Appendix D

Existing Facility Evaluation Data

Table 1 NR 140 Exceedance Summary

Site ID:	3018
Site Name:	Dane County Landfill No. 2, Rodefeld
Reporting Period:	December 2020

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result*	PAL	ES	Exceedance Type	Probable Reason for Exceedance
Acker PW (Replacement)	Iron, total (mg/l as Fe)	0.45	0.15	0.3	ES	Background
Community Well (Replacement)	Iron, total (mg/l as Fe)	0.47/0.41	0.15	0.3	ES	Background
Country Corners PW (Former Hope Tav)	Iron, total (mg/l as Fe)	2.4	0.15	0.3	ES	Background
Hope Lutheran PW (Replacement)	Iron, total (mg/l as Fe)	0.45	0.15	0.3	ES	Background
Leonhardt PW	Iron, total (mg/l as Fe)	1.7	0.15	0.3	ES	Background
Niebuhr (aka PW-51)	Iron, total (mg/l as Fe)	0.24	0.15	0.3	PAL	Background
R Gundlach PW	Iron, total (mg/l as Fe)	0.31	0.15	0.3	ES	Background
S Gundlach PW	Iron, total (mg/l as Fe)	2.5	0.15	0.3	ES	Background
M014B	Chloride, dissolved (mg/l as Cl)	133	125	250	PAL	Road Salt (near highway)
M017AR	Chloride, dissolved (mg/l as Cl)	343	125	250	ES	Road Salt (near highway)
M017BR	Chloride, dissolved (mg/l as Cl)	980	125	250	ES	Road Salt (near highway)
	Manganese, dissolved (ug/l as Mn)	57	25	50	ES	Background
M023	Alkalinity, total filtered (mg/l as CaCO3)	413	390		PAL (Indicator)	Upgradient - Background Shift or Non-Landfill Impacts
	Chloride, dissolved (mg/l as Cl)	213	125	250	PAL	Upgradient - Road Salt (near highway)
	Hardness, total, filtered (mg/l as CaCO3)	564	420		PAL (Indicator)	Upgradient - Background Shift or Non-Landfill Impacts
	Specific conductance-field (umhos/cm @ 25c)	1,322	760		PAL (Indicator)	Upgradient - Background Shift or Non-Landfill Impacts
M026A	Alkalinity, total filtered (mg/l as CaCO3)	534	460		PAL (Indicator)	Downgradient - Background Shift or Non-Landfill Impacts
	Hardness, total, filtered (mg/l as CaCO3)	648	610		PAL (Indicator)	Downgradient - Background Shift or Non-Landfill Impacts
M026B	Hardness, total, filtered (mg/l as CaCO3)	510	510		PAL (Indicator)	Downgradient - Background Shift or Non-Landfill Impacts
M028R	Chloride, dissolved (mg/l as Cl)	306	125	250	ES	Cross-Gradient - Road Salt (near highway)
M029	Hardness, total, filtered (mg/l as CaCO3)	518/507	440		PAL (Indicator)	Cross-gradient - Background Shift or Non-Landfill Impacts
	Specific conductance-field (umhos/cm @ 25c)	901/901	750		PAL (Indicator)	Cross-gradient - Background Shift or Non-Landfill Impacts (road salt)
M302BR	Chloride, dissolved (mg/l as Cl)	141	125	250	PAL	Downgradient - Road Salt? (near highway)
P103B	Hardness, total, filtered (mg/l as CaCO3)	589	560		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
	Specific conductance-field (umhos/cm @ 25c)	1,090	1,000		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
P108B	Alkalinity, total filtered (mg/l as CaCO3)	517	430		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
	Specific conductance-field (umhos/cm @ 25c)	1,205	840		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
Р119В	Alkalinity, total filtered (mg/l as CaCO3)	456	430		PAL (Indicator)	Upgradient - Background Shift or Possible Construction Effect
	Hardness, total, filtered (mg/l as CaCO3)	533	470		PAL (Indicator)	Upgradient - Background Shift or Possible Construction Effect

Table 1 NR 140 Exceedance Summary

Site ID:	3018
Site Name:	Dane County Landfill No. 2, Rodefeld
Reporting Period:	December 2020

Groundwater Results Exceeding NR 140 Standards

Well	Parameter	Result*	PAL	ES	Exceedance Type	Probable Reason for Exceedance
WT108A	Specific conductance-field (umhos/cm @ 25c)	920	820		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
WT113A	Chloride, dissolved (mg/l as Cl)	201	125	250	PAL	Cross-Gradient - Road Salt (near landfill road and shop/scale area)
WT201AR	Chloride, dissolved (mg/l as Cl)	180	125	250	PAL	Downgradient - Road Salt (near landfill road)
WT204A	Alkalinity, total filtered (mg/l as CaCO3)	618	440		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
	Hardness, total, filtered (mg/l as CaCO3)	889	630		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
	Specific conductance-field (umhos/cm @ 25c)	1,837	830		PAL (Indicator)	Downgradient at West End - Background Shift or Possible Construction Effect
WT205A	Alkalinity, total filtered (mg/l as CaCO3)	480	440		PAL (Indicator)	Down- or Cross-Gradient at west end - Background Shift or Non-Landfill Impact
	Hardness, total, filtered (mg/l as CaCO3)	573	440		PAL (Indicator)	Down- or Cross-Gradient at west end - Background Shift or Non-Landfill Impact
	Specific conductance-field (umhos/cm @ 25c)	994	780		PAL (Indicator)	Down- or Cross-Gradient at west end - Background Shift or Non-Landfill Impact
WT207AR	Chloride, dissolved (mg/l as Cl)	277	125	250	ES	Upgradient - Road Salt (between highway and entrance road)

Prepared by: AJR, 2/10/2021

Checked by: JR, 2/10/2021

Groundwater Results with Estimated Concentration Above an NR 140 PAL or ES and Below the LOQ

Note: If both the result and the PAL or ES are above the limit of detection but below the limit of quantitation, the result is not considered a PAL or ES exceedance under NR 140.14(3)(c). If the PAL or ES is below the limit of detection and the result is below the limit of quantitation, the result is not considered a PAL or ES exceedance without additional confirmation as described in NR 140.14(3)(b).

Well	Parameter	Result	LOD/LOQ	PAL	ES
M017AR	Cadmium, dissolved (ug/l as Cd)	0.63 J,B	0.43/2	0.5	5
M303AR	Cadmium, dissolved (ug/l as Cd)	0.80 J,B	0.43/2	0.5	5
WT208ARR	Cadmium, dissolved (ug/l as Cd)	0.66 J,B	0.43/2	0.5	5

B = compound was found in the blank and the sample

Notes:

PAL = Preventive Action Limit

ES = Enforcement Standard ug/l = micrograms per liter

mg/I = milligrams per liter

J = Result is an estimated value below the laboratory's limit of quantitation.

* = Two results indicate duplicate samples.

LOQ = Limit of Quantitation

Table 2VOCs DetectedDane County Landfill Site No. 2

December 2020

Sample Point Parameter Name	Sample Date	Result	PAL	ES	NR 140	LOD	LOQ	RL
Monitoring Wells				_	-	_		
M017AR								
Acetone (ug/l)	12/10/2020	5.5 J	1800	9000		1.7	10	
M303AR								
Acetone (ug/l)	12/10/2020	2.1 J	1800	9000		1.7	10	
Leachate								
Lift Station #1								
Acetone (ug/l)	12/3/2020	2600	1800	9000	PAL	170	1000	
Ethylbenzene (ug/l)	12/3/2020	19	140	700		1.8	5	
Methylethylketone (ug/l)	12/3/2020	2400	800	4000	PAL	210	500	
Naphthalene (ug/l)	12/3/2020	8.3 J	10	100		3.4	10	
p-Dichlorobenzene (ug/l)	12/3/2020	20	15	75	PAL	3.6	10	
Tetrahydrofuran (ug/l)	12/3/2020	1700	10	50	ES	19	100	
Toluene (ug/l)	12/3/2020	11	160	800		1.5	5	
Xylenes (ug/l)	12/3/2020	75	400	2000		2.2	10	

J = Estimated value below LOQ, B = Detect in method blank, field blank or trip blank, P = Failed preservation/hold time, M = Failed method QC Note: NR 140 Preventive Action Limit (PAL) and Enforcement Standard (ES) apply to groundwater samples only; for leachate and lysimeters they are shown for information only.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Acker PW (Replacement)										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.06	7.23	6.99	7.39	7.74	7.81	7.49	7.51
Specific conductance-field (umhos/cm @ 25c)			723	775	770	788	760	801	729	682
Temperature, water (degrees centigrade)			10	11.5	13	10.6	9.7	13.5	12.7	10.9

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Acker PW (Replacement)										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			325	311	328	333	309	329	312	312
Arsenic, total (ug/l As)	10	1		5.3 J				6.7 J		
Barium, total (ug/l Ba)	2000	400		220				220		
Cadmium, total (ug/l as Cd)	5	0.5		<0.43				< 0.43		
Chloride, total (mg/l as Cl)	250	125	41.2	45.5	38.9	48.2	42.1	64.2	52.7	42.6
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
Copper, total (ug/l Cu)	1300	130		9.8 J				8.9 J		
Fluoride, total (mg/l as F)	4	0.8		0.15 J				0.16 J		
Hardness, total (mg/l as CaCO3)			384	393	414	398	375	374	406	407
Iron, total (mg/l as Fe)	0.3	0.15	<u>0.62</u>	<u>0.38</u>	<u>0.88</u>	<u>0.43</u>	<u>0.43</u>	<u>0.32 B</u>	<u>0.59</u>	<u>0.45</u>
Lead, total (ug/l Pb)	15	1.5		<2.7				3.5 J		
Manganese, total (ug/l as Mn)	50	25		15				14		
Mercury, total (ug/l Hg)	2	0.2		< 0.098				< 0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				< 0.041		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				15.8				17		
Sulfate, total (mg/l as SO4)	250	125		24.6				30.1		
Zinc, total (ug/l as Zn)	5000	2500		5.5 J				12 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Alar PW										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.01	7.24	7.68	7.3	7.28	7.4	7.31	7.32
Specific conductance-field (umhos/cm @ 25c)			997	985	1067	1028	1034	1007	954	945
Temperature, water (degrees centigrade)			11.8	12	12.3	11.7	11.7	12	12	11.7

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Alar PW										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			349	335	359	349	328	353	342	352
Arsenic, total (ug/l As)	10	1		<3.7				<3.7		
Barium, total (ug/l Ba)	2000	400		57				59		
Cadmium, total (ug/l as Cd)	5	0.5		<0.43				0.49 JB		
Chloride, total (mg/l as Cl)	250	125	106	107	102	95.8	97.4	112	114	102
Chromium, total (ug/l Cr)	100	10		<1.7				2 J		
Copper, total (ug/l Cu)	1300	130		9.8 J				13		
Fluoride, total (mg/l as F)	4	0.8		0.26				0.16 J		
Hardness, total (mg/l as CaCO3)			383	371	408	388	385	367	371	402
Iron, total (mg/l as Fe)	0.3	0.15	< 0.082	< 0.082	0.088 J	< 0.082	0.12 J	< 0.082	< 0.082	< 0.082
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		<2.3				<2.3		
Mercury, total (ug/l Hg)	2	0.2		<0.098				<0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		5.4				6.9		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				70				68		
Sulfate, total (mg/l as SO4)	250	125		20.8				24.7		
Zinc, total (ug/l as Zn)	5000	2500		8.1 J				16 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Community Well (Replacement)										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.08	7.41	7.26	7.64	7.76	7.4	7.89	7.57
				7.47		7.64				7.55
Specific conductance-field (umhos/cm @ 25c)			671.5	659	716	694	694.5	669	658	645
				655		694				645
Temperature, water (degrees centigrade)			4.5	10.5	15.8	8.6	4.7	12.4	15.7	9.9
				10.4		8.6				9.9

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Community Well (Replacement)										
Alkalinity, total (mg/l as CaCO3)			313	300	314	316	290	310	306	305
				299		313				306
Arsenic, total (ug/l As)	10	1		<3.7				<3.7		
	10	1		<3.7						
Barium, total (ug/l Ba)	2000	400		97				89		
	2000	400		94						
Cadmium, total (ug/l as Cd)	5	0.5		<0.43				<0.43		
	5	0.5		<0.43						
Chloride, total (mg/l as Cl)	250	125	22.6	24.7	25.7	24.6	28.1	28.8	28.8	29.4
	250	125		23.5		26.6				29.9
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
	100	10		<1.7						
Copper, total (ug/l Cu)	1300	130		5.4 J				3.1 J		
	1300	130		2.8 J						
Fluoride, total (mg/l as F)	4	0.8		0.25				0.18 J		
	4	0.8		0.23						
Hardness, total (mg/l as CaCO3)			365	372	395	370	315	336	371	384
				369		367				391
Iron, total (mg/l as Fe)	0.3	0.15	<u>0.75</u>	<u>0.91</u>	<u>0.79</u>	<u>0.46</u>	0.48	<u>0.49 B</u>	<u>0.51</u>	<u>0.41</u>
	0.3	0.15		<u>0.9</u>		<u>0.63</u>				<u>0.47</u>
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
	15	1.5		<2.7						

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Community Well (Replacement)										
Manganese, total (ug/l as Mn)	50	25		37				27		
	50	25		37						
Mercury, total (ug/l Hg)	2	0.2		<0.098				<0.098		
	2	0.2		< 0.098						
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				< 0.041		
	10	2		<0.041 M						
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
	50	10		<5.3						
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
	50	10		<1.5						
Sodium, total (mg/l as Na)				5.9				5.4		
				5.7						
Sulfate, total (mg/l as SO4)	250	125		32.9				32.3		
	250	125		30.7						
Zinc, total (ug/l as Zn)	5000	2500		43				39		
	5000	2500		45						
Organic										
Ethylbenzene (ug/l)	700	140		< 0.18				0.21 J		
	700	140		< 0.18						
Xylenes (ug/l)	2000	400		<0.22				1.1		
	2000	400		<0.22						

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Country Corners PW (Former Hope	• Tav))								
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.02	7.36	6.9	7.51	7.84	7.45	7.38	7.04
							7.84			
Specific conductance-field (umhos/cm @ 25c)			1017	1069	1077	1125	1068	1103	954	925
							1068			
Temperature, water (degrees centigrade)			10.8	11	12	10.8	10.7	11.1	11.5	11.1
							10.7			

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Country Corners PW (Former Ho	pe Tav))								
Inorganic										
Alkalinity, total (mg/l as CaCO3)			337	322	341	339	316	334	328	332
							320			
Arsenic, total (ug/l As)	10	1		<u>38</u>				<u>23</u>		
Barium, total (ug/l Ba)	2000	400		200				210		
Cadmium, total (ug/l as Cd)	5	0.5		0.98 J				<0.43		
Chloride, total (mg/l as Cl)	250	125	125	137	125	137	127	145	122	91.1
	250	125					124			
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
Copper, total (ug/l Cu)	1300	130		7.1 J				20		
Fluoride, total (mg/l as F)	4	0.8		0.36				0.36		
Hardness, total (mg/l as CaCO3)			452	467	492	479	444	452	475	455
							440			
Iron, total (mg/l as Fe)	0.3	0.15	<u>1.1</u>	<u>1.6</u>	<u>1.2</u>	2	<u>0.58</u>	<u>5.3</u>	<u>1.9</u>	<u>2.4</u>
	0.3	0.15					<u>0.57</u>			
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		26				<u>51</u>		
Mercury, total (ug/l Hg)	2	0.2		< 0.098				<0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				<0.041		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				52.3				50.8		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Country Corners PW (Former Hope	e Tav)									
Sulfate, total (mg/l as SO4)	250	125		51.2				43		
Zinc, total (ug/l as Zn)	5000	2500		<5				9.4 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Hope Lutheran PW (Replacement)										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.1	7.37	6.98	7.41	7.78	7.18	7.56	7.51
					7			7.18		
Specific conductance-field (umhos/cm @ 25c)			715	765	778	790	770	790	713	689
					777			782		
Temperature, water (degrees centigrade)			10.5	13.2	18.6	11.5	10.4	11.7	12.3	10.9
					18.3			11.7		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Hope Lutheran PW (Replaceme	ent)									
Inorganic										
Alkalinity, total (mg/l as CaCO3)			324	311	323	328	306	325	314	316
					334			326		
Arsenic, total (ug/l As)	10	1		<3.7				8.4 J		
	10	1						6.9 J		
Barium, total (ug/l Ba)	2000	400		210				230		
	2000	400						210		
Cadmium, total (ug/l as Cd)	5	0.5		< 0.43				< 0.43		
	5	0.5						0.52 JB		
Chloride, total (mg/l as Cl)	250	125	38.3	51.1	42.4	46.9	43.1	59.3	47.2	42.2
	250	125			40.8			61.9		
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
	100	10						<1.7		
Copper, total (ug/l Cu)	1300	130		22				9.7 J		
	1300	130						12		
Fluoride, total (mg/l as F)	4	0.8		0.17 J				0.13 J		
	4	0.8						0.17 J		
Hardness, total (mg/l as CaCO3)			372	404	416	399	390	382	393	400
					417			362		
Iron, total (mg/l as Fe)	0.3	0.15	< 0.082	0.1 J	< 0.082	0.25	0.11 J	<u>0.42 B</u>	<u>0.37</u>	0.45
	0.3	0.15			< 0.082			<u>0.45 B</u>		
Lead, total (ug/l Pb)	15	1.5		<2.7				7.8		
1	15	1.5						5.9		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Hope Lutheran PW (Replacement))									
Manganese, total (ug/l as Mn)	50	25		6.1 J				13		
	50	25						13		
Mercury, total (ug/l Hg)	2	0.2		< 0.098				< 0.098		
	2	0.2						< 0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				< 0.041		
	10	2						< 0.041		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
	50	10						<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
	50	10						<1.5		
Sodium, total (mg/l as Na)				16.1				15.4		
								14.4		
Sulfate, total (mg/l as SO4)	250	125		29.4				29.3		
	250	125						30.8		
Zinc, total (ug/l as Zn)	5000	2500		9.2 J				5.1 J		
	5000	2500						8.9 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Leonhardt PW										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.1	7.44	6.82	7.97	7.71	7.4	7.55	7.51
Specific conductance-field (umhos/cm @ 25c)			605	595	623	624	622	603	584	576
Temperature, water (degrees centigrade)			10.5	11.2	11.8	10.7	10.8	11	11.7	12.4

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Leonhardt PW										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			338	322	341	341	313	331	322	331
Arsenic, total (ug/l As)	10	1		<3.7				4 J		
Barium, total (ug/l Ba)	2000	400		140				130		
Cadmium, total (ug/l as Cd)	5	0.5		< 0.43				<0.43		
Chloride, total (mg/l as Cl)	250	125	3.1	2.9	2.9	3.6	3	3.9	4.4	4.5
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
Copper, total (ug/l Cu)	1300	130		3.7 J				2.2 J		
Fluoride, total (mg/l as F)	4	0.8		0.16 J				0.13 J		
Hardness, total (mg/l as CaCO3)			338	347	371	342	329	315	364	364
Iron, total (mg/l as Fe)	0.3	0.15	<u>1.8</u>	<u>2.1</u>	<u>2</u>	<u>2.4</u>	<u>2.2</u>	<u>1.7</u>	<u>2.4</u>	<u>1.7</u>
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		39				34		
Mercury, total (ug/l Hg)	2	0.2		<0.098				<0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				< 0.041		
Selenium, total (ug/l as Se)	50	10		<5.3				5.5 J		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				2.8				2.5		
Sulfate, total (mg/l as SO4)	250	125		10.4				10		
Zinc, total (ug/l as Zn)	5000	2500		140				76		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Niebuhr (aka PW-51)										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.22	7.35	7.07	7.51	7.8	7.3	7.44	7.5
Specific conductance-field (umhos/cm @ 25c)			784	780	844	819	823	782	764	753
Temperature, water (degrees centigrade)			11.1	11.9	14	11.3	11.1	12	12.1	11.4

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Niebuhr (aka PW-51)										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			357	338	361	361	333	356	349	361
Arsenic, total (ug/l As)	10	1		<3.7				<3.7		
Barium, total (ug/l Ba)	2000	400		36				37		
Cadmium, total (ug/l as Cd)	5	0.5		0.43 J				0.6 JB		
Chloride, total (mg/l as Cl)	250	125	42.5	41.8	42.6	45.2	42.3	39.3	41.5	43.6
Chromium, total (ug/l Cr)	100	10		2 J				2.5 J		
Copper, total (ug/l Cu)	1300	130		16				17		
Fluoride, total (mg/l as F)	4	0.8		0.22				0.18 J		
Hardness, total (mg/l as CaCO3)			386	399	422	400	384	381	404	430
Iron, total (mg/l as Fe)	0.3	0.15	< 0.082	< 0.082	< 0.082	< 0.082	0.11 J	0.14 JB	0.15 J	0.24
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		3.2 J				2.5 J		
Mercury, total (ug/l Hg)	2	0.2		<0.098				< 0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		3.5				3.4		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				21.1				20.7		
Sulfate, total (mg/l as SO4)	250	125		15.7				15.4		
Zinc, total (ug/l as Zn)	5000	2500		11 J				6 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
R Gundlach PW										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.06	7.39	6.76	7.44	7.7	7.29	7.66	7.4
			7.06						7.65	
Specific conductance-field (umhos/cm @ 25c)			771	769	819	806	809	781	800	732
			771						799	
Temperature, water (degrees centigrade)			10.3	11	11.7	10.5	10.4	11	11.2	10.9
			10.3						11.1	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
R Gundlach PW										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			365	348	368	366	343	362	355	361
			364						352	
Arsenic, total (ug/l As)	10	1		<3.7				<3.7		
Barium, total (ug/l Ba)	2000	400		49				45		
Cadmium, total (ug/l as Cd)	5	0.5		< 0.43				<0.43		
Chloride, total (mg/l as Cl)	250	125	17.4	17.8	16	17.7	16.8	19.7	35.9	19.3
	250	125	17.8						37.7	
Chromium, total (ug/l Cr)	100	10		4.5 J				4.6 J		
Copper, total (ug/l Cu)	1300	130		7.8 J				21		
Fluoride, total (mg/l as F)	4	0.8		0.23				0.13 J		
Hardness, total (mg/l as CaCO3)			443	437	472	434	420	391	433	438
			423						443	
Iron, total (mg/l as Fe)	0.3	0.15	< 0.082	< 0.082	0.32	0.14 J	0.14 J	0.18 JB	<u>0.33</u>	<u>0.31</u>
	0.3	0.15	0.083 J						<u>0.33</u>	
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		<2.3				4 J		
Mercury, total (ug/l Hg)	2	0.2		< 0.098				<0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		7.4				8.7		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				5.1				4.5		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
R Gundlach PW										
Sulfate, total (mg/l as SO4)	250	125		28.7				27.7		
Zinc, total (ug/l as Zn)	5000	2500		23				27		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
S Gundlach PW										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			7.01	7.35	6.92	7.38	7.65	7.31	7.51	7.47
Specific conductance-field (umhos/cm @ 25c)			729	734	621	769	773	749	726	705
Temperature, water (degrees centigrade)			10.4	11.5	12.6	10.9	11.1	11.9	12.1	11.4

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
S Gundlach PW										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			343	331	349	345	326	344	332	333
Arsenic, total (ug/l As)	10	1		4.5 J				4 J		
Barium, total (ug/l Ba)	2000	400		140				130		
Cadmium, total (ug/l as Cd)	5	0.5		< 0.43				<0.43		
Chloride, total (mg/l as Cl)	250	125	14.2	15.4	18.9	17.2	16.4	18.1	19.7	17.7
Chromium, total (ug/l Cr)	100	10		<1.7				<1.7		
Copper, total (ug/l Cu)	1300	130		6.9 J				13		
Fluoride, total (mg/l as F)	4	0.8		0.26				0.2		
Hardness, total (mg/l as CaCO3)			418	403	449	418	415	390	427	447
Iron, total (mg/l as Fe)	0.3	0.15	<u>1.5</u>	<u>2.2</u>	<u>2</u>	<u>2.1</u>	<u>2.1</u>	<u>2</u>	<u>2.2</u>	<u>2.5</u>
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		30				29		
Mercury, total (ug/l Hg)	2	0.2		< 0.098				<0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		< 0.041				< 0.041		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				4.1				4		
Sulfate, total (mg/l as SO4)	250	125		59.3				59		
Zinc, total (ug/l as Zn)	5000	2500		12 J				46		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Suter PW										
Reporting Period			3/1/2019	6/1/2019	9/1/2019	12/1/2019	3/1/2020	6/1/2020	9/1/2020	12/1/2020
Field										
ph-Field (standard units)			6.86	7.44	7.06	7.38	7.6	7.09	7.28	7.42
Specific conductance-field (umhos/cm @ 25c)			801	791	863	845	839	815	818	766
Temperature, water (degrees centigrade)			10.8	11.9	12.5	10.8	10.7	11.6	11.3	10.9

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Water Supply Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Suter PW										
Inorganic										
Alkalinity, total (mg/l as CaCO3)			348	334	360	357	328	347	337	342
Arsenic, total (ug/l As)	10	1		<3.7				<3.7		
Barium, total (ug/l Ba)	2000	400		110				120		
Cadmium, total (ug/l as Cd)	5	0.5		<0.43				<0.43		
Chloride, total (mg/l as Cl)	250	125	16.5	16.6	16.6	19.2	17.3	19.8	20.7	18.8
Chromium, total (ug/l Cr)	100	10		3.2 J				3.5 J		
Copper, total (ug/l Cu)	1300	130		7.4 J				8.9 J		
Fluoride, total (mg/l as F)	4	0.8		0.14 J				0.15 J		
Hardness, total (mg/l as CaCO3)			424	433	465	415	400	423	23.3	475
Iron, total (mg/l as Fe)	0.3	0.15	< 0.082	< 0.082	< 0.082	0.092 J	< 0.082	<0.082	< 0.082	< 0.082
Lead, total (ug/l Pb)	15	1.5		<2.7				<2.7		
Manganese, total (ug/l as Mn)	50	25		<2.3				<2.3		
Mercury, total (ug/l Hg)	2	0.2		<0.098				< 0.098		
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		<u>13.3</u>				<u>14.2</u>		
Selenium, total (ug/l as Se)	50	10		<5.3				<5.3		
Silver, total (ug/l as Ag)	50	10		<1.5				<1.5		
Sodium, total (mg/l as Na)				6				5.7		
Sulfate, total (mg/l as SO4)	250	125		33.2				32.9		
Zinc, total (ug/l as Zn)	5000	2500		15 J				15 J		

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M006A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			860.22	858.78	860.44	859.48	859.6	859.45	859.41	858.83
							859.6			858.83
ph-Field (standard units)			7.42	7.74	7.6	7.44	7.47	7.34	7.6	7.81
							7.54			7.81
Specific conductance-field (umhos/cm @ 25c)			518	489	518	611	802	779	819	773
							826			773
Temperature, water (degrees centigrade)			10.2	11.1	12.4	11.6	9.9	11.6	9.9	11.9
							10.1			11.9
Inorganic								11		
Alkalinity, total filtered (mg/l as CaCO3)			256	224	252	227	221	272	289	269
							221			261
Chloride, dissolved (mg/l as Cl)	250	125	14.6	32.5	45.7	50.2	77.4	69.3	82.3	67.5
	250	125					68.4			66.8
Hardness, total, filtered (mg/l as CaCO3)			279	293	290	270	274	324	335	321
							280			328
Organic		11		1		1		1		1
Toluene (ug/l)	800	160	<0.5		< 0.15		0.39 J		< 0.15	
	800	160					0.37 J			

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M009AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.22	860.83	862.6	862.21	862.31	862.59	862.34	860.55
ph-Field (standard units)			6.83	7	7.93	6.77	6.92	6.9	7.76	7.01
				7.04						
Specific conductance-field (umhos/cm @ 25c)	 		1199	1116	477	1336	1490	1420	1283	1273
				1096						
Temperature, water (degrees centigrade)			10.4	12.9	12.2	12.6	10.6	11.9	10.5	12
				12.8						
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			314	609	286	623	623	611	521	538
				544						
Chloride, dissolved (mg/l as Cl)	250	125	1.5 J	43.9	1.9	45.8	47.6	44	55.5	48.8
	250	125		43.8						
Hardness, total, filtered (mg/l as CaCO3)	 		266	704	255	778	859	783	646	726
				699						
Organic										
Acetone (ug/l)	9000	1800	<3						2.3 J	
Toluene (ug/l)	800	160	<0.5		< 0.15		0.15 J		< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M009BR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.85	861.43	862.22	863	863.12	863.24	863	861.08
ph-Field (standard units)			7.52	7.74	7.15	7.65	7.53	7.21	7.16	7.7
Specific conductance-field (umhos/cm @ 25c)			489	436.9	887	499	539	636	603	498
Temperature, water (degrees centigrade)			11.4	9.8	9.9	11.2	12.9	9.7	10.8	11.7
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			574	293	514	283	279	285	293	281
Chloride, dissolved (mg/l as Cl)	250	125	37.7	1.8	49.8	0.68	0.82	2.5	2.7	1.3
Hardness, total, filtered (mg/l as CaCO3)			673	279	645	269	277	268	280	268
Organic										
Toluene (ug/l)	800	160	< 0.5		< 0.15		< 0.15		0.17 J	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M014A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.33	861.32	863.03	862.08	862.11	862.68	862.73	861.58
ph-Field (standard units)			7.18	6.5	7.04	6.98	7.4	7.19	6.83	7.21
Specific conductance-field (umhos/cm @ 25c)		3200	1318	2024	1970	1886	1644	1223	1591	1579
Temperature, water (degrees centigrade)			8.9	8.4	13.1	9.7	8.2	10.4	8.4	9.8
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		620	525	429	381	515	564	427	494	388
Chloride, dissolved (mg/l as Cl)	250	125	227	156	143	137	197	94.2	140	109
Hardness, total, filtered (mg/l as CaCO3)		2100	1860	1570	1220	1450	1860	948	1280	982
Organic				·	<u>.</u>					
Acetone (ug/l)	9000	1800	<3						9.8 J	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M014B										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.5	861.85	864.7	863.32	863.32	863.7	863.46	861.94
ph-Field (standard units)			7.44	6.58	7.12	7.2	7.7	7.66	7.27	7.36
Specific conductance-field (umhos/cm @ 25c)		2000	1087	941	1176	1070	1139	1089	1209	1114
Temperature, water (degrees centigrade)			10.1	9.4	13.4	9.4	10.1	8.2	9.9	9.8
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		510	439	368	394	374	374	387	394	372
Chloride, dissolved (mg/l as Cl)	250	125	134	118	147	103	129	145	156	133
Hardness, total, filtered (mg/l as CaCO3)		920	493	513	471	477	502	479	494	498
Organic										
Toluene (ug/l)	800	160	<0.5		< 0.15		0.15 J		< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M017AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)										869.75
ph-Field (standard units)			 							7.61
Specific conductance-field (umhos/cm @ 25c)										1580
Temperature, water (degrees centigrade)										11.8

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M017AR										
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)										406
Arsenic, dissolved (ug/l As)	10	1								<3.7
Barium, dissolved (ug/l as Ba)	2000	400								98
Cadmium, dissolved (ug/l as Cd)	5	0.5								0.63 JB
Chloride, dissolved (mg/l as Cl)	250	125								<u>343</u>
Chromium, dissolved (ug/l as Cr)	100	10								2.6 J
Copper, dissolved (ug/l Cu)	1300	130								14
Fluoride, dissolved (mg/l as F)	4	0.8								0.37
Hardness, total, filtered (mg/l as CaCO3)										579
Lead, dissolved (ug/l as Pb)	15	1.5								<2.7
Manganese, dissolved (ug/l as Mn)	50	25								2.8 J
Mercury, dissolved (ug/l as Hg)	2	0.2								<0.098
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2								0.6
Selenium, dissolved (ug/l as Se)	50	10								<5.3
Silver, dissolved (ug/l as Ag)	50	10								<1.5
Sulfate, dissolved (mg/l as SO4)	250	125								18.6
Zinc, dissolved (ug/l as Zn)	5000	2500								8.3 J
Organic										
Acetone (ug/l)	9000	1800								5.5 J

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M017BR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)										868.2
ph-Field (standard units)										7.23
Specific conductance-field (umhos/cm @ 25c)										3540
Temperature, water (degrees centigrade)										11.5

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.
Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M017BR										
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)										406
Arsenic, dissolved (ug/l As)	10	1								<3.7
Barium, dissolved (ug/l as Ba)	2000	400								230
Cadmium, dissolved (ug/l as Cd)	5	0.5								< 0.43
Chloride, dissolved (mg/l as Cl)	250	125								<u>980</u>
Chromium, dissolved (ug/l as Cr)	100	10								<1.7
Copper, dissolved (ug/l Cu)	1300	130								9.7 J
Fluoride, dissolved (mg/l as F)	4	0.8								< 0.067
Hardness, total, filtered (mg/l as CaCO3)										834
Lead, dissolved (ug/l as Pb)	15	1.5								<2.7
Manganese, dissolved (ug/l as Mn)	50	25								<u>57</u>
Mercury, dissolved (ug/l as Hg)	2	0.2								<0.098
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2								< 0.041
Selenium, dissolved (ug/l as Se)	50	10								<5.3
Silver, dissolved (ug/l as Ag)	50	10								<1.5
Sulfate, dissolved (mg/l as SO4)	250	125								30.1
Zinc, dissolved (ug/l as Zn)	5000	2500								10 J

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M023										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			868.27	865.64	867.94	867.93	868.41	868.24	867.95	865.16
ph-Field (standard units)			7.14	6.72	7.81	7.04	7.31	6.95	7.26	6.9
Specific conductance-field (umhos/cm @ 25c)		760	604	615	569	816	723	713	855	1322
Temperature, water (degrees centigrade)			10.3	11.2	11.2	10.9	9.2	11	9.6	11.2
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		390	315	363	354	365	371	381	396	413
Chloride, dissolved (mg/l as Cl)	250	125	24.5	20.5	57.5	47.2	10.9	18	53	213
Hardness, total, filtered (mg/l as CaCO3)		420	324	419	388	388	423	384	309	564
Organic										
Acetone (ug/l)	9000	1800	3.2 J						2.4 J	
p-Isopropyltoluene (ug/l)					< 0.36		0.58 J			

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M025A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.6	861.38	863.12	862.67	862.79	862.7	862.8	861.23
ph-Field (standard units)			6.74	6.88	7.08	6.81	6.74	6.59	6.96	6.76
Specific conductance-field (umhos/cm @ 25c)		2100	1195	991	712	1103	1253	1202	1296	1137
Temperature, water (degrees centigrade)			10.8	11.9	12.5	11.5	9.9	11.7	9.5	11.3
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		660	611	467	408	322	530	581	553	528
Chloride, dissolved (mg/l as Cl)	250	125	64.1	51.9	9.3	8.9	48.5	48.3	78.8	58.7
Hardness, total, filtered (mg/l as CaCO3)		1100	668	624	398	379	671	713	687	650

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M025BR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.57	861.35	862.66	862.66	862.87	862.65	862.78	861.07
ph-Field (standard units)			7.29	7.29	7.6	7.29	7.25	7.43	7.53	7.36
Specific conductance-field (umhos/cm @ 25c)		1100	650	570	609	638	672	661	663	651
Temperature, water (degrees centigrade)			11.7	10.6	13	11.1	10.9	10.7	10.8	11.4
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		460	359	326	326	520	311	320	324	326
Chloride, dissolved (mg/l as Cl)	250	125	6.3	7.5	7.8	43.1	10.5	14.3 M	13.8	14.7
Hardness, total, filtered (mg/l as CaCO3)		550	381	388	346	589	387	382	367	380
Organic										
Acetone (ug/l)	9000	1800	6.9 J						<1.7	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M026A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.35	860.21	861.77	861.48	861.54	861.45	861.53	859.95
ph-Field (standard units)			6.7	6.9	7.12	6.98	7.12	6.99	6.87	6.88
Specific conductance-field (umhos/cm @ 25c)		1100	751	1043	902	897	1205	942	1159	1079
Temperature, water (degrees centigrade)			10.2	11.1	12.6	11.2	10.2	11.7	9.5	12.1
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		460	597	628	506	537	536	478	584	534
Chloride, dissolved (mg/l as Cl)	250	125	32.2	14.6	19.2	20.4	33.4	24	33.9	33.9
Hardness, total, filtered (mg/l as CaCO3)		610	624	746	535	596	676	569	682	648
Organic										
1,1-Dichloroethane (ug/l)	850	85	0.78 J		<0.41		<0.41		< 0.41	
Acetone (ug/l)	9000	1800	4.1 J						<1.7	
Chlorobenzene (ug/l)	100	20	<0.5		0.6 J		<0.39		< 0.39	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M026B										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.38	860.24	861.67	861.5	861.6	861.43	861.58	859.97
ph-Field (standard units)			7.11	7.12	7.28	7.15	7.31	7.49	7.37	7.31
Specific conductance-field (umhos/cm @ 25c)		890	809	738	812	828	846	822	836	830
Temperature, water (degrees centigrade)			11	10.6	12.6	11.1	11.3	10.7	11.7	11.1
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		430	429	389	432	395	387	393	407	423
Chloride, dissolved (mg/l as Cl)	250	125	12.1	12.5	12.9	11.1	13.1	13.2	14.1	27.1
Hardness, total, filtered (mg/l as CaCO3)		510	476	503	460	470	472	468	484	510
Organic										
Acetone (ug/l)	9000	1800	5.9 J						<1.7	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M028R										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field				1						
Groundwater elevation (ft MSL)			863.6	861.73	862.44	863.87	863.93	863.62	863.66	861.22
									863.66	
ph-Field (standard units)			6.94	6.73	7.31	7.15	7.05	7.21	7.42	7.27
				6.78					7.42	
Specific conductance-field (umhos/cm @ 25c)			1403	1173	960	1322	1227	1332	1648	1429
				1173					1648	
Temperature, water (degrees centigrade)			11.6	11.3	11.3	11.8	11.6	10	10.9	11.3
				11.2					10.9	
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			491	472	447	452	440	471	474	444
				453					473	
Chloride, dissolved (mg/l as Cl)	250	125	248	186	228	<u>268</u>	<u>312</u>	168	227	<u>306</u>
	250	125		189					229	
Hardness, total, filtered (mg/l as CaCO3)			532	482	433	464	439	459	483	444
				480					482	
Organic										
Acetone (ug/l)	9000	1800	3.3 J						<1.7	
	9000	1800							<1.7	
Toluene (ug/l)	800	160	<0.5		< 0.15		0.41 J		< 0.15	
	800	160							< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M029										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			864.3	862.26	862.87	864.58	864.7	864.24	864.33	861.69
							864.7	864.24		861.69
ph-Field (standard units)			7.18	7.27	7.85	7.27	7.28	7.37	7.53	7.45
							7.29	7.37		7.45
Specific conductance-field (umhos/cm @ 25c)		750	783	679	554.6	742	818	818	873	901
		750					825	818		901
Temperature, water (degrees centigrade)			11.2	11.5	12.3	10.4	11.7	9.8	11.4	11.3
							11.6	9.8		11.3
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		390	369	370	402	402	396	427	404	374
		390					396	429		369
Chloride, dissolved (mg/l as Cl)	250	125	62.4	46.3	18.9	16.8	22.6	19	144	96.5
	250	125					21.4	19.8		97.7
Hardness, total, filtered (mg/l as CaCO3)		440	433	471	408	430	445	444	475	518
		440					417	457		507
Organic				L	L	1		I	L	
Toluene (ug/l)	800	160	<0.5		< 0.15		0.41 J		< 0.15	
	800	160					0.36 J			

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M301A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			869.86	866.69	868.29	869.7	870.09	869.54	869.78	865.95
ph-Field (standard units)			7.18	7.07	7.88	7.27	7.34	7.55	7.55	7.43
Specific conductance-field (umhos/cm @ 25c)		1200	694	626	716	760	729	783	670	719
Temperature, water (degrees centigrade)			11.1	11.6	12	11.7	10.8	11	12	12.2
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		480	378	383 M	376	396	380	386	391	385
Chloride, dissolved (mg/l as Cl)	250	125	14.1	12.6	118	48.3	13.7	44.7	25.2	14.1
Hardness, total, filtered (mg/l as CaCO3)		490	383	422	462	407	381	436	402	437
Organic										
Acetone (ug/l)	9000	1800	9.4 J						<1.7	
Chloroform (ug/l)	6	0.6	<2.5		< 0.37		0.51 JB		< 0.37	
Toluene (ug/l)	800	160	<0.5		<0.15		0.59		< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M302AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.53	860.34	865.14	862.41	863.05	863.25	862.98	859.96
					865.14					
ph-Field (standard units)			7.03	6.87	7.49	7.14	7.42	7.74	7.66	7.4
					7.49					
Specific conductance-field (umhos/cm @ 25c)			740	668	717	728	709	736	677	719
					717					
Temperature, water (degrees centigrade)			11.2	8.7	12.4	10.9	11.2	11.1	11.1	12.1
					12.4					
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			414	436	400	419	350	404	375	395
					400					
Chloride, dissolved (mg/l as Cl)	250	125	3.1	5.6	6.7	4.5	7.1	7.2	4.1	4.3
	250	125			7.3					
Hardness, total, filtered (mg/l as CaCO3)			427	463	396	375	368	392	373	441
					419					
Organic										
Acetone (ug/l)	9000	1800	4.2 J						<1.7	
Chloroform (ug/l)	6	0.6	<2.5		< 0.37		0.85 JB		< 0.37	
	6	0.6			< 0.37					
Toluene (ug/l)	800	160	<0.5		< 0.15		0.48 J		< 0.15	
L	800	160			< 0.15					

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M302AR										
M302BR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.96	859.98	862.34	861.54	861.68	861.68	861.64	859.68
ph-Field (standard units)			6.98	6.9	7.3	7.17	7.29	7.45	7.5	7.2
Specific conductance-field (umhos/cm @ 25c)			1098	1019	690	920	1127	996	990	1117
Temperature, water (degrees centigrade)			11.8	11	12.6	11.3	11.7	10.9	11.7	11.4
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			374	346	347	317	402	393	402	371
Chloride, dissolved (mg/l as Cl)	250	125	159	115	93.3	75.8	99.4	44.2	66.5	141
Hardness, total, filtered (mg/l as CaCO3)			404	413	332	291	440	414	422	497
Organic										
Acetone (ug/l)	9000	1800	5.4 J						<1.7	
Chloroform (ug/l)	6	0.6	<2.5		< 0.37		0.78 JB		< 0.37	
Toluene (ug/l)	800	160	<0.5		< 0.15		0.41 J		< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M303AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)										865.3
ph-Field (standard units)										7.3
Specific conductance-field (umhos/cm @ 25c)										745
Temperature, water (degrees centigrade)										12

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
M303AR										
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)										389
Arsenic, dissolved (ug/l As)	10	1								<3.7
Barium, dissolved (ug/l as Ba)	2000	400								110
Cadmium, dissolved (ug/l as Cd)	5	0.5								0.8 JB
Chloride, dissolved (mg/l as Cl)	250	125								15.1
Chromium, dissolved (ug/l as Cr)	100	10								<1.7
Copper, dissolved (ug/l Cu)	1300	130								6.6 J
Fluoride, dissolved (mg/l as F)	4	0.8								0.17 J
Hardness, total, filtered (mg/l as CaCO3)										461
Lead, dissolved (ug/l as Pb)	15	1.5								<2.7
Manganese, dissolved (ug/l as Mn)	50	25								4.1 J
Mercury, dissolved (ug/l as Hg)	2	0.2								<0.098
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2								0.73
Selenium, dissolved (ug/l as Se)	50	10								<5.3
Silver, dissolved (ug/l as Ag)	50	10								<1.5
Sulfate, dissolved (mg/l as SO4)	250	125								32.6
Zinc, dissolved (ug/l as Zn)	5000	2500								9.4 J
Organic										
Acetone (ug/l)	9000	1800								2.1 J

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
P103B										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.8	859.66	863.34	860.88	861.39	861.66	861.76	859.92
ph-Field (standard units)			7.15	7.2	7.39	7.13	7.2	7.31	7.21	7.24
Specific conductance-field (umhos/cm @ 25c)		1000	1017	918	975	1026	1078	1067	1053	1090
Temperature, water (degrees centigrade)			9.4	9.5	12.1	9.9	10.1	9.6	9.1	10.3
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		480	446	469	454	453	455	462	456	461
Chloride, dissolved (mg/l as Cl)	250	125	54	51.6	48.6	45.9	46	52.1	45.1	58.5
Hardness, total, filtered (mg/l as CaCO3)		560	596	626	534	598	630	580	599	589
Organic										
Benzene (ug/l)	5	0.5	<0.5		0.4 J		0.2 J		< 0.15	
Dichloromethane (ug/l)	5	0.5	<0.23		3 J		<1.6		<1.6	
Toluene (ug/l)	800	160	<0.5		1		<0.15		< 0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
P108B										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.33	860.62	864.41	862.13	862.64	863.16	863.33	861.49
ph-Field (standard units)			7.36	6.97	7.62	7.3	7.45	7.44	7.29	7.43
Specific conductance-field (umhos/cm @ 25c)		840	1221	1084	1134	1150	1171	1057	1102	1205
Temperature, water (degrees centigrade)			11.6	12.2	13.5	11.7	11.9	11.1	12	13
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		430	364 M	379	370	393	408	381	474	517
Chloride, dissolved (mg/l as Cl)	250	125	106	109	111	85	76.7	68	48.5	63.2
Hardness, total, filtered (mg/l as CaCO3)		1400	589	608	523	532	506	465	524	592
Organic										
Acetone (ug/l)	9000	1800	3.5 J						<1.7	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
P119B										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.64	861.59	863.89	863.19	863.73	863.71 863.71	863.7	861.59
ph-Field (standard units)			7.25	7.16	7	7.2	7.59	7.57	7.47	7.51
								7.57		
Specific conductance-field (umhos/cm @ 25c)		860	828	746	598.7	862	887	872	861	845
		860						872		
Temperature, water (degrees centigrade)			11.8	11.3	12.8	11.9	11.8	10.9	12.5	11.1
								10.9		
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		430	452	457	452	448	441	454	454	456
		430						449		
Chloride, dissolved (mg/l as Cl)	250	125	4.1	4.2	6.7	5.1	9.6	13	13.5	7.5
	250	125						12.9		
Hardness, total, filtered (mg/l as CaCO3)		470	485	522	450	490	506	498	489	533
		470						493		
Organic										
Acetone (ug/l)	9000	1800	4.2 J						<1.7	
Trichloroethylene (ug/l)	5	0.5	<0.33		<0.16		0.22 JB		<0.16	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT103A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.22	859.93	864.16	861.56	861.76	862.42	862.31	860.2
ph-Field (standard units)			7.06	7.05	7.18	7.08	7.23	7.33	7.27	7.17
Specific conductance-field (umhos/cm @ 25c)		1700	1404	1069	532	1269	1159	1137	1078	1185
Temperature, water (degrees centigrade)			9.9	9.2	15.2	8.2	9.4	9.1	9.2	10.8
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		580	581	520	602	581	554	575	524	535
Chloride, dissolved (mg/l as Cl)	250	125	29.9	25.8	20.7	23.2	10.7	18.9	9	23.5
Hardness, total, filtered (mg/l as CaCO3)		960	787	773	626	751	605	667	504	700

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT105AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.46	860.16	863.48	861.09	861.24	861.48	861.47	860.22
					863.48					860.22
ph-Field (standard units)			7.07	6.55	7.24	7.05	7.09	7.21	6.9	7.25
					7.24					7.25
Specific conductance-field (umhos/cm @ 25c)			840	680	606.6	769	937	896	846	819
					606.6					819
Temperature, water (degrees centigrade)			11.9	11.1	11.9	11.6	10.6	10.5	9.7	11.5
					11.9					11.5
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			311	396	338	379	421	384	394	370
					335					371
Chloride, dissolved (mg/l as Cl)	250	125	56.2	11.9	61.4	25.2	27.4 M	42	27.4	26.4
	250	125			60.5					26.2
Hardness, total, filtered (mg/l as CaCO3)			322	472	348	442	495	412	435	427
					360					435

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT105AR										
Organic										
Styrene (ug/l)	100	10	<0.5	< 0.5	< 0.39	< 0.39	< 0.39	0.47 JB	< 0.39	< 0.39
	100	10			< 0.39					< 0.39
Toluene (ug/l)	800	160	<0.5	<0.5	< 0.15	< 0.15	< 0.15	0.26 J	< 0.15	< 0.15
	800	160			< 0.15					< 0.15
Xylenes (ug/l)	2000	400	<1.5	<1.5	< 0.22	< 0.22	< 0.22	0.24 J	< 0.22	< 0.22
	2000	400			<0.22					<0.22
WT108A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			864.55	860.54	865.99	862.77	863.49	864.5	865.05	862.83
ph-Field (standard units)			7.07	6.64	7.07	6.99	7.17	7.11	7.18	7.34
Specific conductance-field (umhos/cm @ 25c)		820	907	1010	1021	1279	1145	1126	933	920
Temperature, water (degrees centigrade)			11.9	11.9	12.9	8.3	10.4	11.7	12.5	13.4
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		470	409	524	417	547	490	487	395	317
Chloride, dissolved (mg/l as Cl)	250	125	34.3	48.4	71.5	38.2	33	44.2	41.4	57.3
Hardness, total, filtered (mg/l as CaCO3)		480	450	563	491	610	584	531	429	420
Organic										
Acetone (ug/l)	9000	1800	3.2 J						<1.7	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT113A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			862.88	860.21	864.35	861.8	861.91	862.81	862.57	860.63
ph-Field (standard units)			6.97	6.71	7.2	7.22	7.36	7.33	7.21	7.32
Specific conductance-field (umhos/cm @ 25c)			3699	2615	2463	1841	1714	1497	1691	1562
Temperature, water (degrees centigrade)			11.3	11.3	11.4	8.8	10	11.6	10.6	12.1
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			524	467	571	584	548	529	587	513
Chloride, dissolved (mg/l as Cl)	250	125	<u>889</u>	<u>711</u>	<u>699</u>	<u>278</u>	177	199	242	201
Hardness, total, filtered (mg/l as CaCO3)			1650	1540	1280	880	795	732	845	791
Organic										
Acetone (ug/l)	9000	1800	3.3 J						<1.7	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT119A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			864.07	861.63	864.56	863.37	864.22	864.04	864.11	861.67
										861.67
ph-Field (standard units)			7.05	7.1	7.06	7.06	7.44	7.4	7.35	7.3
										7.3
Specific conductance-field (umhos/cm @ 25c)		930	706	645	506.3	751	698	744	702	723
		930								723
Temperature, water (degrees centigrade)			12.2	12.1	10.8	12	10.3	12	11.4	12.3
										12.3
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		510	406	405	412	404	377	414	405	409
		510								407
Chloride, dissolved (mg/l as Cl)	250	125	4.9	6.8	4	2.6	11.7	4	6	3
	250	125								3
Hardness, total, filtered (mg/l as CaCO3)		530	409	439	354	415	399	412	390	457
		530								448

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT119A										
Organic										
Acetone (ug/l)	9000	1800	3.8 J	<3				<1.7	<1.7	<1.7
	9000	1800								<1.7
Naphthalene (ug/l)	100	10	<2.5	<2.5	< 0.34	< 0.34	< 0.34	0.67 JB	< 0.34	< 0.34
	100	10								< 0.34
Toluene (ug/l)	800	160	<0.5	< 0.5	< 0.15	<0.15	< 0.15	0.27 J	< 0.15	< 0.15
	800	160								< 0.15
Xylenes (ug/l)	2000	400	<1.5	<1.5	<0.22	<0.22	<0.22	0.27 J	< 0.22	<0.22
L	2000	400								< 0.22

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT201AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field		<u> </u>								
Groundwater elevation (ft MSL)			862.45	861.2	862.93	862.49	862.65	862.88	862.66	861.18
			862.45			862.49				
ph-Field (standard units)			6.82	7.4	7.14	6.81	7.2	6.96	7.48	7.01
			6.82			6.7				
Specific conductance-field (umhos/cm @ 25c)		2400	888	988	501.1	579	1280	1369	1239	1385
		2400	888			1268				
Temperature, water (degrees centigrade)			11	11.2	12.9	10.4	9.5	11.1	9.6	11.2
			11			10.5				
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		670	422	437	289	471	442	470	441	448
		670	383			479				
Chloride, dissolved (mg/l as Cl)	250	125	62.7	98.5	50.6	129	110	135	135	180
	250	125	59.4			126				
Hardness, total, filtered (mg/l as CaCO3)		930	482	545	331	551	579	587	561	645
		930	488			553				
Organic										
Acetone (ug/l)	9000	1800	4.4 J						<1.7	
	9000	1800	3.8 J							
Dichloromethane (ug/l)	5	0.5	<0.23		<1.6		2.2 J		<1.6	
	5	0.5	<0.23							

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT202AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.56	860.1	862.43	861.25	861.41	861.7	861.61	860.23
			861.56				861.41	861.7	861.61	
ph-Field (standard units)			6.84	6.58	6.92	6.83	7.11	7.08	6.38	7
			6.84				7.11	7.08	6.38	
Specific conductance-field (umhos/cm @ 25c)		1300	936	963	783	1172	1444	1066	977	1138
		1300	936				1444	1066	977	
Temperature, water (degrees centigrade)			14.3	9.8	14.4	11.5	9.5	10.7	9.6	12
			14.3				9.5	10.7	9.6	
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		580	378	466	353	443	442	439	353	392
		580	386 M				441	441	353	
Chloride, dissolved (mg/l as Cl)	250	125	86	75.5	57.9	78.6	178	68.8	65.1	84
	250	125	86.7				173	68.3	65.4	
Hardness, total, filtered (mg/l as CaCO3)		710	420	516	356	460	618	446	373	493
		710	423				627	450	363	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT202AR										
Organic										
Acetone (ug/l)	9000	1800	6 J						<1.7	
	9000	1800	5.5 J						<1.7	
Benzene (ug/l)	5	0.5	<0.5		< 0.15		0.3 J		< 0.15	
	5	0.5	<0.5				< 0.15		< 0.15	
Naphthalene (ug/l)	100	10	<2.5		< 0.34		0.45 J		< 0.34	
L	100	10	<2.5				< 0.34		< 0.34	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT202BR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			861.84	860.55	862.66	861.7	861.92	862.17	861.97	860.61
					862.66				861.97	
ph-Field (standard units)			7.34	7.17	7.51	7.28	7.5	7.58	7.5	7.51
					7.55				7.5	
Specific conductance-field (umhos/cm @ 25c)		810	610	540	593	460	656	639	448	622
		810			593				448	
Temperature, water (degrees centigrade)			11.4	11.2	14.2	11.5	10.6	11.1	11.3	11.7
					13.2				11.3	
Inorganic		<u>1</u>								
Alkalinity, total filtered (mg/l as CaCO3)		440	307	296	309	308	299	305	312	309
		440			311				314	
Chloride, dissolved (mg/l as Cl)	250	125	10.3	9.5	10.4	8.3	10.5	10.6	12.1	10.5
	250	125			8.5				11.3	
Hardness, total, filtered (mg/l as CaCO3)		1100	361	369	342	332	377	317	355	382
		1100			357				351	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT203A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.6	859.92	864.8	862.38	862.99	863.14	863.36	860.22
ph-Field (standard units)			7.33	7.01	7.28	7.05	7.26	7.55	7.37	7.39
Specific conductance-field (umhos/cm @ 25c)		920	839	800	579.8	927	811	836	788	789
Temperature, water (degrees centigrade)			9.7	10.3	10.3	10.4	8.7	9.8	8.8	11.2
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		490	417	422	411	496	415	456	422	427
Chloride, dissolved (mg/l as Cl)	250	125	34.7 M	39.8	29.2	13.8	12.3	14.8	13	22.9
Hardness, total, filtered (mg/l as CaCO3)		1000	465	513	410	498	449	475	418	493
Organic										
Acetone (ug/l)	9000	1800	3.8 J						<1.7	
Toluene (ug/l)	800	160	<0.5		< 0.15		0.2 J		<0.15	

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT204A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			864.71	860.18	867.06	862.11	863.43	863.52	864.36	860.33
ph-Field (standard units)			6.98	6.63	7.16	7.01	7.39	7.04	7.07	7.03
Specific conductance-field (umhos/cm @ 25c)		830	1480	1500	1291	1132	1482	1264	907	1837
Temperature, water (degrees centigrade)			10	11.2	9.8	10.7	9.2	11.1	12.3	11.7
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		440	318	573	492	483	419	526	431	618
Chloride, dissolved (mg/l as Cl)	360	360	109	204	275	158	162	74.8	109	257
Hardness, total, filtered (mg/l as CaCO3)		630	452	803	827	656	759	602	610	889

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT205A										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			860.25	857.03	864.01	858.42	859.14	859.26	859.69	857.62
					864.01					
ph-Field (standard units)			6.83	6.41	6.76	7.19	7.56	7.18	7.26	7.07
					6.76					
Specific conductance-field (umhos/cm @ 25c)		780	968	1059	477.5	1010	1004	1046	990	994
		780			477.5					
Temperature, water (degrees centigrade)			12	13.1	13.6	13.8	11.5	13	11.5	13.7
					13.6					
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		440	378	481	234	444	407	461	453	480
		440			239					
Chloride, dissolved (mg/l as Cl)	250	125	50.9	61.8	23.2	31.1	27.7	25.6	22	20.1
	250	125			25.1					
Hardness, total, filtered (mg/l as CaCO3)		440	516	667	302	510	505	525	506	573
		440			310					

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT206AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.93	861.44	864.4	863.16	864.04	863.82	863.99	861.46
ph-Field (standard units)			6.94	6.22	7.32	7.08	7.45	7.52	7.18	7.21
Specific conductance-field (umhos/cm @ 25c)		1000	1081	921	724	796	829	812	788	477
Temperature, water (degrees centigrade)			10.3	10.5	9.7	8.6	9.4	11	9.3	11.5
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)		500	411	433	409	372	377	383	410	373
Chloride, dissolved (mg/l as Cl)	250	125	25.7	26.7	24.8	4.7	8	8.3	8.3	6.9
Hardness, total, filtered (mg/l as CaCO3)		750	658	618	509	414	461	421	496	484

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT207AR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)			863.19	861.69	863.78	862.89	862.96	863.23	863.04	861.46
ph-Field (standard units)			7.05	6.52	6.93	6.88	7.24	7.05	7.24	7
Specific conductance-field (umhos/cm @ 25c)			1484	1250	1557	1596	1610	1793	1577	1618
Temperature, water (degrees centigrade)			11.2	11.2	11.7	11.8	9.9	11.6	9.5	11.6
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)			523	535	513	486	465	520	479	461
Chloride, dissolved (mg/l as Cl)	250	125	192	218	<u>253</u>	245	229	<u>260</u>	249	<u>277</u>
Hardness, total, filtered (mg/l as CaCO3)			570	657	603	580	601	567	627	717

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT208ARR										
Reporting Period			6/1/2017	12/1/2017	6/1/2018	12/1/2018	6/1/2019	12/1/2019	6/1/2020	12/1/2020
Field										
Groundwater elevation (ft MSL)						865.23	865.61	865.35	865.58	863.2
						865.23				
ph-Field (standard units)						7.02	7.51	7.34	7.15	7.08
						7.25				
Specific conductance-field (umhos/cm @ 25c)						1026	999	1083	1063	1038
						1013				
Temperature, water (degrees centigrade)						12.4	12	11.6	10.3	12.4
						12.6				

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT208ARR										
Inorganic										
Alkalinity, total filtered (mg/l as CaCO3)						420	403	442	457	453
						423				
Arsenic, dissolved (ug/l As)	10	1					<3.7	<3.7	<3.7	<3.7
Barium, dissolved (ug/l as Ba)	2000	400					73	83	74	61
Cadmium, dissolved (ug/l as Cd)	5	0.5					< 0.43	0.55 J	< 0.43	0.66 JB
Chloride, dissolved (mg/l as Cl)	250	125				80.1	67.5	81.4	68.9	59.7
	250	125				81.6				
Chromium, dissolved (ug/l as Cr)	100	10					2.7 J	3.7 J	4.7 J	2.5 J
Copper, dissolved (ug/l Cu)	1300	130					3.1 J	2.8 J	3.6 J	8 J
Fluoride, dissolved (mg/l as F)	4	0.8					0.21	0.2	0.14 J	0.44
Hardness, total, filtered (mg/l as CaCO3)						481	524	537	516	421
						487				
Lead, dissolved (ug/l as Pb)	15	1.5					<2.7	3.9 J	<2.7	<2.7
Manganese, dissolved (ug/l as Mn)	50	25					3.8 J	<2.3	<2.3	<2.3
Mercury, dissolved (ug/l as Hg)	2	0.2					<0.098	<0.098	< 0.098	<0.098
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2					0.93	1.4	1.4	1.9
Selenium, dissolved (ug/l as Se)	50	10					<5.3	<5.3	<5.3	<5.3
Silver, dissolved (ug/l as Ag)	50	10					<1.5	2.1 J	<1.5	<1.5
Sulfate, dissolved (mg/l as SO4)	250	125					37.6	30.1	33.2	40.1
Zinc, dissolved (ug/l as Zn)	5000	2500					8 J	5.8 J	7.1 J	6.3 J

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Monitoring Wells	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
WT208ARR										
Organic										
Acetone (ug/l)	9000	1800						4.2 J	<1.7	<1.7
Dichloromethane (ug/l)	5	0.5					<1.6	<u>5.2</u>	<1.6	<1.6

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

Leachate	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Lift Station #1										
Reporting Period			5/1/2020	6/1/2020	7/1/2020	8/1/2020	9/1/2020	10/1/2020	11/1/2020	12/1/2020
Biological										
BOD 5-day carb (mg/l)				295						
BOD, 5 day (mg/l)				297			1210 M			205 M
Field										
Leachate volume pumped (1000 gallons)			1195.6	847.6	852	771.2	853.9	773	682.7	600.2
ph-Field (standard units)				7.69			7.56			7.38
Specific conductance-field (umhos/cm @ 25c)				12337			12775			9530
Temperature, water (degrees centigrade)				20.1			20.8			12.9

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

J Result is an estimated value below the laboratory's limit of quantitation.

Leachate	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Lift Station #1										
Inorganic										
Alkalinity, total (mg/l as CaCO3)				<3.7			3870			3060
Antimony, total (ug/l Sb)	6	1.2		45						
Arsenic, total (ug/l As)	10	1		160						
Barium, total (ug/l Ba)	2000	400		340						
Beryllium, total (ug/l as Be)	4	0.4		<0.89						
Cadmium, total (ug/l as Cd)	5	0.5		0.49 JB						
Chloride, total (mg/l as Cl)	250	125		950						
Chromium, total (ug/l Cr)	100	10		120						
Cobalt, total (ug/l Co)	40	8		38						
COD, unfiltered (mg/l)				1320			3440			1150
Copper, total (ug/l Cu)	1300	130		14						
Fluoride, total (mg/l as F)	4	0.8		< 0.067						
Hardness, total (mg/l as CaCO3)				926			1590			1130
Iron, total (mg/l as Fe)	0.3	0.15		3.8						
Lead, total (ug/l Pb)	15	1.5		<2.7						
Manganese, total (ug/l as Mn)	50	25		530						
Mercury, total (ug/l Hg)	2	0.2		<0.098						
Nickel, total (ug/l ni)	100	20		120						
Nitrite + nitrate, total 1 det. (mg/l as N)	10	2		0.05 J						
Nitrogen, ammonia, total (mg/l as N)	9.7	0.97		351			594			446

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

J Result is an estimated value below the laboratory's limit of quantitation.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.
Table 3Historical Monitoring Results - Dane County Landfill Site No. 2Water Supply Wells, Monitoring Wells, and Leachate

Leachate	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Lift Station #1										
Nitrogen, kjeldahl, total (mg/l as N)				485			610			
Phosphorus, total (mg/l as P)				14.3			29.9			5.3
Selenium, total (ug/l as Se)	50	10		<5.3						
Silver, total (ug/l as Ag)	50	10		<1.5						
Sodium, total (mg/l as Na)				2210						
Sulfate, total (mg/l as SO4)	250	125		3410						
Suspended solids, total (mg/l)				107			1800			37
Thallium, total (ug/l Tl)	2	0.4		<3.6						
Vanadium, total (ug/l V)	30	6		31						
Zinc, total (ug/l as Zn)	5000	2500		190						

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

B Compound detected in blank.

P Did not meet required preservation and/or hold time.

M Failed method QC check.

J Result is an estimated value below the laboratory's limit of quantitation.

Table 3Historical Monitoring Results - Dane County Landfill Site No. 2Water Supply Wells, Monitoring Wells, and Leachate

Leachate	ES	PAL	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8
Lift Station #1										
Organic										
1,2-Dichloroethane (ug/l)	5	0.5		7.7 J						<3.9
1-Methylnaphthalene (ug/l)				1.6 M						
2-Methylnapthalene (ug/l)				1.9 M						
Acetone (ug/l)	9000	1800		6300						2600
Acetophenone (ug/l)				34 M						
Benzene (ug/l)	5	0.5		4.2 J						<1.5
Benzyl alcohol (ug/l)				38 M						
Cresol, M&P-, in whole water sample (ug/l)				120 M						
Dibenzofuran (ug/l)				2.2 M						
Diethyl phthalate (ug/l)				3.4 JM						
Ethylbenzene (ug/l)	700	140		29						19
Fluorene (ug/l)	400	80		2.5 M						
Methylethylketone (ug/l)	4000	800		6500						2400
Naphthalene (ug/l)	100	10		16 M						8.3 J
p-Dichlorobenzene (ug/l)	75	15		20						20
Phenol (ug/l)	2000	400		68 M						
Pyridine (ug/l)	10	2		26 M						
Tetrahydrofuran (ug/l)	50	10		2400						1700
Toluene (ug/l)	800	160		43						11
Xylenes (ug/l)	2000	400		81						75

Notes: Bold = PAL exceedance, bold + underlined = ES exceedance (groundwater samples only). Only VOCs detected at each sampling point in at least one of the sampling events are shown. Where duplicate samples were collected, the results are shown on the second row.

- J Result is an estimated value below the laboratory's limit of quantitation.
- B Compound detected in blank.

P Did not meet required preservation and/or hold time.

M Failed method QC check.

Table 4 Leachate Head Well Elevations Summary Dane County Landfill Site No. 2

	Leachate	Elevation	(ft MSL)												Depth of	Leachate	Above Line	er (ft)										
	1											LHW-9S	I HW-10N	1 HW-10S												LHW-9S	LHW-10N	1 HW-10S
Well Name	LHW-1	LHW-2	LHW-3R	LHW-4	LHW-6N	LHW-6S	LHW-7N	LHW-7S	LHW-8N	LHW-8S	LHW-9N	aka -9E	aka -10NW	aka -10NE	LHW-1	LHW-2	LHW-3R	LHW-4	LHW-6N	LHW-6S	LHW-7N	LHW-7S	LHW-8N	LHW-8S	LHW-9N	aka -9E	aka -10NW	aka -10NE
Reference	986.74	966.25	949.51	938.93	905.38	911.17	878.50	878.50	878.80	881.50	872.87	875.72	873.01	876.32	107.46	84.60	63.05	55.56	35.90	42.30	**	**	**	**	**	**	**	**
(1)	(6)	(2) (5) (7)	(5)	(3) (5) (10)		-									(6)	(7)			(10)	(8), (9)								
Date																												
1/1/2016	883.78	NM	899.19	NM	Drv	Drv	878.74	878.76	878.92	881.69	-	-	-	-	4.50	NM	12.73	NM	Drv	Drv	0.24	0.26	0.12	0.19	-	-	-	-
2/1/2016	883.52	NM	898.91	NM	Drv	Drv	878.62	878.74	878.90	881.52	-	-	-	-	4.24	NM	12.45	NM	Drv	Drv	0.12	0.24	0.10	0.02	-	-	-	-
3/1/2016	883.63	NM	899.86	NM	Dry	869.02	878.69	878.79	878.88	881.65	872.92	875.72	873.11	876.63	4.35	NM	13.40	NM	Dry	0.15	0.19	0.29	0.08	0.15	0.05	0.00	0.10	0.31
4/1/2016	883.58	NM	899.31	NM	Dry	869.04	Dry	878.73	878.88	Dry	872.92	Dry	873.11	876.63	4.30	NM	12.85	NM	Dry	0.17	Dry	0.23	0.08	Dry	0.05	Dry	0.10	0.31
5/1/2016	883.73	NM	899.28	NM	Dry	Dry	878.62	878.76	878.90	881.60	872.97	Dry	873.19	876.69	4.45	NM	12.82	NM	Dry	Dry	0.12	0.26	0.10	0.10	0.10	Dry	0.18	0.37
6/1/2016	883.74	NM	898.81	NM	Dry	Dry	Dry	878.73	878.87	Dry	872.92	Dry	873.11	876.65	4.46	NM	12.35	NM	Dry	Dry	Dry	0.23	0.07	Dry	0.05	Dry	0.10	0.33
7/1/2016	883.76	NM	898.46	NM	Dry	NM	878.60	878.73	878.90	881.52	872.92	Dry	873.11	876.63	4.48	NM	12.00	NM	Dry	NM	0.10	0.23	0.10	0.02	0.05	Dry	0.10	0.31
8/1/2016	883.81	NM	898.31	NM	Dry	NM	878.58	878.73	878.87	881.53	872.92	Dry	873.11	876.63	4.53	NM	11.85	NM	Dry	NM	0.08	0.23	0.07	0.03	0.05	Dry	0.10	0.31
9/1/2016	883.83	NM	898.46	NM	Dry	NM	878.73	878.76	878.95	881.60	872.92	Dry	873.11	876.65	4.55	NM	12.00	NM	Dry	NM	0.23	0.26	0.15	0.10	0.05	Dry	0.10	0.33
10/1/2016	883.96	NM	NM	NM	Dry	Dry	878.74	878.74	878.90	881.63	872.92	Dry	873.11	876.63	4.68	NM	NM	NM	Dry	Dry	0.24	0.24	0.10	0.13	0.05	Dry	0.10	0.31
11/1/2016	883.83	NM	898.51	NM	Dry	Dry	878.78	878.76	878.95	881.68	872.92	Dry	873.11	876.63	4.55	NM	12.05	NM	Dry	Dry	0.28	0.26	0.15	0.18	0.05	Dry	0.10	0.31
12/1/2016	883.86	NM	898.91	NM	Dry	Dry	878.60	878.73	879.06	881.69	872.92	Dry	873.11	876.63	4.58	NM	12.45	NM	Dry	Dry	0.10	0.23	0.26	0.19	0.05	Dry	0.10	0.31
1/1/2017	884.01	NM	898.66	NM	Frozen	Dry	Dry	878.74	879.01	881.58	872.92	Dry	873.11	876.63	4.73	NM	12.20	NM	Frozen	Dry	Dry	0.24	0.21	0.08	0.05	Dry	0.10	0.31
2/1/2017	884.56	NM	898.54	NM	Dry	Dry	Dry	878.73	878.85	Dry	872.92	Dry	873.11	876.63	5.28	NM	12.08	NM	Dry	Dry	Dry	0.23	0.05	Dry	0.05	Dry	0.10	0.31
3/1/2017	883.98	NM	897.71	NM	Dry	Dry	Dry	878.83	Dry	Dry	872.92	Dry	873.11	876.63	4.70	NM	11.25	NM	Dry	Dry	Dry	0.33	Dry	Dry	0.05	Dry	0.10	0.31
4/1/2017	884.03	NM	897.31	NM	Dry	Dry	878.62	878.83	878.88	881.62	872.92	Dry	873.11	876.63	4.75	NM	10.85	NM	Dry	Dry	0.12	0.33	0.08	0.12	0.05	Dry	0.10	0.31
5/1/2017	884.13	NM	897.54	NM	Dry	Dry	Dry	878.81	878.83	Dry	872.92	Dry	873.11	876.63	4.85	NM	11.08	NM	Dry	Dry	Dry	0.31	0.03	Dry	0.05	Dry	0.10	0.31
6/1/2017	884.56	NM	897.63	NM	Dry	868.89	878.55	878.87	878.85	881.53	872.92	Dry	873.11	876.63	5.28	NM	11.17	NM	Dry	0.02	0.05	0.37	0.05	0.03	0.05	Dry	0.10	0.31
7/1/2017	884.58	NM	897.31	NM	Dry	Dry	878.60	878.84	878.82	881.62	872.92	Dry	873.11	876.63	5.30	NM	10.85	NM	Dry	Dry	0.10	0.34	0.02	0.12	0.05	Dry	0.10	0.31
8/1/2017	884.03	NIVI NIM	896.31	NM	Dry	Dry	878.60	878.83	878.87	Dry	872.92	Dry	873.11	876.63	4.75	NIM	9.85	NIM	Dry	Dry	0.10	0.33	0.07	Dry	0.05	Dry	0.10	0.31
9/1/2017	884.58	NIVI	897.11	NIM	Dry	Dry	878.88	878.83	878.90	Dry 001.52	872.92	Dry	873.29	876.63	5.30	NIM	10.65	NIVI	Dry	Dry	0.38	0.33	0.10	Dry	0.05	Dry	0.28	0.31
11/1/2017	004.23	NIM	097.01	NIM	Diy	Diy	070.00	070.01	070.90 Dry	001.00 Dr/	072.95	Dry	073.41	070.00	4.95	NIM	12.10	NIM	Diy	Diy	0.30	0.31	0.10 Drv	0.03	0.00	Dry	0.40	0.34
12/1/2017	884 38	NIM	808.41	NIM	Dry	Dry	870.13	878.02	870.03	881 58	872.05	Dry	874.50	876.60	5.00	NIM	11.05	NIM	Dry	Dry	0.17	0.30	0.23	0.08	0.00	Dry	1 /0	0.34
3/1/2018	884.48	NM	899.61	NM	Dry	Dry	878 74	878.92	878.07	881 70	872.95	Dry	873.68	876.69	5.20	NM	13.15	NM	Dry	Dry	0.03	0.42	0.23	0.00	0.00	Dry	0.67	0.37
6/1/2018	884.63	NM	800 35	NM	NM	NM	882.22	878 76	878.90	881 74	872.95	Dry	873.48	876.69	5 35	NM	12.89	NM	NM	NM	3.72	0.42	0.10	0.20	0.00	Dry	0.07	0.37
10/1/2018	NM	NM	898.58	NM	NM	NM	NM	878 76	878.83	881.92	872.95	Dry	873.62	876.69	NM	NM	12.00	NM	NM	NM	NM	0.26	0.03	0.42	0.08	Dry	0.61	0.37
12/1/2018	882.34	NM	898.86	NM	Drv	Drv	NM	878.79	879.17	881.51	872.95	Drv	Drv	876.69	3.06	NM	12.40	NM	Drv	Drv	NM	0.29	0.37	0.01	0.08	NM	Drv	0.37
3/1/2019	882.44	NM	898.16	NM	Dry	Dry	NM	NM	879.11	NM	872.95	Dry	873.69	876.69	3.16	NM	11.70	NM	Dry	0.08	NM	NM	0.31	NM	0.08	Dry	0.68	0.37
4/1/2019	882.54	NM	898.72	NM	Dry	Dry	NM	NM	878.93	NM	873.02	875.76	873.59	876.79	3.26	NM	12.26	NM	Dry	Dry	NM	NM	0.13	NM	0.15	0.04	0.58	0.47
5/1/2019	882.46	NM	898.73	NM	Dry	Dry	NM	878.78	878.92	881.70	872.95	Dry	873.59	876.69	3.18	NM	12.27	NM	Dry	Dry	NM	0.28	0.12	0.20	0.08	Dry	0.58	0.37
6/1/2019	882.34	NM	898.51	NM	Dry	Dry	NM	878.79	Dry	881.60	872.97	Dry	873.57	876.69	3.06	NM	12.05	NM	Dry	Dry	NM	0.29	Dry	0.10	0.10	Dry	0.56	0.37
7/1/2019	883.54	NM	897.08	888.93	Dry	Dry	NM	878.81	879.06	881.58	872.97	Dry	873.74	876.69	4.26	NM	10.62	5.56	Dry	Dry	NM	0.31	0.26	0.08	0.10	Dry	0.73	0.37
8/1/2019	883.59	NM	897.04	890.51	Dry	Dry	NM	878.79	878.97	881.53	872.97	Dry	873.59	876.70	4.31	NM	10.58	7.14	Dry	Dry	NM	0.29	0.17	0.03	0.10	Dry	0.58	0.38
9/1/2019	883.44	NM	897.31	889.33	Dry	Dry	NM	878.79	879.18	Dry	873.07	Dry	873.64	876.83	4.16	NM	10.85	5.96	Dry	Dry	NM	0.29	0.38	Dry	0.20	NM	0.63	0.51
10/1/2019	883.54	NM	NM	NM	Dry	Dry	NM	878.79	878.98	Dry	872.97	Dry	873.39	876.70	4.26	NM	NM	NM	Dry	Dry	NM	0.29	0.18	Dry	0.10	Dry	0.38	0.38
11/1/2019	883.44	NM	897.83	889.53	Dry	Dry	NM	878.79	878.87	881.54	872.99	Dry	873.08	876.70	4.16	NM	11.37	6.16	Dry	Dry	NM	0.29	0.07	0.04	0.12	Dry	0.07	0.38
12/1/2019	NM	NM	897.06	889.13	Dry	Dry	NM	878.79	878.98	881.76	872.99	NM	873.49	876.70	NM	NM	10.60	5.76	Dry	Dry	NM	0.29	0.18	0.26	0.12	NM	0.48	0.38
1/1/2020	NM	NM	896.91	889.03	Dry	Dry	NM	878.83	879.03	Dry	872.99	NM	873.39	876.50	NM	NM	10.45	5.66	Dry	Dry	NM	0.33	0.23	Dry	0.12	NM	0.38	0.18
2/1/2020	NM	NM	897.01	888.83	Dry	Dry	NM	878.83	878.95	Dry	872.97	NM	873.39	876.55	NM	NM	10.55	5.46	Dry	Dry	NM	0.33	0.15	Dry	0.10	NM	0.38	0.23
3/1/2020	NM	NM	897.36	889.53	Dry	Dry	NM	878.79	878.87	Dry	872.99	NM	873.39	Dry	NM	NM	10.90	6.16	Dry	Dry	NM	0.29	0.07	Dry	0.12	NM	0.38	Dry
4/1/2020	NM	NM	897.11	888.93	Dry	Dry	NM	878.81	879.03	881.64	8/3.00	NM	873.39	876.50	NM	NM	10.65	5.56	Dry	Dry	NM	0.31	0.23	0.14	0.13	Dry	0.38	0.18
5/1/2020	INIVI NIM	INIVI	896.98	889.81	Dry	869.04	INIVI	070.00	878.98	Dry	873.00	INIVI	873.39			NIVI NIM	10.52	6.44	Dry	0.17	INIVI NIMA	0.33	0.18	Dry	0.13	INIVI NINA	0.38	Dry
0/1/2020		INIVI	890.94	000 70	Dry	Dry	INIVI	070.03	079.11 970.00	Dry	073.02	INIVI	013.39	070.40	INIVI	INIVI	10.48	0.32	Dry	Dry	INIVI NIM	0.33	0.31		0.15	INIVI	0.38	0.08
0/1/2020 0/1/2020		INIVI NIM	090.41	009.13	Dry	Dry	INIVI NIM	0/0.04	970.06	001.57	073.UZ		013.39	010.00	NIVI	INIVI NIM	9.90	0.30	Dry	Dry	INIVI NIM	0.34	0.29	0.07	0.15		0.38	0.23
0/1/2020	NIM	NIM	090.31 806.51	009.03 880.82	Dry	Dry	NIM	0/0.0/ 978.97	019.00 870.17	Dry	073.00 873.00		013.39 973.39	0/0.45 876.60	NIM	NIM	9.80 10.05	6.46	Dry	Dry	NIM	0.37	0.20	Dry	0.13	NM	0.38	0.13
10/1/2020	NM	NM	808.46	880.83	Dry	Dry	NM	878.87	879.04	Dry	873.00	NM	873.38	876.55	NM	NM	12.00	6.46	Dry	Dry	NM	0.37	0.37	Dry	0.13	NM	0.37	0.20
11/1/2020	NM	NM	897 51	889.43	Dry	Dry	NM	878.87	879.03	Dry	873.00	Dry	873.38	876.56	NM	NM	11.05	6.06	Dry	Dry	NM	0.37	0.24	Dry	0.13	Dry	0.37	0.23
12/1/2020	NM	NM	896.81	889.43	Dry	Dry	NM	878.84	878.87	Dry	873.00	Dry	873.39	Drv	NM	NM	10.35	6.06	Dry	Dry	NM	0.34	0.07	Dry	0.13	Dry	0.38	Drv
, ./2020			000.01	0000.10	,	,		0.0.01	0.0.07	,	0.0.00	<i></i> ,	0.000					0.00	,	,	1	0.01	0.01	,	0.10		0.00	

Notes:

1 - Reference for leachate elevation is top of casing for LHW-1 to LHW-6 N/S. Reference for leachate elevation is pipe invert elevation for LHW-7N/S and LHW-8N/S. Reference for depth above liner is depth to liner from top of casing for LHW-1 to LHW-6N/S. For LHW-1 through LHW-4 (vertical head wells), the reported head levels may not represent true head on the liner because the wells are terminated above the liner.

2 - Effective May 2008, top of casing at LHW-2 was measured at 965.97.

a) a Effective May 2006, top of casing at LHW-2 was measured at 903.97.
b) a Effective May 2008, top of casing at LHW-4 was measured at 944.67.
c) LHW-3 was abandoned in September 2007 and replaced by LHW-3R.

5 - Effective June 2009, top of casing reference elevation at LHW-2, LHW-3R, and LHW-4 increased by 0.28 ft.

6 - Effective August 2011, top of casing at LHW-1 was measured at 983.38. Effective December 2018, top of casing at LHW-1 was measured at 986.74. Depth to liner corresponding changed from 104.10 to 107.46.

7 - Effective June 2013, LHW-2 depth to liner changed from 85.64 to 84.60.

8 - Effective September 2015, LHW-6S depth to liner changed from 41.3 to 42.3.
9 - Effective August 2015, LHW-6N depth to liner changed from 23.89 to 35.90.

10 - Effective July 2019, top of casing at LHW-4 was measured at 938.93. Total depth adjusted from 61.58 to 55.56.

** - Horizontal leachate wells LHW-7N, LHW-7S, LHW-8N, LHW-9S, LHW-9N, LHW-9S, LHW-10N, and LHW-10S, are measured using a pressure transducer that gives the depth of leachate above the pipe invert of the leachate well, which rests on the landfill liner. NM - Not Measured

Updated: AJR, 1/13/2021 Checked: LMH, 1/22/2021

I:\25218021.00\Database\[03018_wlstat.xls]Leachate

Table 5 Groundwater Elevations Dane County Landfill Site No. 2

Ground Water Elevation (feet msl)

Well Number	M14A	M14B	M17A	M17AR	M17B	M17BR	M22	M23	M25A	M25BR	M26A	M26B	M28	M28R	M29
Top of Casing Elevation (feet)	865.95	866.00	882.40	888.59	882.34	888.55	869.47	882.44	870.82	871.80	870.85	870.85	887.91	888.85	906.22
Reporting Period															
12/1/2011	861.37	861.41	865.40		865.42		NM	864.42	860.67	860.50	859.43	859.44	860.48		860.90
6/1/2012	859.30	861.00	866.01		866.08		861.05	864.49	860.39	860.33	859.27	859.25	860.73		861.20
12/1/2012	859.97	860.41	863.43		863.45		NM	862.66	859.66	859.50	858.40	858.38	859.04		859.55
6/1/2013	861.60	862.67	869.26		869.22		862.60	866.68	861.80	861.73	860.60	860.54	862.52		863.12
12/1/2013	860.78	861.31	865.90		865.81		NM	864.51	860.71	860.58	859.44	859.43	860.54		861.11
6/1/2014	860.73	861.19	868.04		868.02		862.03	865.27	861.07	860.90	859.82	859.95	861.19		861.45
12/1/2014	862.11	861.66	865.26		865.25		861.53	864.04	860.74	860.47	859.34	859.34		860.19	860.54
6/1/2015	860.33	860.95	865.73		864.73		861.30	863.38	860.03	859.84	858.67	858.64		859.74	860.02
12/1/2015	862.77	862.60	869.01		868.81		863.16	864.45	861.09	860.69	859.50	859.49		860.02	860.33
6/1/2016	860.36	861.73	868.00		867.91		861.69	865.47	861.03	860.92	859.81	859.84		861.54	862.06
12/1/2016	861.97	862.21	868.81		868.70		862.18	865.84	861.37	861.29	860.08	860.08		861.69	862.23
6/1/2017	862.33	863.50	872.99		872.69		863.24	868.27	862.60	863.57	861.35	861.38		863.60	864.30
12/1/2017	861.32	861.85	867.93		867.84		861.72	865.64	861.38	861.35	860.21	860.24		861.73	862.26
6/1/2018	863.03	864.70	873.29		872.71			867.94	863.12	862.66	861.77	861.67		862.44	862.87
12/1/2018	862.08	863.32	871.49		871.35			867.93	862.67	862.66	861.48	861.50		863.87	864.58
6/1/2019	862.11	863.32	871.58		871.46		862.97	868.41	862.79	862.87	861.54	861.60		863.93	864.70
12/1/2019	862.68	863.70	872.19		872.06			868.24	862.70	862.65	861.45	861.43		863.62	864.24
6/1/2020	862.73	863.46					863.08	867.95	862.80	862.78	861.53	861.58		863.66	864.33
12/1/2020	861.58	861.94		869.75		868.20		865.16	861.23	861.07	859.95	859.97		861.22	861.69
				<u> </u>	a	1	1								
				Gr	oundwater E	levation (ree	et msi)						-		
Well Number	M5A	M5B	M6A	Gr M6B	M6C	M9A	M9AR	M9B	M9BR	M301A	M302AR	M302BR	M303A	M303AR)
Well Number Top of Casing Elevation (feet)	M5A 864.29	M5B 864.33	M6A 864.46	M6B 864.46	M6C 864.61	M9A 876.58	M9AR 879.56	M9B 875.90	M9BR 879.46	M301A 894.77	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period	M5A 864.29	M5B 864.33	M6A 864.46	Gr M6B 864.46	M6C 864.61	M9A 876.58	M9AR 879.56	M9B 875.90	M9BR 879.46	M301A 894.77	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011	M5A 864.29 NM	M5B 864.33 NM	M6A 864.46 NM	Gr M6B 864.46	M6C 864.61	876.58 860.46	et msi) M9AR 879.56	M9B 875.90 860.55	M9BR 879.46	M301A 894.77 	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012	M5A 864.29 NM 858.07	M5B 864.33 NM 858.55	M6A 864.46 NM 858.87	M6B 864.46 NM 858.75	M6C 864.61 NM 858.93	860.46	et msi) M9AR 879.56	M9B 875.90 860.55 860.58	M9BR 879.46	M301A 894.77 	M302AR 879.43	M302BR 879.42	M303A 887.45 	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2012	M5A 864.29 NM 858.07 NM	M5B 864.33 NM 858.55 NM	M6A 864.46 NM 858.87 NM	M6B 864.46 NM 858.75 NM	M6C 864.61 NM 858.93 NM	M9A 876.58 860.46 860.35 859.09	et msi) M9AR 879.56 	M9B 875.90 860.55 860.58 859.25	M9BR 879.46	M301A 894.77 	M302AR 879.43 	M302BR 879.42	M303A 887.45 	M303AR 885.53 	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013	M5A 864.29 NM 858.07 NM 858.66	M5B 864.33 NM 858.55 NM 859.38	M6A 864.46 NM 858.87 NM 860.02	M6B 864.46 NM 858.75 NM 860.14	M6C 864.61 NM 858.93 NM 860.31	M9A 876.58 860.46 860.35 859.09 862.07	M9AR 879.56 	M9B 875.90 860.55 860.58 859.25 862.29	M9BR 879.46	M301A 894.77 	M302AR 879.43 	M302BR 879.42	M303A 887.45 	M303AR 885.53 	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 12/1/2013	M5A 864.29 NM 858.07 NM 858.66 NM	M5B 864.33 NM 858.55 NM 859.38 NM	M6A 864.46 NM 858.87 NM 860.02 NM	M6B 864.46 NM 858.75 NM 860.14 NM	M6C 864.61 NM 858.93 NM 860.31 NM	M9A 876.58 860.46 860.35 859.09 862.07 860.36	M9AR 879.56 	M9B 875.90 860.55 860.58 859.25 862.29 860.65	M9BR 879.46	M301A 894.77 	M302AR 879.43 	M302BR 879.42 	M303A 887.45 	M303AR 885.53 	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2014 6/1/2014	M5A 864.29 NM 858.07 NM 858.66 NM 858.44	M5B 864.33 NM 858.55 NM 859.38 NM 859.00	M6A 864.46 NM 858.87 NM 860.02 NM 859.22	M6B 864.46 NM 858.75 NM 860.14 NM 859.24	M6C 864.61 NM 858.93 NM 860.31 NM 859.41	M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13	M9BR 879.46	M301A 894.77	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53 	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 6/1/2012 6/1/2013 12/1/2013 6/1/2013 6/1/2014 12/1/2014	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.00	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 859.22	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96	Bevaluation (rec M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46	M301A 894.77 864.29 0 (6 7 f)	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53 	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2012 6/1/2013 12/1/2013 12/1/2013 6/1/2014 12/1/2014 6/1/2015 12/1/2015	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.00 859.08	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78 858.33 959.54	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 858.52	Bevaluation (received) M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 859.90 859.36	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46	M301A 894.77 864.29 863.71 0(1.62)	M302AR 879.43	M302BR 879.42	M303A 887.45	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2014 6/1/2014 12/1/2015	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.00 859.08 858.45 859.40	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00	NM 858.75 NM 858.75 NM 860.14 NM 859.78 858.33 859.56 050.56	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 859.73 859.73	Bevaluation (received) M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 859.90 859.36 860.39 2(10.4 th)	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46	M301A 894.77 864.29 863.71 864.98	M302AR 879.43 859.15 859.17 859.80 0(6 57	M302BR 879.42	M303A 887.45	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 6/1/2014 12/1/2015 12/1/2015 12/1/2016	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 959.32	M5B 864.33 NM 858.55 NM 859.38 NM 859.08 859.08 859.08 858.45 859.40 859.08	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 950.92	M6B 864.46 NM 858.75 NM 860.14 NM 858.78 858.78 858.50 925.64	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 859.73 859.78	Bevaluation (ree M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 859.90 859.36 860.44 9(6.39) 860.44 9(6.39)	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46	M301A 894.77 864.29 863.71 864.98 866.69 866.69	M302AR 879.43 859.15 859.17 859.80 860.57 20.0 20	M302BR 879.42	M303A 887.45 863.96 863.23 864.56 865.91 9((14)	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2014 6/1/2015 12/1/2015 12/1/2016	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 950.92	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.00 859.08 858.45 859.40 859.08 859.29	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78 858.33 859.56 858.50 859.46 90.66	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 859.73 859.18 859.63	Bevaluation (rec M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 859.90 859.36 860.39 860.44 860.72 20(2.22)	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29	M301A 894.77 864.29 863.71 864.98 866.69 866.69	M302AR 879.43 859.15 859.17 859.80 860.57 860.80 9(4) 50	M302BR 879.42	M303A 887.45 863.96 863.23 864.56 865.91 866.49	M303AR 885.53 -	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 12/1/2013 12/1/2013 6/1/2013 12/1/2014 6/1/2015 12/1/2015 6/1/2016 6/1/2016 12/1/2016	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.70	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 859.08 858.45 859.40 859.29 859.84	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22	M6B 864.46 NM 858.75 NM 860.14 NM 858.75 860.14 S88.78 858.78 858.78 858.78 858.79 858.70 858.70 858.71 858.72 858.73 859.76 859.46 860.96 95.92	NM 858.93 NM 858.93 NM 858.93 NM 858.93 NM 859.91 859.73 859.73 859.73 859.63 861.13 96.67	Evaluation (received) M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 <	M98 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 962.85	M301A 894.77 864.29 864.29 866.69 866.69 867.07 869.86	M302AR 879.43 859.15 859.17 859.80 860.57 860.80 860.57	M302BR 879.42 859.06 858.74 859.64 859.86 860.11 861.96	M303A 887.45 863.96 863.23 864.56 865.91 866.49 866.49	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2013 6/1/2014 12/1/2015 6/1/2015 12/1/2016 6/1/2017 12/1/2017	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.87 858.87	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.40 859.29 859.29 859.84 859.29	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78 858.33 859.56 859.46 860.96 859.39 9.63.41	M6C 864.61 NM 858.93 NM 858.93 NM 859.41 858.96 858.52 859.73 859.18 859.63 861.13 859.57 961.42	Evaluation (received) M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56	M98 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 861.43	M301A 894.77 864.29 863.71 864.98 866.69 867.07 869.86 866.69	M302AR 879.43 	M302BR 879.42 859.06 858.74 859.64 859.86 860.11 861.96 859.98	M303A 887.45 863.96 863.23 864.56 865.91 866.49 869.09 866.41	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2013 6/1/2014 12/1/2015 6/1/2015 12/1/2016 6/1/2017 12/1/2018	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.80 858.67 859.49	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.08 859.40 859.29 859.84 859.24 859.24 861.03	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78 860.24	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.33 859.56 858.50 859.46 860.96 859.39 861.41	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.92 859.73 859.73 859.18 859.63 861.13 859.57 861.63	Evaluation (received) M9A 876.58 860.46 860.35 859.09 862.07 860.36 861.14	M9AR 879.56 859.90 859.36 860.39 860.44 860.72 862.22 860.83 862.60 96.23 21	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.04 861.29 862.85 861.43 862.22 861.43	M301A 894.77 864.29 863.71 864.98 866.69 867.07 869.86 866.69 868.29 868.29 96.86 866.29 868.29 863.20 865.20 875.	M302AR 879.43 859.15 859.17 859.80 860.57 860.80 863.53 860.34 865.14	M302BR 879.42 859.06 858.74 859.64 859.64 859.86 860.11 861.96 859.98 862.34	M303A 887.45 863.96 863.23 864.56 865.91 866.49 869.09 866.11 866.11 868.17 20.0 20	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 12/1/2013 12/1/2013 6/1/2013 12/1/2014 6/1/2015 12/1/2015 6/1/2016 12/1/2016 6/1/2017 12/1/2018 12/1/2018	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 858.82 859.00 858.82 859.00 858.70 858.80 858.70 858.80 858.67 859.49	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.08 859.29 859.84 859.29 859.84 859.24 861.03	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78 860.44 859.48	NM 854.46 NM 858.75 NM 858.75 858.75 NM 859.24 858.33 859.24 858.33 859.56 858.50 859.46 860.96 859.39 861.41	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.92 859.73 859.73 859.18 859.63 861.13 859.57 861.63 260.01	Image: New York No. 2000	M9AR 879.56	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 862.22 863.00 862.12	M301A 894.77 864.29 863.71 864.98 866.69 867.07 869.86 866.69 868.29 868.29 868.29	M302AR 879.43	M302BR 879.42 859.06 858.74 859.64 859.64 859.86 860.11 861.96 859.98 862.34 861.54 861.54	M303A 887.45 863.96 863.23 864.56 865.91 866.49 866.49 866.11 868.82 868.82 960.04	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2013 6/1/2014 12/1/2015 6/1/2015 12/1/2016 6/1/2017 6/1/2017 12/1/2017 6/1/2018 12/1/2018 12/1/2019 12/1/2019	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.80 858.67 859.49 858.85	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.08 859.29 859.84 859.29 859.84 859.24 861.03	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78 860.44 859.48 859.48	M6B 864.46 NM 858.75 NM 860.14 NM 858.78 858.33 859.56 858.50 859.46 860.96 859.39 861.41 860.59	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.92 859.73 859.73 859.18 859.63 861.13 859.57 861.63 860.81	Image: New York No. 2000	M9AR 879.56 859.90 859.36 860.39 860.44 860.72 862.22 860.83 862.60 862.21 862.31 962.21 862.31	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 862.22 863.00 863.12	M301A 894.77 864.29 863.71 864.98 866.69 866.69 866.69 868.29 869.70 870.09 869.70	M302AR 879.43 859.15 859.17 859.80 860.57 860.80 863.53 860.34 865.14 862.41 862.41 863.05	M302BR 879.42 859.06 858.74 859.64 859.86 860.11 861.96 859.98 862.34 861.54 861.68	M303A 887.45 863.96 863.23 864.56 865.91 866.49 869.09 866.49 869.09 866.11 868.82 868.82 869.04	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2014 6/1/2015 12/1/2016 6/1/2017 12/1/2018 6/1/2017 12/1/2018 12/1/2019	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.80 858.67 859.49 858.85 858.85	M5B 864.33 NM 858.55 NM 859.38 NM 859.08 859.08 859.08 859.08 859.08 859.29 859.29 859.84 859.24 859.24 861.03	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78 860.22 858.78 860.44 859.48 859.60 859.45	M6B 864.46 NM 858.75 NM 860.14 NM 859.75 858.75 858.75 858.75 858.75 858.75 858.78 858.78 858.78 858.78 858.78 858.78 859.76 859.76 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.78 859.79 860.96 859.79	M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 859.73 859.18 859.63 859.63 859.63 859.57 861.63 860.81 860.81	Image: New Year of the second secon	M9AR 879.56 859.90 859.36 860.39 860.44 860.72 862.22 860.83 862.60 862.21 862.31 862.59 96.2.24	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 862.22 863.00 863.12 863.24 863.24	M301A 894.77 864.29 863.71 864.98 866.69 867.07 869.86 866.69 868.29 869.70 870.09 869.54 869.54 960.70	M302AR 879.43 859.15 859.17 859.80 860.57 860.80 860.53 860.34 865.14 863.53 860.34 865.14	M302BR 879.42	M303A 887.45 863.96 863.23 864.56 865.91 866.49 866.90 866.11 866.17 868.82 869.04 868.82	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2013 6/1/2013 12/1/2014 6/1/2015 12/1/2015 6/1/2015 12/1/2016 6/1/2017 12/1/2018 12/1/2018 12/1/2019 6/1/2019 12/1/2019	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 857.99 858.82 859.00 858.70 858.80 858.67 859.49 858.85 859.05	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.24 859.24 859.24 859.24 859.24 859.77 	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.74 858.74 858.74 858.74 858.74 859.00 858.89 860.22 858.78 860.44 859.48 859.48 859.45 859.45	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78 858.33 859.56 859.46 860.96 859.39 861.41 860.59 860.64	M6C 864.61 NM 858.93 NM 858.93 NM 858.93 NM 859.93 NM 859.93 860.31 NM 859.41 858.96 858.52 859.73 859.63 861.13 859.57 861.63 860.81 860.88	Image: New Year of the second secon	M9AR 879.56 <	M98 875.90 860.55 860.58 859.25 862.29 860.65 861.13 -	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 862.22 863.00 863.12 863.24 863.24 863.24	M301A 894.77 	M302AR 879.43 859.15 859.17 859.80 860.80 863.53 860.34 865.14 862.41 863.05 863.25 863.25 863.25	M302BR 879.42 859.06 858.74 859.64 859.64 859.86 860.11 861.96 859.98 862.34 861.54 861.68 861.64 861.64	M303A 887.45 863.96 863.23 864.56 865.91 866.49 869.09 866.11 868.17 868.82 869.04 868.82 	M303AR 885.53	
Well Number Top of Casing Elevation (feet) Reporting Period 12/1/2011 6/1/2012 12/1/2013 6/1/2013 12/1/2013 6/1/2014 12/1/2015 6/1/2015 12/1/2016 6/1/2017 12/1/2018 12/1/2017 6/1/2019 12/1/2018 12/1/2019 6/1/2019 12/1/2019	M5A 864.29 NM 858.07 NM 858.66 NM 858.44 858.76 858.76 858.70 858.82 859.00 858.67 858.80 858.67 858.67 859.49 	M5B 864.33 NM 858.55 NM 859.38 NM 859.00 859.08 858.45 859.40 859.08 859.29 859.84 859.24 861.03 859.77 859.94 	M6A 864.46 NM 858.87 NM 860.02 NM 859.22 858.74 858.37 859.00 858.89 859.23 860.22 858.78 860.44 859.48 859.48 859.41 858.83	M6B 864.46 NM 858.75 NM 860.14 NM 859.24 858.78 858.33 859.56 858.50 859.46 860.96 859.39 861.41 860.59 860.64	M6C M6C 864.61 NM 858.93 NM 860.31 NM 859.41 858.96 858.52 859.73 859.73 859.18 859.63 861.13 859.57 861.63 860.81 860.88	Image: New Year of the second secon	M9AR 879.56 859.90 850.34 860.35 862.21 862.59 862.34 860.55	M9B 875.90 860.55 860.58 859.25 862.29 860.65 861.13 -	M9BR 879.46 860.29 859.68 860.39 861.04 861.29 862.85 861.43 862.22 863.00 863.12 863.24 863.00 864.08	M301A 894.77 864.29 863.71 864.98 866.69 867.07 869.86 866.69 868.29 868.29 868.29 869.70 869.70 870.09 869.54 865.95	M302AR 879.43 859.15 859.17 859.17 859.80 860.80 860.57 860.80 863.53 860.34 865.14 865.14 863.25 863.25 863.25 862.98	M302BR 879.42 859.06 858.74 859.64 859.64 859.98 860.11 861.96 859.98 862.34 861.54 861.68 861.68 861.68	M303A 887.45 863.96 863.23 864.56 865.91 866.49 869.09 866.11 868.17 868.82 869.04 868.82 	M303AR 885.53	

Table 5

Groundwater Elevations Dane County Landfill Site No. 2

<u>.</u>				Groundw	ater Elevatio	on (feet msl)					
Top of Casing Elevation (feet)	867.46	866.69	880.11	881.59	867.50	866.82	869.79	879.80	867.13	881.54	869.60
12/1/2011	NM	859.22	860.59	861.21	NM	859.33	860.24	859.83	NM	861.32	860.94
6/1/2012	859.04	858.74	860.08	861.32	858.14	858.49	859.40	860.25	858.21	861.56	860.22
12/1/2012	NM	858.36	859.09	859.91	NM	858.41	858.89	859.12	NM	860.03	859.47
6/1/2013	861.27	860.74	862.16	862.92	861.12	861.09	860.69	862.70	861.77	863.33	861.82
12/1/2013	NM	859.01	859.76	860.87	NM	859.12	859.69	859.82	NM	860.99	860.56
6/1/2014	860.83	861.22	861.84	862.28	860.60	861.52	860.26	NM	861.23	862.69	860.99
12/1/2014	860.00	859.33	860.56	861.00	859.90	859.51	859.73	NM	860.09	861.09	860.37
6/1/2015	859.96	859.36	860.86	861.05	859.39	859.50	859.55	861.14	859.55	861.29	859.93
12/1/2015	861.60	860.67	862.30	861.64	862.10	862.03	861.04	863.48	863.02	861.97	861.13
6/1/2016	860.28	859.94	861.22	862.01	859.94	860.17	860.09	861.38	860.16	862.26	860.85
12/1/2016	860.80	860.34	861.52	862.11	860.93	860.95	860.37	861.76	861.29	862.35	861.28
6/1/2017	862.19	861.80	863.33	863.64	861.98	862.22	861.46	864.55	862.88	864.07	862.45
12/1/2017	860.11	859.66	860.62	861.59	860.08	859.93	860.16	860.54	860.21	861.63	861.20
6/1/2018	863.73	863.34	864.41	863.89	865.25	864.16	863.48	865.99	864.35	864.56	862.93
12/1/2018		860.88	862.13	863.19		861.56	861.09	862.77	861.80	863.37	862.49
6/1/2019	861.65	861.39	862.64	863.73	861.35	861.76	861.24	863.49	861.91	864.22	862.65
12/1/2019		861.66	863.16	863.71		862.42	861.48	864.50	862.81	864.04	862.88
6/1/2020	862.04	861.76	863.33	863.70	861.73	862.31	861.47	865.05	862.57	864.11	862.66
12/1/2020		859.92	861.49	861.59		860.20	860.22	862.83	860.63	861.67	861.18
			Gr	oundwater E	levation (fee	et msl)					
Well Number	WT202AR	WT202BR	WT203A	WT204A	WT205A	WT206AR	WT207AR	WT208AR	WT208ARR	GCM1	SG-Park
Top of Casing Elevation (feet)	866.50	866.50	870.91	873.51	872.82	878.60	866.23	880.15	875.75	890.49	856.65
6/1/2012	859.51	859.70	859.65	859.38	856.68	861.35					
12/1/2012	858.89	858.99	858.50	858.68	855.64	859.73	860.45	861.01			
6/1/2013	860.80	861.00	862.88	862.51	858.70	863.15	862.76	864.06			
12/1/2013	859.86	859.98	859.26	859.39	856.21	860.54	861.23	862.15			
6/1/2014	860.21	859.07	861.92	861.46	858.21	862.18	861.52	863.31			
12/1/2014	859.83	859.86	859.58	859.94	856.90	860.87	861.68	862.10			
6/1/2015	859.42	859.53	860.08	859.98	857.07	861.14	861.11	861.90		Dry	
12/1/2015	860.79	860.77	861.05	860.73	859.08	861.49	862.56	864.36			856.69
6/1/2016	860.08	880.33	861.07	861.07	857.53	862.14	861.70	863.01		NM	Dry
12/1/2016	860.46	860.45	861.43	861.23	857.92	862.13	862.10	863.35		Dry	856.80
6/1/2017	861.56	861.84	863.60	864.71	860.25	863.93	863.19	865.50		Dry	857.23
12/1/2017	860.10	860.55	859.92	860.18	857.03	861.44	861.69	862.99		Dry	856.55
6/1/2018	862.43	862.66	853.81	867.06	864.01	864.40	863.78	864.12		Dry	861.75
12/1/2018											
12/ 1/ 2010	861.25	861.70	862.38	862.11	858.42	863.16	862.89		865.23	Dry	

Notes:

1. --: Not measured. Inactive or non-required well.

2. NM: Not measured. Required well.

12/1/2019

6/1/2020

12/1/2020

3. Top of casing for M17A changed from 882.15 to 882.40 feet effective May 15, 2015.

861.70

861.61

860.23

862.17

861.97

860.61

863.14

863.36

860.22

863.52

864.36

860.33

859.26

859.69

857.62

863.82

863.99

861.46

863.23

863.04

861.46

4. Top of casing for M17B changed from 882.39 to 882.34 feet effective May 15, 2015.

5. SG-Park reference elevation is at the 3.4 foot mark on the staff gauge.

Updated: AJR, 2/9/2021 . Checked: JR 2/9/2021

865.66

865.58

863.20

Dry

Dry

890.49

Dry

856.65

856.65

856.45

Weather Conditions						
Date	Ambient Temp (deg F)	Baro Press (in-Hg)	Baro Press Trend	General Weather	Wind Speed	Wind Direction
10/6/20	70	28.90	Falling	Clear	8	W
11/5/20	69	29.16	Falling	Clear	6	SW
12/17/20	30	29.19	Rising	Mostly Cloudy	3	N

Probe Data							
Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Soil Gas Pressure (inch H20) #46389	Comments
G-01 deep	12/17/20	0.0	0.1	19.5	80.4	0.00	
G-01 shallow	12/17/20	0.0	0.9	20.0	79.1	-0.49	
G-03 deep	12/17/20	0.0	0.9	18.1	81.0	-1.00	
G-03 shallow	12/17/20	0.0	0.4	19.6	80.0	0.00	
GP-04R	12/17/20	0.0	0.4	20.3	79.3	0.00	
GP-05R	12/17/20	0.0	1.7	19.2	79.1	0.00	
GP-06R	12/17/20	0.0	0.7	17.8	81.5	-0.03	
GP-07	12/17/20	0.0	0.6	20.5	78.9	0.00	
GP-08	12/17/20	0.0	0.7	19.1	80.2	0.00	
GP-09	12/17/20	0.0	1.0	19.5	79.5	0.00	
GP-10	12/17/20	0.0	0.7	18.4	80.9	0.00	
GP-11	12/17/20	0.0	1.0	20.1	78.9	0.00	
GP-12	12/17/20	0.0	0.7	20.5	78.8	0.00	
GP-13	12/17/20	0.0	0.5	19.6	79.9	0.00	
GP-14	12/17/20	0.0	1.3	17.8	80.9	0.00	
GP-15	12/17/20	0.0	2.2	19.8	78.0	0.00	
GP-16	12/17/20	0.0	1.1	17.6	81.3	0.00	
GP-20	12/17/20	0.0	0.8	18.6	80.6	0.00	
GP-24	12/17/20	0.0	1.1	18.7	80.2	0.00	
GP-25R	12/17/20	0.0	1.0	19.4	79.6	-0.01	
GP-26R	12/17/20	0.0	0.8	19.8	79.4	0.00	
GP-27R	12/17/20	0.0	0.8	20.0	79.2	0.00	

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
Blower - Fast	10/6/20										Offline
Blower - East	11/5/20										Offline
Blower - Fast	12/23/20										Offline
Flare	10/6/20										Offline
Flare	11/5/20										Offline
Flare	12/23/20										Offline
Gas Plant	10/6/20	51.5	36.8	0.5	11.2	1772			-35.95		
Gas Plant	11/5/20	52.0	36.8	0.6	10.6	1676			-37.58		
Gas Plant	12/23/20	52.8	35.7	0.3	11.2	1785			-36.45		
GW-01	10/6/20	52.9	27.8	3.5	15.8	4.16	75	-21.94	-22.76	100	
GW-01	11/5/20	20.1	8.9	13.7	57.3	5.17	75.7	-26.85	-26.86	100	
GW-01	12/23/20	45.1	23.8	5.6	25.5	5.1	52.2	-25.84	-26.14	100	
GW-04R	10/6/20	39.2	27.7	0.0	33.1	7.83	75.4	-15.77	-20.69	37.5	
GW-04R	11/5/20	41.5	27.7	0.0	30.8	7.47	70	-14.77	-18.24	37.5	
GW-04R	12/23/20	48.7	26.4	0.1	24.8	16.14	49.5	-15.81	-22.8	37.5	
GW-05R	10/6/20	27.2	15.9	10.1	46.8	0.75	80.4	-14.43	-33.95	98.4	
GW-05R	11/5/20	8.4	4.3	17.1	70.2	3.14	72.1	-12.79	-35.98	98.4	
GW-05R	12/23/20	63.8	34.6	0.0	1.6	3.43	48.4	2.28	-33.91	98.4	
GW-06R	10/6/20	32.9	21.3	0.3	45.5		72.1			9.3	Partially out of reach. No differential pressure/no flow. No header or wellhead pressure.
GW-06R	11/5/20	25.0	16.2	3.9	54.9	2.36	75	-25.84	-32.01	9.3	
GW-06R	12/23/20	36.4	21.5	0.2	41.9	3.95	57.9	-27.89	0.04	9.3	
GW-07R	10/6/20	13.4	7.5	12.6	66.5	3.81	80.4	-4.32	-31.76	13.8	
GW-07R	11/5/20	23.7	10.2	9.3	56.8	9.43	78.4	-0.34	-31.93	13.8	
GW-07R	12/23/20	21.8	12.6	1.2	64.4	1.89	60.1	-0.9	-0.13	13.8	
GW-08R	10/6/20	44.0	28.3	0.2	27.5	8.42	68	-2.42	-22.85	36.5	
GW-08R	11/5/20	46.7	26.9	1.0	25.4	1.73	73	-1.64	-17.31	36.5	
GW-08R	12/23/20	48.2	26.7	0.0	25.1	11.4	59.2	-0.96	-0.21	36.5	
GW-09A	10/6/20	30.1	18.4	0.2	51.3	6.42	72	-4.7	-21.49	5	
GW-09A	11/5/20	25.9	20.7	0.1	53.3	4.54	71.2	-9.48	-19.43	5	
GW-09A	12/23/20	43.6	18.3	2.6	35.5	4.62	49.8	-0.56	-20.4	5	
GW-10R	10/6/20	2.6	1.4	18.4	77.6	1.32	80.6	-0.82	-35.68	5.1	
GW-10R	11/5/20	0.5	0.8	19.8	78.9	11.04	77.5	-1.73	-38.81	5.1	
GW-10R	12/23/20	25.4	18.6	2.1	53.9	1.74	54.3	-2.24	-38.39	5.1	
GW-11R	10/6/20	35.2	23.7	7.4	33.7	0	78.6	-8.01	-8.07	33.5	
GW-11R	11/6/20	43.7	32.6	0.6	23.1	6.13	55	-19.8	-20.1	33.5	
GW-11R	12/23/20	49.5	34.6	0.1	15.8	11.07	57.7	-25.17	-24.54	33.5	

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
GW-12R	10/6/20	42.2	29.9	0.9	27.0	3.01	76.1	-1.99	-1.65	13.5	
GW-12R	11/6/20	25.5	20.8	6.6	47.1	1.37	54.7	-2.46	-2.24	13.5	
GW-12R	12/23/20	44.6	31.0	0.0	24.4	11.43	75.6	-13.09	-12.2	13.5	
GW-13R	10/6/20	54.0	36.8	0.2	9.0	3.41	81.1	-1.17	-29.81	17	
GW-13R	11/6/20	29.6	19.8	10.2	40.4	0.63	56.3	-2.24	-2.2	17	
GW-13R	12/23/20	60.8	38.7	0.0	0.5	0.85	51.6	2.73	2.74	17	
GW-14R3	10/6/20	33.9	28.4	1.5	36.2	2.67	86.9	-0.81	-0.63	14.8	
GW-14R3	11/6/20	5.3	2.7	19.4	72.6	0	51.6	-1.43	-1.52	14.8	
GW-14R3	12/23/20	59.9	38.0	0.0	2.1	1.06	52.9	1.72	1.9	14.8	
GW-15A	10/6/20	34.7	22.0	5.0	38.3	1.93	81.5	-1.22	-1.31	10.2	
GW-15A	11/5/20	47.8	27.2	2.9	22.1	0.39	70.5	-0.71	-0.17	10.2	
GW-15A	12/23/20	37.9	27.9	0.5	33.7	2.37	62.1	-1.18	-0.89	10.2	
GW-16R	10/6/20	32.7	27.0	1.1	39.2	6	73	-27.85	-34.33	3	
GW-16R	11/5/20	30.1	25.4	2.0	42.5	6.63	66	-31.21	-39.32	3	
GW-16R	12/23/20	30.6	22.5	0.9	46.0	5.99	59	-27.52	-35.18	3	
GW-17R	10/6/20	47.1	31.8	0.3	20.8	5.77	71.2	-23.49	-23.78	17	
GW-17R	11/5/20	41.3	30.5	0.4	27.8	6.98	65.1	-31.59	-31.67	17	
GW-17R	12/23/20	51.8	31.9	0.8	15.5	3.56	54.5	-9.02	-8.91	17	
GW-18	10/6/20	48.2	35.3	0.0	16.5	13.79	68	-27.47	-29.05	100	
GW-18	11/6/20	48.9	36.4	0.0	14.7	12.88	65.1	-29.87	-31.12	100	
GW-18	12/23/20	57.4	39.6	0.1	2.9	25.83	63.7	-22.9	-26.65	100	
GW-19R	10/6/20	48.6	36.5	0.0	14.9	43.14	90.1	-28.31	-28.42	98.3	
GW-19R	11/6/20	47.2	35.1	0.0	17.7	43.27	87.3	-30.54	-31.12	98.3	
GW-19R	12/23/20	52.6	37.7	0.0	9.7	45.73	88.9	-20.47	-19.59	98.3	
GW-20R	10/6/20	36.7	27.8	4.9	30.6	10.59	106.9	-1.66	-34.76	17.1	
GW-20R	11/5/20	26.9	21.1	8.8	43.2	38.56	62.4	-3	-37.29	17.1	
GW-20R	12/23/20	39.7	31.4	0.3	28.6	24.41	105.1	-1.01	-36.11	17.1	
GW-21R	10/6/20	46.8	33.4	0.2	19.6	5.48	90	-3.22	-32.39	14.4	
GW-21R	11/5/20	46.9	34.3	0.1	18.7	5.54	83.5	-2.45	-35.39	14.4	
GW-21R	12/23/20	35.7	31.7	0.3	32.3	18.7	93.2	-29.45	-35.35	14.4	
GW-22R	10/6/20	56.8	39.0	0.0	4.2	16.06	71.8	-35.57	-33.66	100	
GW-22R	11/5/20	56.8	39.3	0.0	3.9	15.9	66.7	-37.16	-35.14	100	
GW-22R	12/23/20	58.8	37.8	0.0	3.4	16.84	64.2	-36.91	-3.51	100	
GW-23R	10/6/20	49.2	36.5	0.1	14.2	32.11	66.4	-29.87	-29.39	99.9	
GW-23R	11/6/20	51.7	37.5	0.0	10.8	28.97	63	-31.54	-31.12	99.9	
GW-23R	12/23/20	52.2	36.7	0.0	11.1	45.68	63.9	-32.59	-30.95	99.9	
GW-24	10/6/20	55.6	39.4	0.3	4.7	16.49	74.5	-29.87	-29.81	100	Surging
GW-24	11/6/20	56.7	40.2	0.2	2.9	74.97	64.8	4.86	-155.74	100	
GW-24	12/23/20	58.2	39.8	0.0	2.0	21.25	67.1	-33.22	-32.47	100	

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
GW-25R	10/6/20	48.4	33.5	2.5	15.6	11.77	96.6	-11.58	-12.08	20.4	
GW-25R	11/6/20	44.6	31.3	3.9	20.2	5.43	79.3	-3.7	-3.59	20.4	
GW-25R	12/23/20	58.5	40.4	0.0	1.1	4.81	76.6	7.68	7.64	20.4	
GW-26R	10/6/20	54.3	36.8	0.6	8.3	23.38	101.5	-30.2	-31.29	100	
GW-26R	11/5/20	51.6	36.8	0.9	10.7	25.39	99	-33.89	-35.64	100	
GW-26R	12/23/20	57.5	35.8	0.0	6.7	24.88	99.9	-30.2	-30.91	100	
GW-27	10/6/20	53.9	36.3	0.1	9.7	9.8	70.5	-33.26	-34.08	100	Surging
GW-27	11/5/20	54.4	35.3	0.2	10.1	11.68	64	-35.57	-35.98	100	Surging
GW-27	12/23/20	57.7	36.7	0.0	5.6	20	59.5	-36.58	-34.12	100	Surging
GW-28R	10/6/20	58.8	38.0	0.0	3.2	0.96	82.6	-25.84	-26.86	100	
GW-28R	11/6/20	60.3	37.8	0.0	1.9	1.06	75.6	-30.54	-31.12	100	
GW-28R	12/23/20	61.7	36.8	0.0	1.5	1.41	75.7	-30.2	-30.74	100	
GW-29R1	10/6/20	56.4	40.2	0.2	3.2	58.55	114.6	-28.36	-28.67	100	Surging
GW-29R1	11/6/20	58.3	40.9	0.0	0.8	38.34	111.4	-31.08	-31.84	100	
GW-29R1	12/23/20	58.2	41.4	0.0	0.4	52.78	113.2	-29.87	-29.65	100	
GW-30R1	10/6/20	56.8	40.1	0.0	3.1	12.22	113	-26.51	-23.94	100	
GW-30R1	11/5/20	56.8	40.3	0.0	2.9	16.86	109.6	-26.85	-23.48	100	
GW-30R1	12/23/20	56.9	43.0	0.0	0.1	31.72	105.3	-24.5	-22.76	100	
GW-31	10/6/20	52.1	34.5	1.9	11.5	12.9	71.4	-30.33	-29.39	100	
GW-31	11/5/20	50.3	33.2	2.0	14.5	12.53	69.3	-30.54	-29.9	100	
GW-31	12/23/20	58.3	33.6	1.1	7.0	13.73	64.8	-29.91	-28.34	100	
GW-32	10/6/20	48.0	31.6	0.2	20.2	20.57	79.3	-15.77	-16.17	24	
GW-32	11/6/20	46.6	30.5	0.0	22.9	5.81	65.8	-3.05	-3.21	24	
GW-32	12/23/20	53.9	33.2	0.0	12.9	4.8	64.4	-0.87	-0.46	24	
GW-33R1	10/6/20	56.8	38.5	0.0	4.7	31.78	108.5	-21.56	-22.51	100	
GW-33R1	11/6/20	56.7	39.3	0.0	4.0	25.02	103.6	-17.07	-17.4	100	
GW-33R1	12/23/20	57.4	40.5	0.0	2.1	33.15	107.4	-21.14	-21.49	100	
GW-34R1	10/6/20	40.3	34.3	0.0	25.4	22.12	103.1	-0.55	-0.55	31.8	
GW-34R1	11/5/20	36.8	32.3	0.0	30.9	33.87	98.6	-2.22	-1.73	31.8	
GW-34R1	12/23/20	46.9	35.2	0.0	17.9	33.91	100.2	-1.31	-0.17	31.8	
GW-35	10/6/20	49.6	31.5	0.4	18.5	18.34	82.4	-11.74	-11.53	21.9	
GW-35	11/6/20	47.7	31.6	0.2	20.5	5.3	69.3	-2.84	-2.79	21.9	
GW-35	12/23/20	49.7	32.3	0.5	17.5	33.49	80.6	-24.83	-23.78	21.9	
GW-36	10/6/20	55.5	35.4	0.7	8.4	1.88	108.9	-17.79	-19.85	96.1	
GW-36	11/6/20	56.6	37.3	0.8	5.3	1.53	104.4	-14.14	-15.92	96.1	
GW-36	12/23/20	55.9	37.6	0.8	5.7	2.18	106.2	-17.07	-19.59	96.1	
GW-37	10/6/20	51.6	30.5	2.9	15.0	2.08	81.5	-2.78	-33.7	1	
GW-37	11/5/20	42.8	26.4	5.1	25.7	1.35	70.5	-3.82	-23.4	1	
GW-37	12/23/20	44.3	26.8	4.5	24.4	5.39	57.2	-2.79	-33.11	1	

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
GW-38R	10/6/20	57.6	38.4	0.0	4.0	34.53	117.3	-25.17	-26.77	100	
GW-38R	11/6/20	57.0	39.0	0.0	4.0	40.01	112.8	-27.85	-28.89	100	
GW-38R	12/23/20	35.6	25.7	7.6	31.1	33.7	115.9	-24.5	-24.7	100	
GW-39	10/6/20	51.4	36.6	0.0	12.0	51.4	80.6	-24.33	-26.69	100	
GW-39	11/5/20	53.3	35.6	0.0	11.1	29.26	80.1	-12.5	-12.16	100	Surging
GW-39	12/23/20	55.1	35.5	0.0	9.4	47.35	79.3	-23.78	-24.83	100	
GW-40	10/6/20	47.2	34.3	0.0	18.5	18.03	89.2	-5.45	-6.08	88.7	
GW-40	11/6/20	49.9	32.9	0.0	17.2	16.5	82.2	-3.9	-4.77	88.7	
GW-40	12/23/20	51.4	35.1	0.0	13.5	47.8	90	-21.1	-21.03	88.7	
GW-41R	10/6/20	51.6	38.4	0.5	9.5	2.76	84.7	-1.15	-18.62	5	
GW-41R	11/5/20	35.6	27.8	5.1	31.5	1.13	81.7	-2.1	-17.23	3	
GW-41R	12/23/20	57.8	39.2	0.0	3.0	3.01	65.5	1.67	-18.41	3	
GW-42	10/6/20	57.7	37.0	0.0	5.3	15.78	89.6	-24.2	-24.24	99.9	Surging
GW-42	11/5/20	59.8	37.3	0.0	2.9	29.2	87.4	-24.12	-23.1	99.9	Surging
GW-42	12/23/20	59.2	36.8	0.0	4.0	26.65	85.8	-26.85	-26.6	99.9	
GW-43	10/6/20	46.5	32.0	0.0	21.5	16.12	80.8	-6.75	-6.17	99.8	
GW-43	11/6/20	51.7	32.0	0.0	16.3	14.85	75.9	-17.95	-18.07	99.8	
GW-43	12/23/20	53.5	32.6	0.0	13.9	22.88	79.5	-25.08	-24.7	99.8	
GW-44	10/6/20	51.4	33.6	0.0	15.0	22.31	88.5	-26.17	-26.01	100	
GW-44	11/5/20	55.6	33.1	0.0	11.3	12.4	86.5	-18.83	-18.71	100	
GW-44	12/23/20	49.0	32.1	0.0	18.9	18.76	84.9	-23.91	-23.78	100	
GW-45	10/6/20	35.8	27.0	4.9	32.3	38.49	103.6	-20.05	-20.27	91.9	
GW-45	11/5/20	50.0	33.5	0.1	16.4	34.06	102.9	-17.45	-17.15	91.9	
GW-45	12/23/20	36.4	26.8	5.2	31.6	28.86	101.3	-12.96	-12.8	91.9	
GW-46	10/6/20	47.7	32.4	0.0	19.9	4.08	83.1	-3.37	-3	25.2	
GW-46	11/5/20	48.0	32.2	0.0	19.8	15.44	85.1	-20.47	-20.06	25.2	
GW-46	12/23/20	52.2	29.6	0.1	18.1	16.74	85.6	-23.2	-22.09	25.2	
GW-47R	10/6/20	55.9	36.7	0.1	7.3	35.91	86.2	-23.53	-24.58	100	
GW-47R	11/5/20	56.9	37.2	0.0	5.9	22.88	85.3	-18.88	-19.21	100	Surging
GW-47R	12/23/20	55.4	33.5	0.0	11.1	34.99	84.4	-22.82	-23.61	100	
GW-48	10/6/20	1.6	0.7	20.0	77.7	1.54	78.3	-1.97	-1.65	5.1	
GW-48	11/5/20	0.4	0.7	19.9	79.0	1.01	70.2	-3.17	-2.87	5.1	
GW-48	12/23/20	37.2	26.0	0.5	36.3	1.93	53.4	-1.31	-1.14	5.1	
GW-49	10/6/20	40.2	26.8	5.2	27.8	5.76	72.5	-35.57	-35.09	10.2	
GW-49	11/5/20	43.4	29.8	2.1	24.7	3.1	72.1	-36.07	-38.3	10.2	
GW-49	12/23/20	62.9	31.1	0.0	6.0	21.66	49.1	11.74	-34.8	10.2	
GW-50	10/6/20	65.0	30.9	0.0	4.1	11.14	79.3	-0.61	-35.77	2	Surging
GW-50	11/5/20	22.5	14.7	10.3	52.5	39.73	54.1	-21.14	-37.08	2	
GW-50	12/23/20	10.1	6.5	16.7	66.7	6.43	52.9	-14.09	-35.22	1	

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
GW-51	10/6/20	50.3	37.2	0.0	12.5	36.46	114.8	-20.01	-20.61	100	Surging
GW-51	11/5/20	56.0	35.6	0.0	8.4	31.39	114.3	-15.77	-14.91	100	
GW-51	12/23/20	49.2	36.3	0.0	14.5	42.31	113.9	-19.88	-20.52	100	
GW-52	10/6/20	24.6	20.4	7.4	47.6	1.16	81	-4.17	-4.18	10.2	
GW-52	11/5/20	0.3	0.8	20.1	78.8	0.46	71.1	-4.87	-4.56	10.2	
GW-52	12/23/20	1.4	2.3	20.6	75.7	0.3	48.6	-1.74	-1.65	10.2	
GW-121	10/6/20	46.7	34.3	0.9	18.1	8.22	107.1	-0.45	-6.12	27.5	
GW-121	11/5/20	42.5	32.5	1.8	23.2	5.14	104.9	-0.58	-13.01	71.2	
GW-121	12/23/20	43.7	33.7	1.8	20.8	6.37	95.7	-0.75	-0.46	10.2	
GW-122	10/6/20	47.2	34.5	0.0	18.3	37.07	102.9	-19.34	-17.86	64.8	
GW-122	11/5/20	49.0	35.9	0.0	15.1	29.4	100.9	-14.72	-13.22	99.4	
GW-122	12/23/20	50.4	36.6	0.0	13.0	34.5	101.1	-20.39	-18.79	100	
GW-123	10/6/20	47.3	34.9	0.0	17.8	13.66	81.7	-1.32	-1.1	25.7	
GW-123	11/5/20	48.8	35.2	0.0	16.0	18.22	79.9	-2.3	-1.69	25	
GW-123	12/23/20	46.9	35.2	0.0	17.9	24.22	77	-4.22	-3.59	23.5	
GW-124	10/6/20	47.1	35.3	0.0	17.6	22.93	119.1	-6.46	-6.17	33.1	
GW-124	11/5/20	40.0	32.7	1.1	26.2	22.84	116.4	-6.71	-5.87	41.1	
GW-124	12/23/20	46.2	35.6	0.0	18.2	39.94	118.8	-19.67	-17.99	31.6	
GW-125	10/6/20	48.4	36.1	0.0	15.5	13.27	113.9	-3.16	-1.65	24.7	
GW-125	11/5/20	46.7	34.5	0.0	18.8	17.54	113.4	-5.2	1.52	29.6	
GW-125	12/23/20	37.9	32.8	0.0	29.3	23.08	115.5	-9.56	0.89	38.8	
GW-126	10/6/20	57.6	39.0	0.0	3.4	13.41	86.4	-20.13	-20.95	100	
GW-126	11/5/20	57.2	39.2	0.0	3.6	12.3	84.7	-18.12	-18.33	100	
GW-126	12/23/20	59.1	37.8	0.0	3.1	13.99	84.4	-20.81	-21.07	100	
GW-127	10/6/20	55.2	38.5	0.0	6.3	39.22	118.4	-19.8	-18.41	100	
GW-127	11/5/20	53.3	39.9	0.0	6.8	30.13	116.6	-13.09	-11.44	100	
GW-127	12/23/20	53.4	38.4	0.0	8.2	31.78	116.8	-15.81	-14.53	99.9	
GW-128	10/6/20	56.3	41.1	0.0	2.6	19.02	124.9	-16.02	-16.22	100	Surging
GW-128	11/5/20	55.4	40.3	0.0	4.3	12.18	115.5	-7.09	-6.84	100	
GW-128	12/23/20	57.4	41.7	0.0	0.9	14.1	121.6	-14.89	-15.33	99.2	
GW-129	10/6/20	46.4	36.4	0.0	17.2	15.29	91.6	-5.08	-5.28	26.4	
GW-129	11/5/20	48.7	35.2	0.0	16.1	14.28	89.4	-4.32	-4.43	26.7	
GW-129	12/23/20	47.8	36.6	0.0	15.6	37.31	90.7	-21.43	-19.97	70.1	
GW-130	10/6/20									99.8	No Data. Well head is out of reach.
GW-130	11/5/20									100	No Data. Well head is out of reach.
GW-130	12/23/20									99.3	No Data. Well head is out of reach.

Name	Date	Methane (% by vol) #85547	Carbon Dioxide (% by vol)	O2 (% by vol) #85550	Balance (% by vol)	Gas Flow Rate (cfm) #99098	Gas Temperature (degrees F) #46388	Wellhead Pressure (H2O inch) #46385	Header Pressure (H2O inch) #46382	Valve Opening (% Open) #46387	Comments
GW-131	10/6/20	55.2	40.8	0.0	4.0		111.6			100	Partially out of reach. No differential pressure/no flow.
GW-131	11/5/20	55.9	41.1	0.0	3.0	11.15	74.3	-10.07		100	Partially out of reach. No header pressure.
GW-131	12/23/20	56.4	41.9	0.0	1.7		108	-18.46		99.9	Partially out of reach. No differential pressure/no flow. No header or wellhead pressure.
GW-132	10/6/20	55.0	41.3	0.0	3.7	5.17	88.7	-14.6	-15.16	100	
GW-132	11/5/20	54.8	40.1	0.0	5.1	5.21	82.8	-8.72	-8.7	100	
GW-132	12/23/20	57.1	42.3	0.0	0.6	4.3	75.9	-14.77	-14.4	100	
GW-133	10/6/20	54.1	41.3	0.0	4.6	69.46	109.8	-15.77	-17.4	100	
GW-133	11/5/20	54.6	41.2	0.0	4.2	55.06	109	-11.37	-11.95	100	
GW-133	12/23/20	57.9	41.8	0.0	0.3	23.04	99	-4.13	-5.79	20	
GW-134	10/6/20	52.6	40.4	0.0	7.0	40.55	111.4	-14.77	-16.17	100	
GW-134	11/5/20	53.4	41.7	0.0	4.9	33.45	109.9	-11.07	-11.66	100	
GW-134	12/23/20	57.5	40.6	0.0	1.9	32.06	106.7	-16.78	-22.59	45	
GW-135	10/6/20	51.9	40.3	0.0	7.8	68.54	110.5	-12.21	-14.78	99.9	
GW-135	11/5/20	55.2	41.1	0.0	3.7	30.03	109	-2.2			Partially out of reach. No header pressure.
GW-135	12/23/20	54.6	41.1	0.0	4.3	72.55	111.4	-18.46	-22.21	100	
GW-136	10/6/20	48.3	39.3	0.0	12.4	7.16	104.2	-1.46	0.72	20.7	
GW-136	11/5/20	48.0	36.4	0.0	15.6	4.98	99.7	-1.01	-0.8	18.5	
GW-136	12/23/20	51.3	39.8	0.0	8.9	6.08	88.9	-0.97	2.07	19.8	
GW-137	10/6/20	0.4	1.1	20.7	77.8	47.22	104.5	-6.75	-19.51	100	
GW-137	11/5/20	52.4	42.1	0.0	5.5	67.01	104.9	-14.18	-13.64	100	
GW-137	12/23/20	52.9	43.2	0.0	3.9	71.22	106.9	-17.11	-15.96	99.9	
GW-138	10/6/20	53.5	45.3	0.0	1.2	66.79	102.9	-15.77	-15.67	100	
GW-138	11/5/20	53.2	44.9	0.0	1.9	60.01	102.9	-12.79	-12.67	100	
GW-138	12/23/20	53.0	44.9	0.0	2.1	67.13	102.7	-16.99	-16.85	100	
GW-139	10/6/20	39.8	46.1	0.0	14.1	17.27	91.9	-2.41	-1.73	29.2	
GW-139	11/5/20	41.5	45.5	0.0	13.0	17.42	91.8	-2.46	-1.6	26	
GW-139	12/23/20	40.0	44.6	0.0	15.4	14.49	88.9	-1.97	-1.86	20.3	
GW-140	10/6/20	54.5	43.3	0.0	2.2	51.57	94.3	-18.58	-15.58	79.7	
GW-140	11/5/20	46.2	45.1	0.0	8.7	51.07	96.4	-17.99	-15.63	99.4	
GW-140	12/23/20	49.6	43.0	0.0	7.4	54.89	96.8	-21.81	-19.43	85.7	
GW-141	10/6/20	47.2	41.4	0.0	11.4	55.44	96.4	-21.73	-20.02	95.2	
GW-141	11/5/20	46.0	45.3	0.0	8.7	49.53	97.3	-16.82	-15.41	99.6	
GW-141	12/23/20	49.4	42.1	0.0	8.5	53.93	99.5	-22.4	-20.31	98.7	

"--" = Not Measured