

January 8, 2026

**GreenLight Wisconsin LLC
Soo Line 40 Exploration Program
Bend Project, Westboro Township, Taylor County
Request for Additional Information**

Dear Molly Gardner,

Please find below GreenLight Wisconsin LLC's (GLW) responses for the Wisconsin Department of Natural Resources (WDNR) request for additional information pertaining to GLW's submittal of a Notice of Intent to Drill (NOI) on the Bend Project in Taylor County.

If you have any questions, or need any additional information please don't hesitate to contact me Directly.

Sincerely,

Eric Quigley
Director of Exploration
Green Light Wisconsin LLC

WDNR request for additional information – *black/italicized*
GLW Respons - Blue

(a) A legal description of the parcels where the exploration will take place, including identification of land ownership and maps showing the approximate drilling site locations and anticipated site access routes.

- *Clarify the proposed timeframe for initiating the winter program. There is an inconsistency on page 1 of the exploration plans.*

GLW will commence with a winter drill program upon receiving all necessary permits and approval for planned work. It is anticipated that a winter program will begin in mid-January, 2026.

- *Provide details on subsurface borehole tracking while drilling to ensure all drillholes remain within the extents of the Soo Line 40 mineral parcel.*

GLW is currently in the process of applying for a Prospecting Permit through the Bureau of Land Management to conduct exploration work over an approximately 520-acre parcel which encompasses the 40-acre Soo Line Mineral Parcel. Prior to receiving approval of the prospecting permit, GLW ensures that all holes drilled under this NOI will remain within the extents of the Soo Line Mineral Parcel. Upon receipt of the Prospecting Permit, holes drilled under this NOI may be designed to intersect the adjacent property covered under the Prospecting Permit.

During the planning of drillhole to be completed under this NOI drillholes will be initially plotted in 3-dimensional software taking into account the ground coordinates and elevation of the drillhole collar and the bearing and dip of the planned drillhole. No drillhole will be constructed that is anticipated to cross the property boundary.

During the drilling of a hole, it is routine to conduct downhole surveys at regular intervals as the hole is being advanced to track the location of the drillhole and to ensure that the ‘exploration target’ will be intersected. The downhole survey provides bearing and azimuth information down the hole which can then be imported into 3-dimensional software to track the location of the drillhole. During the proposed drilling, downhole surveys will be taken regularly on drillholes that have potential to cross the property boundary.

- *Review the submittal and ensure the estimates of proposed ground disturbance are consistent and accurate. The total area for 15 drill sites at 50 ft x 70 ft equals 1.205 acres, while the text in Section 4.5 indicates that the drill site disturbance will be 1.16 acres. Similarly, reassess the acreages for access route land disturbances.*

This discrepancy appears to have come from a calculation error where the input used for square feet per acre was off by 4%. Note that dimensions of drill sites

are approximate and that estimates for access routes include all potential access routes to all potential drill sites. Disturbances will likely be less than estimated. Total disturbances are estimated at 2.861 acres:

- 15 drill sites with dimensions of 50'x70' (1.205 acres)
- 1,530' of potential disturbances associated with access along existing forest roads/trails at a 15' width (0.527 acres).
- 2,800' of potential disturbances along new temporary access at 15' width (0.964 acres)
- Potential disturbances at laydown/staging areas (0.165 acres).

(b) A description of the means and methods that will be used for the exploration, including drilling methods, anticipated drillhole locations, diameter, and depth, source of drilling water, and anticipated use of drilling additives, if any.

- *Section 4.4 of the NOI lists two types of drilling through the overburden and details the method utilized in 2025. Confirm the primary drilling method planned for the 2026 program for the casing and drill rods.*

Past drilling indicates that approximately 90-115' of unconsolidated glacial overburden, consisting primarily of sand with lesser silt/clay, occasional clay layers, and sporadic gravel, cobble, and boulders, overlies the Precambrian bedrock. All drillholes constructed under this plan will be cased through the overburden and the casing will be extended into competent Precambrian bedrock. Past drilling indicates that between 90'-215' of overburden has been encountered within all past drilling with the variability primarily based on the dip of the drillhole (i.e. a hole drilled at a 45-degree angle will encounter more overburden than a vertically drilled hole). Total installed casing per drillhole is estimated to range from between ~100' to 225' per hole.

Based on methods used during previous drilling at the Bend site, it was determined beneficial to install casing by initially drilling a pilot hole using a diamond drill bit and NQ drill rods down through unconsolidated glacial overburden into competent bedrock. HQ casing, using an HQ diameter casing shoe, is then drilled overtop of the NQ drill rod and advanced into competent bedrock. This will be the planned approach to casing drillholes under this NOI. However, GLM may consider other techniques based on ground conditions and contractor experience. GLW will discuss any alternative methods with the WDNR prior to implementation.

During casing installation, bentonite is typically used to enhance sealing the walls of the hole through unconsolidated sediments to allow the drilling fluid and cuttings to more efficiently be returned to the surface. Note that in **Attachment 004 – Drillhole Tooling Specs**, the hole diameter reflects the drill bit/casing shoe outside diameter which is greater than that of the respective drill rod outside diameter creating a small amount of space between the drill rods and hole wall.

Cuttings and drilling fluid are returned along the outside of the drill rods/casing within this space.

Bentonite is used during drilling in unconsolidated material as described above. Additionally, bentonite is used as needed during drilling in bedrock to seal open spaces to maximize water return, including at the bottom of the casing. Bentonite used both during casing through unconsolidated glacial sediments and during the initial coring of the hole provide sufficient water return indicating that the water is not being lost within the aquifer located within the glacial units.

- *Provide more detail on the installation of the HQ diameter casing, including the primary geologic material anticipated to be encountered, the method of installation including drill bit/casing shoe/drillhole diameter, more detail on the use of bentonite, how cuttings are flushed from the hole during casing installation, the estimated depth per hole, the determination that the surrounding aquifer is sealed off, etc.*

See above.

- *Provide an estimated average daily water withdrawal amount for the 2026 program. Ensure to account for the use of up to 3 drill rigs.*

Throughout the 2025 program, water consumption averaged approximately 1,250 gallons per day over the total duration of the program with water being withdrawn from the N. Fork of the Yellow River on an as needed basis. Average water withdrawal on days where water was withdrawn was 3,250 gallons.

A number of factors can have an impact on the water consumption during drilling operations, including hole conditions, cuttings management techniques, weather conditions, etc. GLW will track water consumption by tracking the amount of water brought to site throughout the duration of the program.

Based on the calculated averages from the 2025 program, and assuming that up to 3 drill rigs may be operating on site, it is estimated that an average of approximately 3,750-4,500 gallons per day may be used throughout the duration of the program with an average of 9,750-10,500 gallons being withdrawn on days where water is collected.

Note that only 2 drill rigs are planned for conducting work during the initial phase of the planned drilling which is anticipated to occur between January and March of 2026.

- *Describe the rationale behind the stated maximum water withdrawal rate of 12,000 gallons/day.*

GLW would like to retract the statement that a maximum water withdrawal of 12,000 gallons per day will be implemented. The rate was taken from previous permitting efforts in 2020 and was based on a wrongfully assumed threshold. The

estimated quantities presented above, based on actual water usage at the Bend project site, should be considered instead.

- *Confirm that the screened intake will not interact with the bed of the waterway.*

The screened intake will be suspended within the water column at all times and will not be allowed to interact with the bed of the waterway.

- (c) *A description of drilling site access and site preparation needed to accommodate the drilling activity, including site grading and stabilization methods.*

Within GLW's NOI, GLW discusses conducting certain activities occurring during frozen ground conditions. These instances are related to conducting exploration work within wetlands and within known non-native invasive species infestation areas.

Conducting work in wetlands: Drill sites and associated access to sites SL-16, SL-17, and SL-18 will require wetland permitting through the WDNR. These sites and associated access routes will not be utilized until all necessary permits and approvals are in place. GLW stated within the NOI that work within these areas will be conducted during frozen ground conditions and/or under authorization from the WDNR under a wetland permit. GLW foresees that conducting work within these areas will require that frost depths will be of a substantial thickness to support access of drilling related equipment along access routes and within the drill site without causing disturbance to the ground and/or that timber mats will be utilized. In the event that timber mats are not planned to be utilized, GLW will first assess the ground conditions along access routes and within the drill sites by measuring the depth of frost within the ground and will make a determination as to whether the frost is sufficient to support the equipment that will utilize the access and drill sites. Throughout the duration when such areas are being utilized for exploration, GLW will monitor the forecasted weather and will reassess the ground conditions (remeasure frost depth) if/when weather conditions have occurred that may reduce ground stability.

Conducting work in known non-native invasive species areas: The USFS requires that if work is conducted in such areas, that frozen ground conditions must be consistently present where the soil remains frozen solid and/or is buried beneath a layer of compacted snow during operations in such areas. If such criteria are not met, or change while utilizing such sites (i.e. exposed and disturbed soil are present), equipment will be cleaned of all seeds, soil, mud, vegetative matter, or other debris that could contain non-native invasive plant seeds or viable plant parts prior to moving outside of the infested area. In addition, matting may be used to prevent equipment from coming into contact with non-native invasive species. If matting is used, matting will be cleaned prior to moving them out of the infested area.

- *Describe the process of assessing*

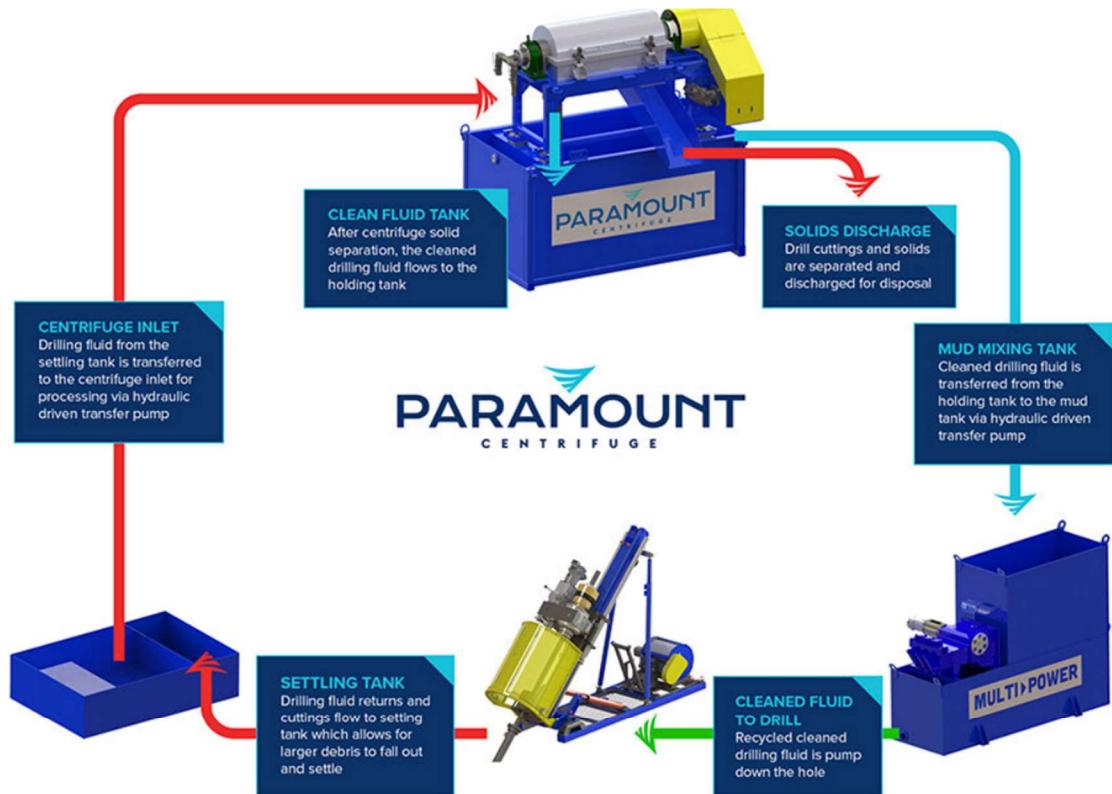
See above.

- *How often will 'frozen ground conditions' be assessed throughout the program?*

See above.

- *Will the access routes and drill sites be plowed to drive down the frost? If so, when will this occur?*

Based on an initial assessment of the ground conditions prior to mobilizing equipment to site, it may be deemed beneficial to either clear or compact snow along access routes and drill sites prior to conducting work in such areas. This practice may be utilized when working within wetland areas (as described above) and areas where non-native invasive species infestation areas (as described above) are identified but may also be utilized in upland areas to maximize ground stability and minimize ground disturbances. Snow clearing and compacting of snow may be completed upon receiving all necessary approvals and authorizations from the WDNR/USFS to conduct such work. GLW will notify both agencies prior to beginning snow clearing/compacting activities.


- (d) *A description of how any diversion, retention, or drainage of water, including stormwater, drilling water, and water from flowing drillholes, on or around the drilling site will be conducted.*

- *If a sump will be utilized for more than one drillhole and the depths of the drillholes have not been determined, explain how the sump will be sized to have adequate capacity for drilling fluids and cuttings from multiple drillholes.*

Based on the geology encountered in previous drill programs, GLW can reasonably estimate the total depth of a drillhole once the drillhole specs (location, bearing, dip) have been determined. Prior to beginning a new drill hole, GLW will assess the potential cuttings generation and ensure that adequate sump space is available to accommodate estimated drill cuttings and drilling fluids. If adequate space is determined not to be available, a viable sump will be constructed prior to drilling.

- *Provide a schematic of the centrifuge method of cuttings management identified as an alternative in the submittal.*

See below schematic of a typical centrifuge system for collection of cuttings and recirculation of drilling fluid during drilling as well as a photo showing the cuttings discharged from the unit:

(e) A description of how drilling mud, drill cuttings, any pollutant-bearing minerals or materials, including fuel, lubricants, and drilling additives, will be handled during exploration and a description of spill prevention, containment and remediation procedures.

- *Provide details on unlined sumps, including where they are proposed, how the size will be determined, how the material will be transported to the sump, etc.*

Unlined sumps may be used if deemed beneficial by GLW and would accommodate non-sulfide-bearing cuttings generated during the program. This could include cuttings generated from glacial overburden and the upper portion of each drillhole (hanging wall) which does not contain sulfides in quantities sufficient to classify the rock as sulfide-bearing over significant intervals. Based on the regular nature of the geology hosting the mineralization at the project, an estimated drilled length of non-sulfide-bearing rocks can be used to calculate potential cuttings quantities.

Unlined sumps will be located within the extents of the drill site and may be located either at active or inactive drill sites and will be constructed of sufficient size to accommodate all anticipated cuttings generation. During drilling cuttings will be segregated by using a cuttings collection system (cuttings tank or centrifuge) and an assessment of sulfide quantities will be conducted prior to hauling the cuttings (via the cuttings tank or other appropriate container) and disposing of cutting in a proper sump.

- *Clarify how sulfide content will be assessed at the time of drilling to determine if the cuttings will be placed in a lined or unlined sump.*

Glacial overburden will be treated as non-sulfide-bearing rock and may be disposed of in an unlined sump.

During drilling in bedrock, in cases where disposal of cuttings generated from bedrock are being considered for disposal in an unlined sump, cuttings will be collected using either a cuttings tank or centrifuge. Prior to disposal of collected cuttings, a geologist will evaluate the drill core and determine the length of any encountered intervals that exceed the criteria for classification of metallic sulfide-bearing rock (averaging greater than 3% sulfide by volume). Based on this evaluation, a determination will be made on the appropriate disposal method. Logs containing the sulfide content as determined by GLW geologists will be made available at site at the time of disposal.

At all times, a viable lined sump will be located on site capable of containing all generated cuttings for current drillholes. Unlined sumps will not contain cuttings generated from >50' (drilled thickness) of metallic sulfide bearing rock as required under Wis. Adm. Code NR 130.110 (2)(b). Cuttings quantities, cuttings interval information along with drillhole ID, and location of cuttings disposal will be recorded for all sumps.

- *Describe how the liner will be removed, as it is listed as a method of final sump reclamation.*

NR 130.110 directs that for abandonment of lined sums, the line can either be removed or can be folded over the top of the cuttings prior to backfilling the sump. GLW may consider removing the liners as directed to eliminate or reduce the amount of liner material being buried.

In cases where the liner is attempted to be removed prior to sump abandonment, the liner will be removed using the bucket of an excavator after excess water has been removed and prior to amending the cuttings with cement as specified in Wis. Adm. Code NR 130.110 (2). If deemed impractical to remove the entire liner, GLW may consider removing only the excess liner as opposed to folding the liner over the top of the cuttings prior to backfilling the sump to limit the amount of buried plastic.

(f) A description of drillhole abandonment methodology. The explorer shall conduct the drillhole abandonment procedures in compliance with s. NR 130.111.

- *Provide details on abandonment of unlined sums, including the cement mixing ratio and method.*

Abandonment of unlined sums will be completed as described in Wis. Adm. Code NR 130.110 (2)(b) for sump abandonment of sums where drillholes have not penetrated 50' or more of metallic sulfide-bearing rock. Excess water will be removed from the sump and will be reused in the drilling process or disposed of as described in section 4.6 of GLW's NOI. Prior to backfilling the sump, the cuttings and drilling mud will be mixed, using the bucket of an excavator, with cement, bentonite, or other clean fill in a quantity sufficient to thicken the cuttings to a consistency similar to the surrounding native soil. Quantities of cement, bentonite, or clean fill will be tracked throughout the duration of the program. The sump will then be backfilled with stockpiled sub soil and top soil. If the WDNR has recommended quantities of cement, bentonite, or other clean fill for use in abandoning unlined sum, GLW will incorporate these recommendations into its operational plans.

(g) A description of measures that will be taken to remove, stockpile, or otherwise protect topsoil during exploration.

- *Confirm that stockpiled topsoil and other materials will be adequately protected at all times, not just during the winter as suggested in section 4.8.*

All soil stockpiles will be adequately protected as required under the General Construction Stormwater Permit. Protections will include securely tarping the stockpile and the placement of perimeter controls (silt socks/silt fencing) along the down slope sides of stockpiles.

(h) A description of methods and materials used to establish temporary vegetative cover, if necessary, to stabilize any part of the drilling sites and measures to control invasive species as a result of the temporary measures.

- *Describe any limitations on completing the restoration of drill sites or access routes under frozen conditions, and how they will be handled.*

Upon completion of drilling activities during the winter months, some reclamation activities may not be able to be completed until weather conditions are suitable for such activities (i.e. final grading and revegetation). Upon completion of exploration activities in the winter months, disturbed areas will be ‘back bladed’ using dozer, skid steer, or excavator and temporarily stabilized using mulch (weed free straw or wood chips). BMP’s installed prior to the disturbances (silt socks or silt fencing) will be inspected, repaired or replaced as necessary, and left in place until final reclamation can be completed as weather conditions permit. Additional BMP’s may be installed as needed. Any remaining soil stockpiles will be securely tarped and any open sumps will be fenced off. As per the requirements of the General Constructions Stormwater Permit, the site will be inspected on a weekly basis and after rain events of >0.5” over 24 hours until final stabilization is achieved. Active BMP’s will be repaired or replaced as needed until final stabilization is achieved.

- *Provide details on the identification of infestations of non-native invasive plant species, including whether assessments have already been conducted, who can provide the identification in the field, whether additional inspections are planned, etc.*

The USFS provided GLW with a map showing the location of identified non-native species infestation areas which shows minimal infestation areas within the Soo Line Mineral Parcel and there are no such occurrences located within the extents of drill sites, access routes, or staging areas. However, GLW is aware that the locations/extents of infestations may change over time.

Prior to initiating ground disturbing work and throughout the duration of the program, GLW staff will evaluate all areas where potential disturbances may occur. GLW will conduct a consultation visit with USFS staff for the purposes of reviewing potential tree removal which will require a walk through of all areas prior to conducting ground disturbing work. It is envisioned that WDNR staff may also be present for similar consultation visits. If any non-native species infestations are identified throughout the program, access routes and/or drill site locations may be slightly modified to avoid the infestations or appropriate actions will be implemented (i.e. conducting work when frozen ground conditions are consistently present or cleaning equipment when infestations are encountered).

(j) A reclamation plan designed to minimize adverse effects to the environment during and after exploration that includes all of the following:

4. *A description of any nearby wetlands that could be affected by the exploration activity and the measures that will be taken to minimize disturbance to wetlands, including the use of best management practices for construction in or adjacent to wetlands, and*

relocating or modifying the configuration of drilling sites or restricting exploration activity to the winter months.

- *Provide a copy of the wetland delineation report for field work conducted in 2025.*

GLW submitted the final wetland delineation report completed by Merjent on December 23, 2025 to both the WDNR and USFS.

5. A total cost estimate for drilling site termination, including unit costs for drillhole permanent abandonment and drilling site reclamation.

- *Provide a recalculated Reclamation Cost Estimate table that includes the following:*
 - o Itemize \$3.60/foot for unit cost for 'Footage' to include specific costs for materials (cement) and labor per drillhole.*

The \$3.60/foot unit cost for drillhole abandonment is a quoted rate that was submitted to GLW from Taconite drilling in 2025 and represent the actual cost for having a contractor complete drillhole abandonment. GLW recently contacted Taconite Drilling and received confirmation that the 2025 rate remains in line with current costs.

o Update the 'Manual Site Reclamation/Seeding/Mulching' section with the total disturbance acreage updates previously discussed on page 1.

- See below updated Reclamation Cost Estimate table
 - o 'Mulch' unit cost and quantity are reversed.*

See below updated Reclamation Cost Estimate table

The total bond required under the exploration license will include the total from the Reclamation Cost Estimate table for the 2026 drilling program, as well as the cost of abandoning the 3 temporarily abandoned drillholes from the 2025 drilling program and the 2 temporarily abandoned drillholes at the Reef deposit.

Reclamation Cost Estimate - Soo Line					
<u>Item</u>	<u>Unit Cost \$</u>	<u>Units</u>	<u>Quantity</u>	<u>Total \$</u>	
Drillhole Abandonment					
Mob/Demob*	\$ 5,500.00		2	11,000	
Drill Footage*	\$ 3.60	\$/ft	23,000	82,800	
Moving site to site (4 hours per move)*	\$ 325.00	\$/hour	60	19,500	
Sump Abandonment (15 sums)					
Portland Cement (1 94# bag per 50' drilled)**	\$ 20.00	94# bag	460	9,200	
Excavator + Crew (4 hours/sump and backblading)**	\$ 325.00	\$/hour	60	19,500	
Manual Site Reclamation/Seeding/Mulching					
Seed (Soo Line 40 Mix - \$515/acre)***	\$ 515.00	\$/acre	2,861	1,473	
Mulch - (50 CWF bales/acre)**	\$ 18.00	CWF Bales	143	2,575	
Labor (2 people x 6 days per acre)**	\$ 600.00	2 man crew/day	17.166	10,300	
Total				156,348	

*from Taconite Drilling quote - 2025 (confirmed for 2026)

**average from 2025 program

*** quote from Prairie Moon

The updated table for drilling on the Soo Line Mineral Parcel (above) has been adjusted to only includes costs associated with work planned to be conducted under this NOI and totals \$156,348. GLW understands that the total required bond amount required by the WDNR will also include estimated costs associated with abandoning the 3 drillholes that remain open from the 2025 program as well as 2 open drillholes located at the Reef Project in Marathon county.

GLW currently has a bond in place in the amount of \$50,000 under their current exploration license. GLW will raise the bond amount to the amount specified by the WDNR prior to conducting work under this NOI.

Wetland (Ch. 281, Wis. Stats.) and waterway (Ch. 30, Wis. Stats.) permits will be required for regulated impacts to wetlands outside of frozen conditions. Renewals or amendments to existing coverage for erosion control (s. NR 216, Wis. Adm. Code) and dewatering (Ch. 283, Wis. Stats.) must be obtained before work can commence.

GLW will not conduct work under this NOI pertaining to activities associated with dewatering, stormwater and erosion control until renewals or amendments to existing coverage for dewatering and erosion control are obtained. GLW will not conduct any work within wetlands that requires wetland/waterways permits until all necessary permits are obtained.