NH3-N ISE worksheet for calculating results when using three calibration standards

DNR Template Version 02NOV15

Laboratory:

Initial Estimated Values			
Eo =	117.5	mV	
Slope =	-60.0	mV/D	
Blank =	0.0	Conc	

ID for each Calibration Std	Calibration Std Concentrations (mg/L)	Measured mV	Calculated mV

Analysis Date:	Overall Slope must be	Slope
Analyst:	-54 to - 60 mV	Failure

	Calculated			Final Conc	
Unique Sample ID	Concentration	Measured mV	Dil Factor	(mg/L)	QC
(Initial Vol / Final	(mg/L)	measured mv		(1119/12)	
Calibration Std 1		0	1		
Calibration Std 2		0	1		
Calibration Std 3		0	1		
Method Blank			1		
LCS			1		
CCV			1		

Final Calibration Values				
Eo =	117.5	mV		
Slope =	-60.0	mV/D		
Blank =	0.000	Conc		best curves
		Calculated Values		are when both are between 54 - 60
	Eo Estimate =		slope 1	0.00
	Slope Estimate =		slope 2	0.00
	Blank Estimate =	0		•

Standard volumes used (mL) **	
Sample volumes used (mL) **	

** note anytime different from this value

Water source used for method blank	
ISA buffer volume used on all (mL) **	
ISA buffer solution ID	
LCS standard ID	
LCS standard Concentration (mg/L)	
CCV standard Concentration (mg/L)	
LOD (mg/L)	
LCS recovery must be 90-110%	

Instructions

- 1. Enter calibration curve standard concentrations and measured mV into the orange cells.
- 2. Click the "Run Solver" button below and then Click on "OK" to accept the results.
- 3. The green cells show the standard concentrations using the calculated calibration.
- 4. Enter the sample and QC mV measurements into the yellow cells
- 5. The calculated concentration from these measurements are in the purple cells
- 6. Enter other analysis required information in the other yellow cells

Caution: Because this spreadsheet uses the Solver function cells cannot be locked and protected. Be careful not to change formulas.

LCS recovery must be 90-110%

Comments:		