287968011 SW-EB-DUP 20241121 EPA 3010A 491153 EPA 6020B 491259 40287968001 SW-C9 20241121 SM 2540D 491214 40287968002 SW-C1 20241121 SM 2540D 491214 SW-STM_20241121 40287968003 SM 2540D 491214 40287968004 SW-C5_20241121 SM 2540D 491214 40287968001 SW-C9_20241121 SM 4500-S F (2000) 491283 40287968002 SW-C1_20241121 SM 4500-S F (2000) 491283 40287968003 SW-STM_20241121 SM 4500-S F (2000) 491283 40287968004 SW-C5_20241121 491283 SM 4500-S F (2000) 491284 40287968001 SW-C9_20241121 SM 4500-S F (2000) 40287968002 SW-C1 20241121 SM 4500-S F (2000) 491284 40287968003 SW-STM_20241121 SM 4500-S F (2000) 491284 SM 4500-S F (2000) 491284 40287968004 SW-C5_20241121 40287968001 SW-C9_20241121 EPA 300.0 491771 40287968002 SW-C1_20241121 EPA 300.0 491771 40287968003 SW-STM_20241121 EPA 300.0 491771 40287968004 SW-C5_20241121 EPA 300.0 491771 40287968001 SW-C9_20241121 EPA 300.0 491770 40287968002 SW-C1_20241121 EPA 300.0 491770 40287968003 SW-STM 20241121 EPA 300.0 491770 40287968004 SW-C5 20241121 EPA 300.0 491770 491435 40287968001 SW-C9 20241121 FPA 310 2 40287968002 SW-C1 20241121 491435 EPA 310.2 40287968003 SW-STM_20241121 491435 EPA 310.2

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:FMC-2024_04 FLAMBEAU MINE CO.Pace Project No.:40287968

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40287968004	SW-C5_20241121	EPA 310.2	491435		
40287968001	SW-C9_20241121	EPA 310.2	491438		
40287968002	SW-C1_20241121	EPA 310.2	491438		
40287968003	SW-STM_20241121	EPA 310.2	491438		
40287968004	SW-C5_20241121	EPA 310.2	491438		
40287968001	SW-C9_20241121	SM 5310C	491518		
40287968002	SW-C1_20241121	SM 5310C	491518		
40287968003	SW-STM_20241121	SM 5310C	491518		
40287968004	SW-C5_20241121	SM 5310C	491518		
40287968005	SW-EB_20241121	SM 5310C	491518		
40287968006	SW-NBOUT_20241121	SM 5310C	491518		
40287968007	SW-NB_20241121	SM 5310C	491518		
40287968008	SW-HWY27W_20241121	SM 5310C	491518		
40287968009	SW-HWY27E_20241121	SM 5310C	491518		
40287968010	CP-04_20241121	SM 5310C	491518		
40287968011	SW-EB-DUP 20241121	SM 5310C	491518		

* Foth

•

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

28 7968 40 Page: 1 **of** of Cooler# 1 of

COC #

FMC-2024_04

2

15

Required Ship to Lth:	Required Project Information	1:	Required invoice	Information:													
Lab Name: Pace Analytical Services	Facility Do Flambeau M	Send Invoice to:	Accounting			TAT: Standa	TAT: Standard 10 day X Rush Mark C										
Address: .	Task Code	4_04	Address: 2121 In	novation Court P.O.	Box 5126	6, De Pere, WI.	If Rush, Dat	If Rush, Date due									
1241 Bellevue Street - Suite 9, Green Bay, WI	Site Address		City/State	De Pere, WI. 5411	15	Ph#: 920-497-2500	QC level Re	equired: Standard	X	Special Mark or							
Lab PM: JTod Noltemeyer	City LADYSMITH	State WI	17F777.23-07-	-73		<u> </u>	Lab Project	t ID (lab use)									
Phone/Fax 1)(608) 232-3300	Project Contact: Mark	Ciardelli	Send EDD to:	Nick Glander				Reque	ested Analyses	lyses							
Lab PM email 1764 Nolis and pacelabs.com	Phone/Fax: 920-496-666	56	CC Hardcopy	report to Sharon	Kozicki. N	Jick Glander		Filtered (Y/N)		1							
Applicable Lab Duote ##:	Email: Mark.C	lardelli@foth.com	CC electronic cop	y report to Sharo	n.Kozick	ki@foth.com				1							
	e l			nick.gl	ander@	ofoth.com											
	Valid Matrix Codes			1		Progenuatives				1							
	MATRIX MATRIX DRINKING WATER WP SURFACE WATER W GROUND WATER WO WATER QC				RS		r Mg	<u>با</u> ند بر	and and a								
	A CALL COLL COLL COLL COLL COLL COLL COL		SAMPLE	SAMPLE	AINE	Nao.	Na, C Fe	lity, o	u, Zu Ha								
Semala SIDSMUST BEUNIQUE	WIPE SW LAB LEACHATE - ANDIENT AIR AA TOLP L XXX SVE AIR AE	1 AMPL	DATE	(Military)	INO	rved at 3	Na, C Ss Ved C Ss Ss F, K	Ved A	hed S sea								
WE NEW YORK	A TI SOIL GAS OS	U N			P P	Pprese SSO4 30H 22S2C0 40H 40H 40H 40H 40H 40H 40H 40H 40H 40	otal (lardn K lardn I lardn M	otal / ulfate SS	otal S otal Cu issol	Comments/							
			44/04/0004	1130	#		FEIGET		FFDIQ								
SW-C9_20241121		WS G	11/21/2024	0030	8				X X								
2 <u>SW-C1_20241121</u>		WS G	11/21/2024	00,00	8	3 1 2 2	X X		X X	$\frac{1000}{103}$							
3 <u>SW-STM⁺ 20241121</u>	**************************************	WS G	11/21/2024	0800	8	3 1 2 2	X X	X X X X	X X								
4 <u>SW-C5_20241121</u>		WS G	11/21/2024	0940	8	3 1 2 2	X X	X X X X	X X	004							
5'- SW-EB-20241121		WS G	11/21/2024	1017	3	12		× ×	XX								
6 SW-NBOUT_20241121	· · · · · · · · · · · · · · · · · · ·	WS G	11/21/2024	1040	3	1 2		X	X X	1000							
7 <u>SW₇NB_20241121</u>		WS G	11/21/2024	1115	3	1 2		×	<u> </u>								
8 <u>SW-HWY27W_20241121</u>		WS G	11/21/2024	1145	3	1 2		X	X X	<u> </u>							
9 <u>SW-HWY27E_20241121</u>	······································	WS G	11/21/2024	1200	3	1 2		X	X X	ws							
10 <u>CP-04_20241121</u>		WS G	11/21/2024	0845	3	1 2		X	x x	010							
11 SW-EB-DUP_20241121		WS G	11/21/2024	1015	3	1 2		x	x x								
Additional Comments/Special Instructions:		RELINQUISHED B	Y / AFFILIATION	DATE	TIME	ACCEPTED BY / AFFILIATION	1	DATE TIME	Sample Recei	pt Conditions							
		Jim Engelhardt/	Merjent	21-Nov	1300	mill	11,	2/24 13.00		Y/N Y/N Y/N							
		para	- (Forge	1/inf	800	E.LOI	Dale II	12/14 0945		Y/N Y/N Y/N							
		E. La	P Pale	- Waleh	1210	mai	11/2	m 1210	6.1	(Y)N (Y)N (D)							
		,, <u>,</u>			1.1.1.				Y/N Y/N Y/N								
	1	SHIPPING METHO	D (mark as approp	riale) SAMPL	ER NAM	E AND SIGNATURE	*		ပွ	n or ž							
Include Equis EDD's	ſ	UPS COURIER	RER FEDEX Jim Engelhardt						ni qi	Blar Blar							
*Required Information for electronic data	a deliverable.	US MAIL	Other SIGNATU	IRE of SAMPLER:	0	DATE Signed	11/21/2024 Tim	18: 1300	ľen.	Trip San K							

https://merjent1-my.sharepoint.com/personal/jim_engelhardt_merjent_com/Documents/Desktop/Flambeau Mine Monitoring/COC/2024_FMC_StreamC_COC_202411212024_FMC_StreamC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_COC_202411212024_FMC_StreamC_StreamC_StreamC_StreamC_StreamC_StreamC_StreamC_StreamC_StreamSt

⊀ Foth

¥

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

7968 1 of Page Cooler # 2 of

FMC-2024_04

COC #

. . . .

2

Required Ship to Lab:	Required Project Information:	nformation: Required invoice information:						1															
Lab Name: Pace Analytical Services	*Facility ID #	Co.		Send Involce to:	Accounting					_		TAT	F: Stand	ard 10	day		x			Rush			Mark One
Address:	*Task Code # FMC-2024_	04		Address: 2121 Inr	novation Court P.O.	Box 512	6, De	Pere, WI.				lf R	If Rush, Date due										
1241 Bellevue Street - Suite 9, Green Bay, Wi	Site Address		t	City/State De Pere, WI. 54115 Ph #: 920-497-2500					QC level Required: Standard X Special Mark c							Mark one							
Lab PM: Tod Noltemeyer	City LADYSMITH Sta	te \	Ni	17F777.23-07-73					Lat	Lab Project ID (lab use)													
Phone/Fax: (608) 232-3300	Project Contact: Mark C	ardelli		Send EDD to: Nick Glander							Requested Analyses												
Lab PM email Tod.Noltemeyer@pacelabs.com	Phone/Fax: 920-496-6656			CC Hardcopy r	eport to Sharon I	Kozicki, N	vick G	lander			Γ		Filtered (Y/N)										
Applicable Lab Quote #:	Email: Mark.Cia	rdelli@	foth.com	CC electronic copy	report to Sharor	n.Kozicl	ki@fo	oth.com								Π		\Box					
1 - d ¹ + }				<u>Inck.grander@iotri.com</u>					N	Y	N	Y	Y	NN	I N	Y	Υ						
1 David 1	Valid Matrix Codes MATRIX MATRIX	·ш	dy.					Pre	servati	ves		<u>ರ</u> ೆ	e,		ວັ			8	p	\square			
*SAMPLE ID Samples IDs MUST BE UNIQUE	Label And WALER WY BUTCS CHARLES WY CROUND VARIER WY BUTCS CC WY CROUND VARIER WY BUTCS CC WY CROUND VARIER WY BUTCS CC WY REEL WATCR WY BUTCS CC WY CROUND VARIER WY BUTCS CC WY CROUND VARIER VARIER WY BUTCS CC WY VARIER DW US LECONTE- LLD AMPIENTAR AN TCLP LLT	TRIX COL	MPLE TYPE RAB C=CON	SAMPLE DATE	SAMPLE SAMPLE BUILD FOR SAMPLE TIME E SAMPLE			ate & NaOH	a, Cu, Fe, N Na, Zn, iss	ed Ca, Cu, F I, K, Na, Zn, ss	lkalinity, Cl,	ed Alkalinity		ulfide	, Zn and Hardn	ed Cu, Zn al iss	ed Suffide						
TEM	SOL GAB G3	₩ .	0 0 0			t OF O	npreser	NO3 2SO4	He	a2S20: lethanol	inc Acet	An, K. Hardne	Dissolv Ag, Mr Hardne	Total A Sulfate	Dissolv	g	SS	otal Cu)issolv lardne	Dissolv	Co Lab	omment: Sample	s/
1 SW-C9 20241121	· · · · · · · · · · · · · · · · · · ·	ws	G	11/21/2024	1130	8	3				2	x x	X	x x	X	x	XX			x	<u></u>	Dampie	1.0.
2 SW-C1 20241121		ws	G	11/21/2024	12R30	8	3	1 2			2	x	x	x	x	x	xx	;		x			
3 SW-STM_20241121		ws	G	11/21/2024	0800	8	3	1 2			2	x	x	x	x	x	xx	;		x			
4 SW-C5_20241121	······································	ws	G	11/21/2024	69940	8	3	1 2			2	x	x	x	x	x	xx			x			
5 SW-EB-20241121		ws	G	11/21/2024	1015	3		1 2						1	1	x		X	x				
6 SW-NBOUT_20241121		ws	G	11/21/2024	1040	3		1 2								x		x	x				
7 SW-NB_20241121		ws	G	11/21/2024	1115	3		1 2								x		x	x				
8 SW-HWY27W_20241121		ws	G	11/21/2024	1145	3		1 2								x		x	x	\Box			
9 SW-HWY27E_20241121		ws	G	11/21/2024	1200	3		1 2								x		x	x				
10 CP-04_20241121		ws	G	11/21/2024	0845	3		1 2								x		x	x				
11 SW-EB-DUP_20241121		ws	G	11/21/2024	1015	3		1 2								x		x	x				
]									
Additional Comments/Special Instructions:		RELIN	IQUISHED BY	/ AFFILIATION	DATE	TIME	AC	CEPTED	BY / AF	FILIAT	ION			DATE	TIA	ΛE	s	amp	le Re	ceipt (Conditio	ons	
		Jim E	ngelhardt/M	erjent	21-Nov	1300)		<u>l 1 q</u>	1 Co		É	5111) //	12/2	130	<u> </u>				Y	<u>/N</u>	Y/N	Y/N
			und	Front	11/22/2	1800)	Eź	let.	2.	Pl	ale	$\frac{1}{1}$	kele	09	4	Σ			<u> </u>	<u>/N</u>	Y/N	Y/N
			Eff	<u>Pale</u>	Upzby	1210		$\Delta \sim K$	\sim				11/2	M	n	<u>10</u>	'	<u>1-)</u>	<u>)</u>	<u>_</u>	<u>}N (</u>	<u>WN</u>	Y/()
,				-				(7										_	<u> </u>	<u>/N</u>	Y/N	Y/N
SHIPPING METHOD				HOD (mark as appropriate) SAMPLER NAME AND SIGNATURE										ŝ) =			8	응 <i>단</i>	ank?			
Include Equis EDD's								<u>`</u>	1				ntac ce?										
*Required information for electronic data deliverable. US MAIL			AIL	Other Signator	L VI OMWFLEK:	4	Ŷ	elle		and all		11/21/:	2024 ^{1'ir}	ne:			l I	2			8 8	.,	Tri

https://merjent1-my.sharepoint.com/personal/jim_engelhardt_merjent_com/Documents/Desktop/Flambeau Mine Monitoring/COC/2024_FMC_StreamC_COC_202411212024_FMC_StreamStreamC_StreamC_StreamC_StreamSt
DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

(Clien	t Na	me:	Fr	th	`			Project # <u>40287968</u>																									
All c	ontair	iers n	eeding	g pres	ervatio	on ha	ve be	en ch	ecked Lab	and r	oted I	below: paper:	10	-87es 000	44	□No	La	⊡N/A b Std #	#ID of	prese	rvatior	n (if pł	-l adju	sted):					Inii coi	ial wh nplete	en ed: ⁄	nt	Date/ Time:	
									r											-			_					* (-		62			p	
			(Glass	;					Plast	ic					Via	als				Ja	ars			Gen	eral		(>6mn	<u>8</u>	Act pH	≥12	8	djuste	Volume
Pace	G1U	G1U	G1H	G4S	G5U	G2S	G3U	P1U	P3U	P3B	P3N	P3S	P2Z	G9C	G9T	G9U	G9H	G9M	G9D	GFU	G9U	/GFU	/PFU	P5T	PLC	۲ N	N 2)A Vials (2SO4 pF	AH+Zn A	Hq HO	NO3 pH	ł after a	(mL)
001	_₹_		<		<u> </u>	◄	<u></u>				<u>m</u> 177	<u></u>	<u>m</u> 7	>		>		<u>></u>	>	<u> </u>	<u> </u>	<u> </u>	5	S	<u>N</u>	<u></u>		Š	Ï	Ž	Ž	Ī	ā	25/5
002				Ť	· .			ľ	2	1	2		2	,							,								;	$\hat{\mathbf{Y}}$		$\mathbf{\hat{\mathbf{v}}}$		2.5/5
003				1				1	2		2		2															·		Ŷ	,	Ŷ	·	2.5/5
004				1		۰,		. (2		2		2														1		t.	X	, T	X.		2.5/5
005				1							2																					X		2.5 / 5
006		1		1		1					2			14. ¹			:					;			î,			ar 1				X		2.5/5
007				1		<u> </u>					2	<u> </u>														[X		2.5/5
008							·		ļ		2	2																				X		2.5/5
009	<u> </u>									<u> </u>	2	<u> </u>													ļ							X		2.5/5
010	<u> </u>						<u> </u>		<u></u>	<u> </u>	2		ļ							,					ļ				: 		<u>,</u>	X		2.5/5
011						<u> </u>		<u> </u>			12																ļ					X		2.5/5
012			-	-			<u> </u>					ŀ	·	·																		1 ,		2.575
013	<u> </u>					-	-	-												-		,			<u> </u>				,			,		2.5/5
015		,	, 			<u> '</u>				<u> </u>	-						<u> </u>						·				·:	·)		2.575
016						10	u																											2.575
017	·	·		r	-1/2	μų	-,					<u> </u>		·				\sim					i		1									25/5
018									· · ·								, ,																	2.5/5
019									1	1		-																					·	2.5/5
020			« ,			e	, ,														,					-	-							2.5/5
Except	ons to	preser	vation	check:	VOA,	Colif	orm,	TOC,	TOX,	тон,	O&G	, WI D	RO, P	henoli	cs, Ot	n <u>er:</u>	DC	50		-	Hea	dspac	e in V	OA Vi	ials (>6	; Smm):	⊡Ye	s ⊡N	io ⊿†	17A	*lf ye	s look	in hea	dspace column
AG1U	1 lite	er amb	oer gl	ass			BF	P1U	1 lite	r plas	tic un	pres				VG	9C	40 m	L clea	ar asco	orbic	w/ HC	:	JC	3FU	4 oz	ambe	r jar u	npres				I	
BG1U	1 lite	er clea	r gla	SS			BF	23U	250	mL pl	astic u	unpre	S			DO	99T	40 m	L amb	oer Na	a Thio	I		JC	39U	9 oz	ambe	r jar u	npres					
AG1H	1 lite 125	er amb ml. av	per gl	ass H	CL H2S	74	BF	23B	250	mL pl	astic I	NaOH HNO2				VG VC	9U 9U	40 m	L clea	ar vial	unpre HCI	es		W	GFU	4 oz	clear	jar un Lier u	pres					
AG5U	100	mL ar	nber	alass	unpre			238	250	mL pl	astic I	H2SO	4			VG	i9M	40 m	L clea	ar vial	MeOl	н		S	P5T	+ 02 120 r	nL pl	astic N	Ja Thi	osulfa	ite			
AG2S	500	mL ar	nber	glass	H2S(D4	B	P2Z	500	mL pl	astic I	NaOH	+ Zn			VG	9D	40 m	L clea	ar vial	DI	· ·		ZF	PLC	ziplo	c bag	20401						/
BG3U	250	mL cl	ear g	lass u	Inpres	6																		G	N 1									, n
ł																								G	N 2	<u> </u>							Pa	age <u>1</u> of <u></u>

Sample Condition Upon Receipt Form (SCUR)

Project #:	011 - 40007000
Client Name: Foth	0#:40287968
Courier: CS Logistics Fed Ex Speedee UPS Waltco	
Client Pace Other:	
Tracking #: 402	287968
Custody Seal on Cooler/Box Present: Tyes I no Seals intact: Tyes I no	
Custody Seal on Samples Present: U yes Ino Seals intact: Ves no	
Packing Material: Bubble Wrap Bubble Bags None Cother	
Thermometer Used <u>SR - 120</u> Type of Ice: Wet Blue Dry None	Meltwater Only
Cooler Temperature Uncorr: 1.0 /Corr: 1.0	Person examining contents:
Temp Blank Present: Des Arnow 1/2 /24 Biological Tissue is Frozen: Dyes	Date: 12-124 /Initials: 14
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	Labeled By Initials: GF
Chain of Custody Present:	
Chain of Custody Filled Out: Pres DNo DN/A 2.	
Chain of Custody Relinquished:	
Sampler Name & Signature on COC:	
Samples Arrived within Hold Time: — Pres □No 5.	
- DI VOA Samples frozen upon receipt	
Short Hold Time Analysis (<72hr):	
Rush Turn Around Time Requested: □Yes INo 7.	
Sufficient Volume: 8.	
For Analysis: Eyes 🗆 No 🛛 MS/MSD: 🗆 Yes 🖃 🛪 🗆 N/A	
Correct Containers Used: Ves No 9.	
Correct Type: Pace Green Bay, Pace IR, Non-Pace	
Containers Intact: Area INo 10.	
Filtered volume received for Dissolved tests	
Sample Labels match COC:	
-Includes date/time/ID/Analysis Matrix:W	
Trip Blank Present:	
Trip Blank Custody Seals Present	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution: If checked	I, see attached form for additional comments
Person Contacted: Date/Time:	
Comments/ Resolution:	

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

Page 2of 2

1

Attachment 4

Cove Environmental WET Test Report Forms

WHOLE EFFLUENT TOXICITY (WET) TEST REPORT FORM

-					MATION							
			GENER		MATION							
	FACILITY:	Foth Infrastructu	ire & Env.	WPL	ES PERM	/IT NO.:	N/A					
OU	TFALL NO.:	Various		LABC	DRATORY	' NAME:	Cove E	Environr	nental			
RECEIVIN	G WATER:	N/A										
			SAMP	LE INFORI	ATION							
		SAMPLE C	OLLECTION	SAMPLE	TEMP °C	nH at	HA	ND			SAM	IPLE
SAMPLE	SAMPLE	BEGINNING	END	COLLEC	ΔΤΙΔΒ		DELI	ER? (If	- 36		ACC	EP-
NO.	TYPE	DATE	DATE	TION		LAD	Yes, «	<mark>: 4</mark> hr?)	<u>~</u> 50	1111	TAB	LE?
1	SW-STM		11/21/2024		3.1	6.61	Yes	✓ No	Yes	✓ No	✓ Yes	No
2	SW-C1		11/21/2024		3.2	6.37	Yes	✓ No	Yes	✓ No	✓ Yes	No
3	SW-C5		11/21/2024		3.1	6.15	Yes	✓ No	Yes	✓ No	✓ Yes	No
4	SW-C9		11/21/2024		3.0	5.75	Yes	√ No	Yes	√ No	V Yes	No
							Yes	No	Yes	No	Yes	No
							Yes	No	Yes	No	Yes	No
	Describe a	ny unusual conditions du	uring sampling that may	influence test	results. (see	Part 6.1.2	of the Me	ethods Ma	anual for e	xamples.)		
C	OMMENTS:											
			TES	T INFORM	ATION							
			ACUTE					C	HRONI	С		
Date Tes	st Initiated:							-		-		
	· • =											
le	sts Are For:											
Date of	Initial Test:											
ZIC	D/IWC Info.:	ZID Compliance	Concentration =	100.00		Instr	eam Wa	aste Co	ncentrat	ion =		
		C.dubia	FHM	Ot	ner		C.dubia		FF	HM	Ot	ner
Dilu	ution Water:	RW	RW		RW		RW			RW		RW
		√ IW	V I W		IW					IW		IW
			QA/(C CONDI			1 211					2.11
							ACUTE			CHR	ONIC	
Temperatur	es maintaine	ed during test? (20 -	+ 1°C or 25 + 1°C)					No				0
Dissolved o	xvgen > 4.0	ma/l throughout tes	t?					No				0
Effluent pH	maintained	within 6.0 - 9.0 s.u.	throughout test?				.5	No				0
Concurrent	or monthly r	eference tests withi	n acceptable limits?	1				No		Ves		0
Tests condu	icted in a ca	rbon dioxide atmos	ohere throughout te	st?				No		Ves		0
Were efflue	nt samples i	modified prior to tes	ting?(ex_filtration_aera	tion chem add	lition)		s ./	No				0
			ang. (cx. mitation, acra				: <u></u>	NU		163		U
					concerted in a	og/l ovoo	مغ مر ال					
		VV		(All values	reported in n	ng/L, exce	pipn)		т			1
SAIVIPLE	NO.	HARDNESS	ALKALINITY	TOTAL A	MMONIA	۱ ۸ ۴۰ م	n (s.u.) .:				L.
TIPE		64	20		1	Alle		ling				
	500-51 IVI	04 56	30	<	1		0.7			Not de	tected	
Effluent	SW-C1	30	30	<	1		0.4			Not de		
	500-05	40	24	<	1		0.4			Not de	tected	
	SVV-C9	12	10	<	1		5.8			Not de	tootod	
Lob Mater	10524	108	02	N/	А		7.4			NOL de	lecieu	
Lab water												
CO	OMMENTS:	TRC measured via DPI	D powder packets, per	WI protocol.								
I												

S hnia dubia al ≥ 90% bs No ACUTI .UENT TMENT Control -STM /-C5 /-C9 /-C1 LC ₅₀ = behavior and/or app	Fa S E TEST Per 1 100 90 90 100 90 90 100 90	athead Minno urvival ≥ 90° ✓ Yes T DATA rcent Surviva 2 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0	LAB WAT	ER CONTR C	OLS eriodaphnia dubia Survival ≥ 90% ✓ Yes No Mean Percent Survival 100.0 95.0 100.0 90.0
hnia dubia al ≥ 90% s No AL ≥ 10% NO AL ≥ 90% AL ≥ 90% AL ≥ 90% AL = 100 AL = 100 </td <td>Fa S E TEST Pei 1 100 90 90 100 90 90 100 90</td> <td>athead Minno urvival ≥ 90' ✓ Yes DATA rcent Surviva 2 100 100 100 100 90</td> <td>ow % No al By Repli</td> <td>cate</td> <td>Periodaphnia dubia Survival ≥ 90% ✓ Yes No Mean Percent Survival 100.0 95.0 100.0 90.0</td>	Fa S E TEST Pei 1 100 90 90 100 90 90 100 90	athead Minno urvival ≥ 90' ✓ Yes DATA rcent Surviva 2 100 100 100 100 90	ow % No al By Repli	cate	Periodaphnia dubia Survival ≥ 90% ✓ Yes No Mean Percent Survival 100.0 95.0 100.0 90.0
Al ≥ 90% S No ACUTI UENT TMENT Control -STM /-C5 /-C9 /-C1 LC ₅₀ = behavior and/or app	E TEST Per 1 100 90 90 100 90 200 -	urvival ≥ 90° Yes DATA rcent Surviva 2 100 100 100 100 100 100 100 100	% No al By Repli	cate	Survival ≥ 90% ✓ Yes No Mean Percent Survival 100.0 95.0 100.0 90.0
NO ACUTI UENT TMENT Control -STM /-C5 /-C9 /-C1 LC ₅₀ = behavior and/or app	E TEST Per 1 100 90 90 100 90 >100	Yes DATA rcent Surviva 2 100 100 100 90	No		✓ Yes No Mean Percent Survival 100.0 95.0 100.0 95.0 100.0 95.0 100.0
ACUTI	E TEST Per 1 100 90 90 100 90 200	DATA rcent Surviva 2 100 100 100 100 100 100 100 100 100 100	al By Repli	cate	Mean Percent Survival 100.0 95.0 100.0 90.0
ACUTI	E TEST Per 1 100 90 90 100 90 200	DATA rcent Surviva 2 100 100 100 100 100 100 100 100 100 100	al By Repli	cate	Mean Percent Survival 100.0 95.0 100.0 90.0
ACUTI	E TEST Per 1 100 90 90 100 90 >100	2 100 100 100 100 100 100 100 100 100 100	al By Repli	cate	Mean Percent Survival 100.0 95.0 95.0 100.0 90.0
ACUTI	E TEST Per 1 100 90 90 100 90 200	DATA rcent Surviva 2 100 100 100 90	al By Repli	cate	Mean Percent Survival 100.0 95.0 95.0 100.0 90.0
LUENT TMENT Control -STM /-C5 /-C9 /-C1 LC ₅₀ =	Per 1 100 90 90 100 90 >100	2 100 100 100 100 90	al By Repli	cate	Mean Percent Survival 100.0 95.0 95.0 100.0 90.0
Control -STM /-C5 /-C9 /-C1 LC ₅₀ =	1 100 90 90 100 90 >100	2 100 100 100 90			100.0 95.0 95.0 100.0 90.0
Control -STM /-C5 /-C9 /-C1 LC ₅₀ =	100 90 100 90 >100	100 100 100 90			100.0 95.0 95.0 100.0 90.0
-STM /-C5 /-C9 /-C1 LC ₅₀ =	90 90 100 90 >100	100 100 100 90			95.0 95.0 100.0 90.0
/-C5 /-C9 /-C1 LC ₅₀ =	90 100 90 >100	100 100 90			95.0 100.0 90.0
/-C9 /-C1 LC ₅₀ =	100 90 >100	100 90			100.0 90.0
/-C1 LC ₅₀ =	90 >100	90			90.0
LC ₅₀ =	>100				
LC ₅₀ =	>100				1
LC ₅₀ =	>100				
behavior and/or app	>100	C1%-	NC	TU =	-1
UENT TMENT	Pei	rcent Surviva	al By Repli	cate	Mean Percent Surviva
	1	2	3	4	
Control	100	100	100	100	100.0
-STM	100	100	100	100	100.0
/-C5	100	100	100	100	100.0
/-C9	100	100	100	100	100.0
/-C1	100	100	100	100	100.0
	Implement Control -STM /-C5 /-C9 /-C1	I 2000000000000000000000000000000000000	I 2 Control 100 100 -STM 100 100 /-C5 100 100 /-C9 100 100 /-C1 100 100	I 2 3 Control 100 100 100 SSTM 100 100 100 /-C5 100 100 100 /-C9 100 100 100 /-C1 100 100 100	I 2 3 4 Control 100 100 100 100 STM 100 100 100 100 -C5 100 100 100 100 /-C9 100 100 100 100 /-C1 100 100 100 100

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

LAB REPRESENTATIVE:	Sarah Brown		SIG	NATURE:	Ska		
PHONE:	(405) 372-2122	LAB CERT #:	3991545	80		DATE:	12/6/2024
PERMITTEE			SIG	NATUDE			
REPRESENTATIVE:		510.	NATURE.				
PHONE:			DATE:				

Send this form (and any relevant attachments) to Kari.Fleming@wisconsin.gov or mail to: Biomonitoring Coordinator, Bureau of Water Quality (WY/3), Department of Natural Resources, 101 South Webster St., P.O. Box 7921, Madison, WI 53707-7921; according to the timelines specified in your WPDES permit.

Copies of the State of Wisconsin Aquatic Life Toxicity Testing Methods Manual (Methods Manual) and the WET Guidance Document can be obtained from the Biomonitoring Coordinator at the address given above or at: http://dnr.wi.gov/org/water/wm/ww/biomon/biomon.htm

Т	O BE COMPLETED BY THE WIS	CONSIN DEPART	MENT OF NA	ATURAL RESOURCES				
			DI	D TESTS PASS?				
	Fathead Minnow	Yes	No	Inconclusive Unacceptable				
ACOTE	Ceriodaphnia dubia	Yes	No No	Inconclusive Unacceptable				
	Fathead Minnow	Yes	No	Inconclusive Unacceptable				
CHRONIC	Ceriodaphnia dubia	Yes	No	Inconclusive Unacceptable				
Retests Required?	Yes No K	Acute / Chronic:	Both Species	C.dubia only FHM only				
Due To:	Failure QA Problem							
WET Limit Violation?	Yes No limit in permit	Results Ente	ered Into Data	abase? Yes No				
COMMENTS:								
REVIEWED BY:			DATE:					
CC:			BASIN ENG	INEER				
			PERMIT COORDINATOR					
			PERMIT FIL	E				

Facility : Foth Infrastructure & Environment, LLC Permit # : N/A Test Date : 11/27/2024 Cove

CLIENT:	191 191-2-24	TEST DATE:	11/27/24					
100% EFFLUE Sample	ENT Alkalinity	Hardness	Ammonia					
ID	ma/L	mg/L CaCO3	ma/L NH3N					
112724-01	30	64	<1					
112724-02	30	56	<1					
112724-03	24	40	<1					
112724-04	10	12	<1					
CONTROL / I Sample	DILUTION WATE Alkalinity	R Hardness	Ammonia					
ID	mg/L	mg/L CaCO3	mg/L NH3N					
MH18524	62	108	N/A					

omments:

Cove	

CLIENT:	191	TEST DATE: 11/27/2024	Comments:	T
		TEST ID:191-2-24		
				<u> </u>

Concentration	Sample ID	Control Water	Client ID	Dilution	<u>Initial</u> pH (s.u.)	DO (mg/L)	Conductivity	Temp	Sample ID	Control	Client ID	Dilution	<u>Final</u> pH	DO (mg/L)	Conductivity	Temp
0% (SYN)	N/A	MH18524	191	s	7.39	6.69	347	24.2	N/A	MH18524	191	s	7.22	8.17	352	24.0
SW-STM 100%	112724-01	MH18524	191	SW-STM	6.72	8.27	244	24.0	112724-01	MH18524	191	SW-STM	7.2	8.28	249	24.0
SW-C1 100%	112724-02	MH18524	191	SW-C1	6.38	8.38	193	24.1	112724-02	MH18524	191	SW-C1	7.21	8.30	197	24.0
SW-C5 100%	112724-03	MH18524	191	SW-C5	6.35	8.18	140	24.0	112724-03	MH18524	191	SW-C5	7.17	8.28	142	24.0
SW-C9 100%	112724-04	MH18524	191	SW-C9	5.81	8.08	62	24.0	112724-04	MH18524	191	SW-C9	7.06	8.26	63	24.0
Concentration	Sample ID	Control Water	Client ID	Dilution	<u>Initial</u> pH (s.u.)	DO (mg/L)	Conductivity	Temp	Sample ID	Control	Client ID	Dilution	Final pH	DO (mg/L)	Conductivity	Temp
Concentration	Sample ID	Control Water	Client ID	Dilution	pH (s.u.)	DO (mg/L)	Conductivity (uS/cm)	Temp (°C)	Sample ID	Control Water	Client ID	Dilution	Final pH (s.u.)	DO (mg/L)	Conductivity (uS/cm)	Temp (°C)
Concentration 0% (SYN) SW-STM 100%	Sample ID	MH18524	Client ID 191	Dilution S	<u>Initial</u> pH (s.u.) 7.61	DO (mg/L) 8.19	Conductivity (uS/cm) 352	Temp (°C) 24.0	Sample ID N/A	Control Water MH18524	Client ID	Dilution S	Final pH (s.u.) 8.13	DO (mg/L) 8.12	Conductivity (uS/cm) 365 261	Temp (°C) 24.5
Concentration 0% (SYN) SW-STM 100% SW-C1 100%	Sample ID N/A 112724-01	Control Water MH18524 MH18524 MH18524	Client ID 191 191	Dilution S SW-STM	nitial pH (s.u.) 7.61 7.08	DO (mg/L) 8.19 8.55	Conductivity (uS/cm) 352 252 106	Temp (°C) 24.0 24.0	N/A 112724-01	Control Water MH18524 MH18524	Client ID 191 191	S SW-STM	Final pH (s.u.) 8.13 7.9 7.91	DO (mg/L) 8.12 8.34 8.40	Conductivity (uS/cm) 365 261 202	Temp (°C) 24.5 24.4
Concentration 0% (SYN) SW-STM 100% SW-C1 100% SW-C5 100%	Sample ID N/A 112724-01 112724-02 112724-03	Control Water MH18524 MH18524 MH18524 MH18524	Client ID 191 191 191 191	S SW-STM SW-C1 SW-C5	nitial pH (s.u.) 7.61 7.08 6.34 6.61	DO (mg/L) 8.19 8.55 8.36 8.50	Conductivity (uS/cm) 352 252 196 142	Temp (°C) 24.0 24.0 24.0 24.0	N/A 112724-01 112724-02 112724-03	Control Water MH18524 MH18524 MH18524 MH18524	Client ID 191 191 191 191	S SW-STM SW-C1 SW-C5	Final pH (s.u.) 8.13 7.9 7.81 7.8	DO (mg/L) 8.12 8.34 8.40 8.44	Conductivity (uS/cm) 365 261 202 148	Temp (°C) 24.5 24.4 24.3 24.4
Concentration 0% (SYN) SW-STM 100% SW-C1 100% SW-C5 100% SW-C9 100%	Sample ID N/A 112724-01 112724-02 112724-03 112724-04	Control Water MH18524 MH18524 MH18524 MH18524 MH18524	Client ID 191 191 191 191 191	S SW-STM SW-C1 SW-C5 SW-C9	Initial pH (s.u.) 7.61 7.08 6.34 6.61 6.42	DO (mg/L) 8.19 8.55 8.36 8.50 8.39	Conductivity (uS/cm) 352 252 196 142 71	Temp (°C) 24.0 24.0 24.0 24.0 24.0 24.0	Sample ID N/A 112724-01 112724-02 112724-03 112724-04	Control Water MH18524 MH18524 MH18524 MH18524 MH18524	Client ID 191 191 191 191 191 191	Dilution S SW-STM SW-C1 SW-C5 SW-C9	Final pH (s.u.) 8.13 7.9 7.81 7.8 7.69	DO (mg/L) 8.12 8.34 8.40 8.44 8.42	Conductivity (uS/cm) 365 261 202 148 74	Temp (°C) 24.5 24.4 24.3 24.4 24.4 24.0

CLIENT: TEST TYPE: ORGANISM SOU	R <u>CE:</u>	191 Scr Co	reen ove		- -	STUDY ID PHOTOPE	: ERIOD <u>:</u>	191-2 16 hrs lig	-24 ht/8 h	rs dark		START SYN W	DATE	: TYPE:		1 1	1/27/2024 MH
TEST ORGANISM: TEST METHOD: TEST VESSEL CAPA TEST SOLUTION VOI NO. ORGANISMS/VES NO. REPLICATES: LIGHT STATION:	EPA-821 CITY: -UME: SSEL:	<i>C. dubia</i> -R-02-012 (20 30 mL 15 mL 8 5 EX5	ORGANISM ALGAE BA YCT BATC FED 2HRS RANDOMIZ	I BATCH # TCH #: H #: BEFORE \$ ZED:	E ABSALG YCT-0224 START:	Cd2024-331 24-51 EM EM		TEST ORG <u>/</u> TEST VES <u>S</u> TEST SOL <u>U</u> NO. ORGA <u>N</u> NO. REPLI <u>C</u> LIGHT STA	ANISM: EEL CAP JTION V NISMS/V CATES: TION:	P. prome 500 mL (200 mL I 10 2 EX3	elas	ORGANI BRINE B FED 2HF RANDOI	SM BAT(ATCH #: RS BEFO MIZED:	CH #:	RT:	Pp202 2024-0 EM EM	4-328
	Conc	Vessel		Survi	val (#)				Conc	Vessel			Surviv	al (#)			
	(%)	ID	0	24	48	DEAD			(%)	ID	0	24	48	72	96	DEAD	
		61	0	0	0	0				61	10	10	10	10	10		
	%	62	0	0	0				%	01	10	10	10	10	10	0	
	0 -	52	ð	ð	Ö				0 -	52	10	10	10	10	10	U	
	nyč	<u> </u>	0	0 0	ð o				yn								
	0,	54	0	0	0	0			0)								
	~	55	8	8	8	0			~	A.4	10	10	10	0	0	4	
	600	A1	8	8	8	0			600	A1	10	10	10	9	9	1	
	-	A2	8	8	8	0			-	A2	10	10	10	10	10	0	
	ATS	A3	8	8	8	0			2TS								
	8-M:	A4	8	8	8	0			<u>~</u>								
	0	A5	8	8	8	0			0								
	%0	B1	8	8	8	0			%0	B1	10	10	10	9	9	1	
	- 10	B2	8	8	8	0			- 10	B2	10	10	10	10	10	0	
	.C5	B3	8	8	8	0			C5								
	-MS	B4	8	8	8	0			SW-								
		B5	8	8	8	0											
	%0	C1	8	8	8	0			%0	C1	10	10	10	10	10	0	
	- 10	C2	8	8	8	0			- 10	C2	10	10	10	10	10	0	
	Co	C3	8	8	8	0			Co								
	-20	C4	8	8	8	0			-MS								
		C5	8	8	8	0										+	
	%0	D1	8	8	8	0			%0	D1	10	10	10	10	9	1	
	- 10	D2	8	8	8	0			- 10	D2	10	10	10	10	9	1	
	G	D3	8	8	8	0			õ								
	-20	D4	8	8	8	0			-MS								
		D5	8	8	8	0			Û,								
		Initials:	EM	SS	SS]				Initials	EM	SS	CO	SS	SS		
		Time:	1500	1110	1450	4				Time:	1437	1130	1150	1400	1445		
		Date:	11/27	11/28	11/29	-				Date:	11/27	11/28	11/29	11/30	12/1	-	
		Checked:	55	55						Cneck	55	55	CO	55		1	
Dilutic	ons	Initials	EM	EM	Ţ			Dilutions	5	Initials	EM		SG	1			
	-	Time:	1425	1005	1				<u>.</u>	Time:	1425		1500		<u>.</u>	<u>.</u>	
Comments:														Review	ed by:		SS

SB

QA Review:

Cove Aquatic Toxicity Laboratory WI Sample Receipt Checklist:

Study ID: 191-2-24	Checked in by: 56	-
Date: 11/27/24		_
 Upon arrival by: Client -was cooler closed an Shipping Courier- was cooler custody seal and was COC a 	d intact and w/ COC? r sealed with tape and/or ttached?	
 2. Is the COC filled out correctly? Client Name Analysis Requested Sample location Sampler's Signature Date/Time On/Off Preservation Type (if Any) 3. Were the sample(s) received below 4. Was ice or ice packs present? 5. Were the sample(s) received with 6. Were the sample(s) shipped in ap 7. Were the sample(s) easy to identia 8. Was total volume of sample adeq 	w 6°C? in 36 hours of collection? propriate containers and sealed? fy? (Labeled correctly if different?) uate to perform the required analysis? WES NO VES NO	

Sample ID	Description	pH	DO	TRC	Pull off Date/Time	NH3/pH dups pulled?	
112724-01	SW-STM	6.61	1.58	-	11/21 0800	NA	
-02	SW-CI	6.37	8.81	~	1 0830	D 110	
-03	SW-CS	6.15	8.92	-	1 0940	D STREET	
-04	SW-C9	5.75	8.50	-	1 1130	1	
					a state of the state		

WI Secondary Checklist

NH3 STD	NH3 Blank	NH3 Dup	NH3	Chlorine
5/2	5/1	SIA	SU	NIA

Comments: Concurrent WI Reftox necessary

Do Not Dechlorinate

AQUATIC TOXICITY LABORATORY 3400 W. Lakeview Rd. Stillwater, OK 74075 Phone 405.372.2122 www.covesciences.com

ENVIRONMENTAL

FOR LAB USE ONLY Client# - Project# - Work Order# $\left[\begin{array}{c} \sigma \\ 0 \end{array} \right] -2 -2 \cdot \mathcal{N}$ TYPES: C-Compliance S-Screen O-Other		ompliance S-Screen O-Other		SAMPLE ID: TEMP		10-W21:5 10-W2L:	-02 3.200	-03 B16	-04 30°C			e upon arrival ery with attempt to cool e present		020/
		TLOT	TEST TYPE		1 (2					/	Deliv Deliv No ic	Date/Time	W212/17	
>			Analysis Required		WI WET TENTING	WI WEN TESTING	INI WET TESTING	WI WET TESTING				0.0000	NOUNTRO	
2, FO7	. FOT.	O No.	Type	of	Preserv.	NONC	NONE	NONE	NONE					
Submit report to: NICIC BUANDER Email: NICK, GUANDER e Ford	-8744	-8744 F	Type	(b/d)	6	6	d	d			5	ived by:	1	
			of	Cont.	-	1 0	1 0	-				ple Rece		
	920-362		Grab	Date/Time	11-21-24/08	11-21-24/083	1)-21-24/0940	11-21-24/11 30			-	Sam	300	
	Email: A	Phone:	ype of Sample	isite	Date/Time Off							Comments:	Date/Time	1-21-24/1
ty Name:				Compo	Date/Time On							¥		
Client/Facili	VERO WIN			Sample	Location	SW-57M	SW-CI	SW-CS	5W-C9			er's Signature:	Relinquished by:	mult
Frampe			Test	Sample	No.	-	2	2	4			Sample	Sample F	B

* UNLESS OTHERWISE NOTED, ALL SAMPLES ARE STORED BELOW 6°C *

CHAIN OF CUSTODY RECORD

Cove Aquatic Toxicity Laboratory Shipping Label Receipt:

Study ID: 191-2-29 Sample ID: 12729-01 -02 -03 -09

ł.

Report Date: 11/14/2	2024	Lab Contact:	Shannon Scott									
Report Ident: RT112	24	EPA Lab ID:	OK01095									
Test Methods/Descr	ription:											
(a)	Short Term Methods for Es 02-013) / 7-day Chronic To 1000.0).	stimating the Chronic Toxi oxicity, Static-renewal, w/	icity of Effluents and Recei Ceriodaphnia dubia (Meth	iving Waters to Freshwater od 1002.0) and w/ <i>Pimeph</i>	Organisms (EPA-821-R- ales promelas (Method							
(b)	Methods for Measuring the 012), 48-hr Acute Toxicity,	Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (EPA-821-R-02 012), 48-hr Acute Toxicity, Static-renewal, w/ Daphnia pulex (Method 2021.0) and Pimephales promelas (Method 2000.0).										
Central Tendency Calculation:	Average of Last 20 Data Points	Upper Control Limit Calculation:	Average +2 Standard Deviations or Average	Lower Control Limit Calculation:	Average -2 Standard Deviations or Average -1							
Deviations from Tes	st Methods: None.											
Statistical Software	Utilized: CETIS™ v2.1.4.3			Source of Organism Cu	ultures: Cove							
Target Dilution Serie	es (mg/L):			Reviewed and Approve	ed By:							
Ceriodaphnia dubia		0.0, 375, 750, 1500, 300	0, 6000									
Daphnia magna		. 0.0, 750, 1500, 3000, 60	00, 12000									
Pimephales promelas	s	0.0, 750, 1500, 3000, 60	00, 12000	our								
Daphnia pulex		. 0.0, 375, 750, 1500, 300	0, 6000	Shannon Scott, L	aboratory Director							
Acute	Test Results	Daphnia pulex	Pimephales promelas	Ceriodaphnia dubia	Daphnia magna							
Test Initation Date		11/6/2024	11/6/2024	11/6/2024	11/6/2024							
48-hour LC50	(mg/L)	2721	7647	2523	6212							
Control Survival (%)		90	100	100	100							
Central Tendency (M	Mean) (mg/L)	2591	7933	2445	5609							
Upper Control Limit	: (mg/L)	3761	10104	3064	7954							
Lower Control Limit	t (mg/L)	1420	5761	1825	3264							
Chronie	c Test Results	Ceriodap	ohnia dubia	Pimephal	es promelas							
Test Initation Date		11/6	6/2024	11/6/2024								
Control Survival (%))	1	100	100								
%CV Survival (Cont	rol)		0	0								
%CV Growth (Contr	ol)	l	NA	8.02								
%CV Reproduction	(Control)		6.2		NA							
Growth PMSD			NA	1	15.1							
Reproduction PMSE)	1	1.3		NA							
Growth IC25			NA	3373								
Reproduction IC25		94	42.9	NA								
Mean Dry Weight (C	control) (mg/L)		NA	0.4387								
Mean # Neonates (C	Control)	3	37.4	NA								
NOEC Survival (mg/	(L)	1	500	3000								
NOEC Growth (mg/l	L)		NA 750	1500								
NOEC Reproduction	n (mg/L)		750	2325								
Central Tendency (3	Surv) (Ing/L)	1	725	3464								
Central Tendency (C	Sepro) (mg/L)		802	NA								
Upper Control Limit	(Growth PMSD) (mg/L)		NA	30								
Lower Control Limit	ts (Growth PMSD) (mg/L)		NA	8.1								
Upper Control Limit	s (Repro PMSD) (mg/L)		32	NA								
Lower Control Limit	ts (Repro PMSD) (mg/L)		2.8	NA								
Upper Control Limit	s (Growth IC25) (mg/L)		NA	4590								
Lower Control Limit	ts (Growth IC25) (mg/L)		NA	2337								
Upper Control Limit	s (Repro IC25) (mg/L)	1	210	NA								
Lower Control Limit	ts (Repro IC25) (mg/L)	:	574	NA								
Upper Control Limit	s (Surv NOEC) (mg/L)	3	000	6000								
Lower Control Limit	ts (Surv NOEC) (mg/L)	÷	375	1500								
Upper Control Limit	s (Growth NOEC) (mg/L)		NA	3	000							
Lower Control Limit	ts (Growth NOEC) (mg/L)		NA		750							
Upper Control Limit	s (Repro NOEC) (mg/L)	1	000									
Lower Control Limit	IS IREDIO NOEC) (ma/L)		5/0		NA							

