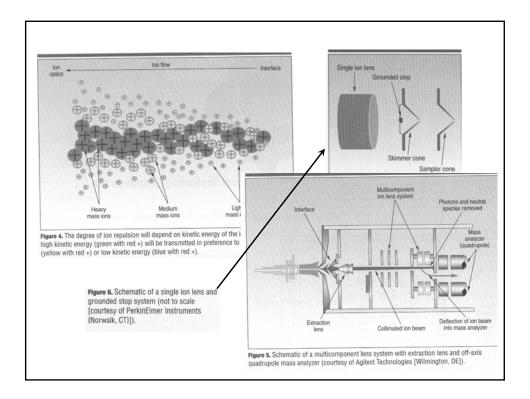
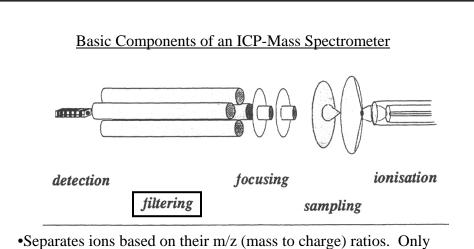
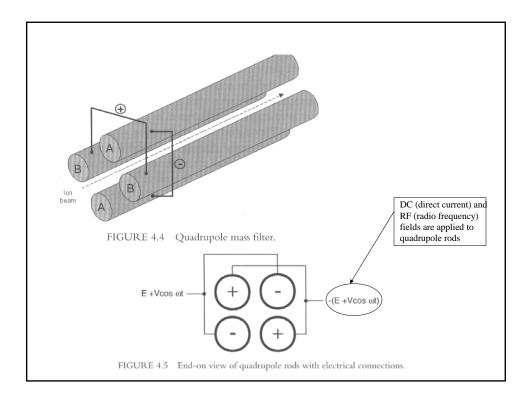
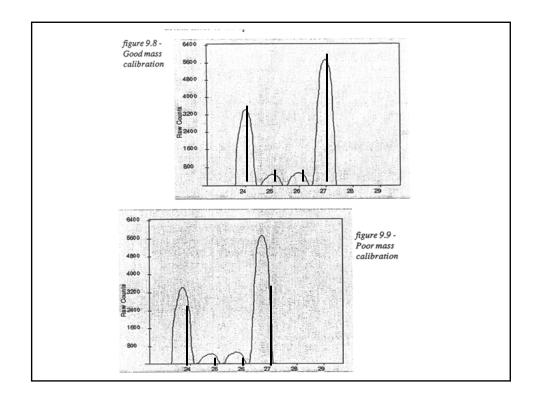

•Two interface cones, each with an orifice size of 0.4-1.2 mm, aid in the transmitting of ions from the atmospheric pressure plasma (at 760 torr) to the low-pressure operating zones of the mass spectrometer (at $10^{-5} - 10^{-6}$ torr).


•The sampling interface is designed to maintain the composition and integrity of the ion stream by limiting the kinetic energy spread of the ions and limiting production of polyatomic species.





•Separates ions based on their m/z (mass to charge) ratios. Only one mass (m/z) is allowed to reach the detector at any given time.


•Quadrupole mass filter is most common (90%) and economical, but there are also magnetic sector, time-of-flight, and collision/reaction cell systems.

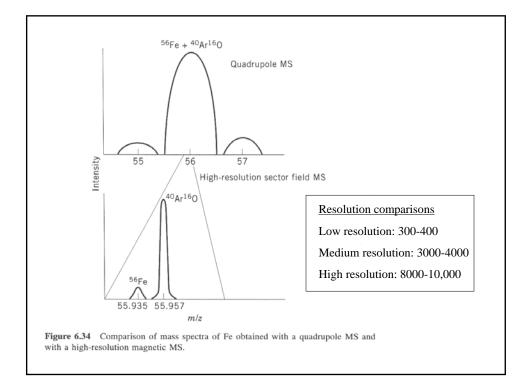
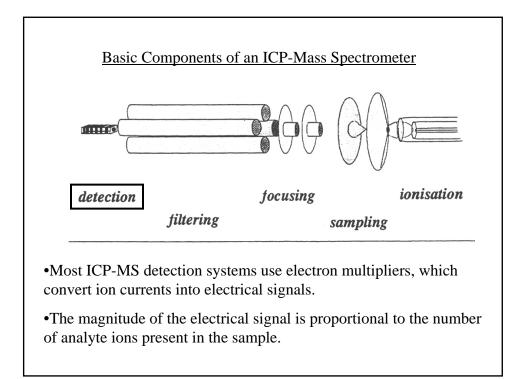
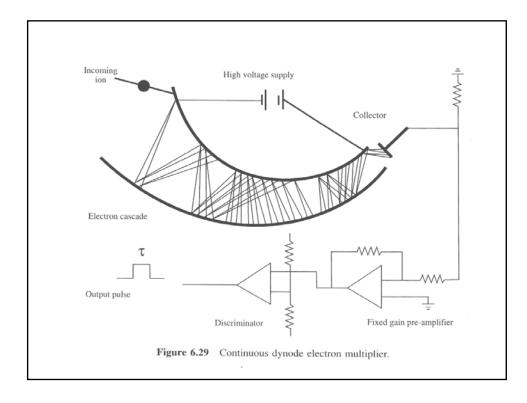


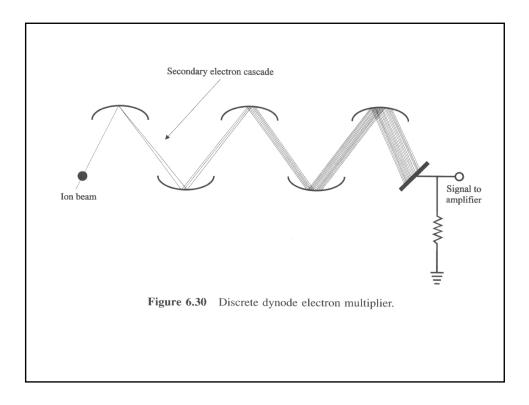
Table I. Illustrative values for air at 20 ° C.					
Gas density (molecules per mL)	Mean free path (cm)	Time to monolayer (s)			
2.7×10^{19}	7×10^{-6}	$3.3 imes 10^{-9}$			
$3.5 imes 10^{13}$	5	2.5×10^{-3}			
$3.5 imes 10^{10}$	5×10^{3}	2.5			
$3.5 imes 10^{7}$	5×10^{6}	$2.5 imes 10^{3}$			
	$\begin{array}{c} \textbf{Gas density} \\ \textbf{(molecules per mL)} \\ 2.7 \times 10^{19} \\ 3.5 \times 10^{13} \\ 3.5 \times 10^{10} \end{array}$	$\begin{array}{c c} \mbox{Gas density} & \mbox{Mean free path} \\ \mbox{(molecules per mL)} & \mbox{(cm)} \\ \hline 2.7 \times 10^{19} & \mbox{7} \times 10^{-6} \\ \hline 3.5 \times 10^{13} & \mbox{5} \\ \hline 3.5 \times 10^{10} & \mbox{5} \times 10^{3} \\ \hline \end{array}$			

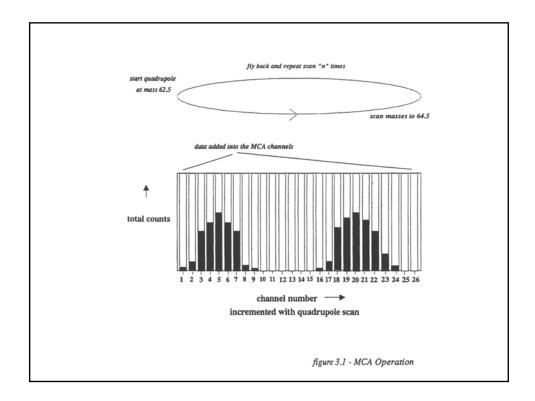
Mean Free Path: defines the distance a gas atom or molecule travels between collisions.

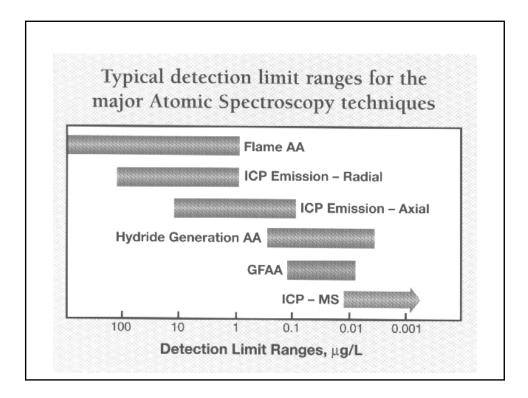
- At atmospheric pressure, as in the plasma, the mean free path is 0.000007 cm, so atoms and molecules collide after traveling a very short distance.
- In the quadrupole region, where the pressure is 10⁻⁶ torr, the mean free path is 5000 cm, so atoms and molecules can easily travel the entire length of the quadrupole rods and into the detector without colliding with other molecules.

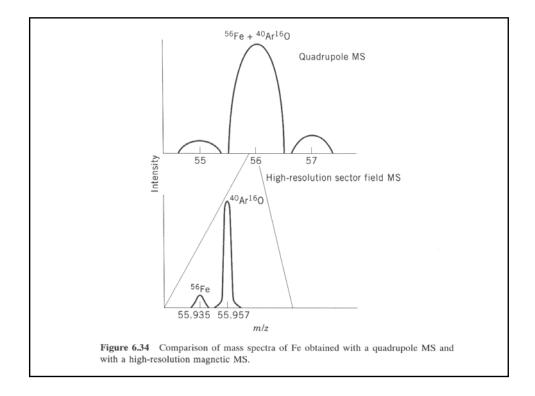


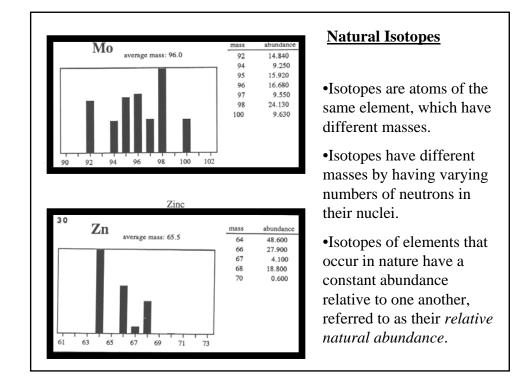


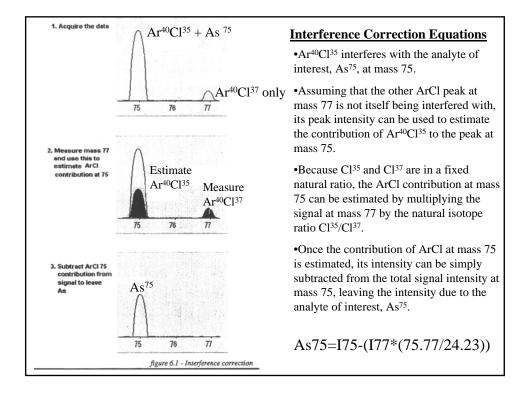

Isotope	Mass ^a	Interference	Mass ^{a,b}	Resolution Required
28Si	27.9769284	¹⁴ N ₂	28.006148	960
		¹² C ¹⁶ O	27.994915	1600
³¹ P	30.9737634	14N16O1H	31.005814	970
32S	31.9720718	¹⁶ O ₂	31.989829	1800
39K	38.9637079	³⁸ Ar ¹ H	38,970557	5700
⁴⁰ Ca	39.9625907	⁴⁰ Ar	39.962383	193000
		40K	39.963999	29000
⁴⁸ Ti	47.9479467	32S16O	47.966986	2600
		34S14N	47.970942	2100
51V	50.9439625	35Cl16O	50.963767	2600
		37Cl14N	50.968977	2100
⁵² Cr	51.9405097	40Ar ¹² C	51.962383	2400
		35Cl16O1H	51.971592	1700
⁵³ Cr	52.9406510	37Cl16O	52.960817	2700
55Mn	54.9380463	40Ar ¹⁵ N	54.962492	2300
		37Cl18O	54.965062	2100
		40Ar14N1H	54.973282	1600
⁵⁶ Fe	55.9349393	40Ar16O	55.957298	2500
⁵⁸ Ni	57.9353471	40Ar18O	57.961542	2250
⁵⁹ Co	58.9331978	40Ar18O1H	58.969368	1650
6 ³ Cu	62.9295992	40Ar ²³ Na	62.952153	2800
⁶⁴ Zn	63.9291454	32S16O2	63.961901	2000
		${}^{32}S_2$	63.944144	4300
⁶⁹ Ga	68.9255809	37Cl ¹⁶ O ₂	68.955732	2300
⁷⁴ Ge	73.9211788	40Ar34S	73.930251	8200
⁷⁵ As	74.9215955	40Ar35Cl	74.931236	7800
⁸⁰ Se	79.9165205	40Ar ₂	79.924766	9700


D D e. • L 6т.


lsotope	Matrix	Interference	Resolution	Transmissio
³⁹ K	H ₂ 0	³⁸ ArH	5570	6%
⁴⁰ Ca	H ₂ 0	⁴⁰ Ar	199,800	0%
⁴⁴ Ca	HNO ₃	¹⁴ N ¹⁴ N ¹⁶ O	970	80%
⁵⁶ Fe	H ₂ 0	⁴⁰ Ar ¹⁶ O	2504	18%
³¹ P	H ₂ 0	¹⁵ N ¹⁶ O	1460	53%
34S	H ₂ 0	160180	1300	65%
⁷⁵ As	HĈI	⁴⁰ Ar ³⁵ Cl	7725	2%
51V	HCI	35CI16O	2572	18%
⁶⁴ Zn	H ₂ SO ₄	32S160160	1950	42%
²⁴ Mg	Organics	12C12C	1600	50%
⁵² Cr	Organics	⁴⁰ Ar ¹² C	2370	20%
⁵⁵ Mn	HNO ₃	40Ar15N	2300	20%







Mass Element ^b	H ₂ O (5% HNO ₃)	5% H ₂ SO ₄	5% HCI
45 Sc(100)	¹² C ¹⁶ O ¹⁶ OH		
46 Ti(8.01), Ca(0.004)	¹⁴ N ¹⁶ O ¹⁶	32S14N	
47 Ti(7.33)		33S14N	
48 Ti(73.81), Ca(0.187)		34S14N, 32S14O	
49 Ti(5.5)		33S14O	35Cl14N
50 Ti(5.4), Cr(4.34), V(0.25)	³⁶ Ar ¹⁴ N	34S14O	0.11
51 V(99.76)		5.0	37CI18N, 35CI16O
52 Cr(83.79)	40Ar12C, 36Ar16O	³⁶ S ¹⁶ O	³⁶ CI ⁶⁶ OH
53 Cr(9.50)	м с, м о	30	"CI"O
54 Fe(5.9), Cr(2.36)	40Ar14N		37CI*OH
55 Mn(100)	40Ar14NH		U.OH
56 Fe(91.72)	¹⁰ Ar ¹⁴ O		
57 Fe(2.11)	Ar U		
58 Ni(68.077), Fe(0.28)			
59 Co(100)			
60 Ni(26.223)			
61 Ni(1.14)			
61 Ni(1.14) 62 Ni(3.634)			
63 Cu(69.17)			
64 Zn(48.63), Ni(0.926)		34S14O14O, 52S2S	
65 Cu(30.83)		33S16O16O, 32S33S	
66 Zn(27.9)		34S14O14O, 32S34S	
67 Zn(4.1)			35Cl16O16O
68 Zn(18.8)	40Ar14N14N	36S16O16O, 33S36S	
69 Ga(60.108)			37CI16O16O
70 Ge(21.24), Zn(0.62)	40Ar14N16O		
71 Ga(39.89)			³⁶ Ar ³⁵ Cl
72 Ge(27.66)	³⁶ Ar ³⁶ Ar	40Ar32S	
73 Ge(7.72)		40Ar33S	³⁶ Ar ³⁷ Cl
74 Ge(35.94), Se(0.89)	³⁶ Ar ³⁸ Ar	40Ar34S	
75 As(100)			*®Ar ³⁵ Cl
76 Ge(7.44), Se(9.36)	³⁶ Ar ⁴⁰ Ar	40Ar36S	
77 Se(7.63)	³⁶ Ar ⁴⁰ ArH		40Ar37Cl
78 Se(23.77), Kr(0.35)	38Ar40Ar		
79 Br(50.69)	³⁸ Ar ⁴⁰ ArH		
80 Se(49.61), Kr(2.25)	40Ar40Ar	32S16O16O16O	
81 Br(49,46)	40Ar40ArH	32S16O16O16OH	
82 Kr(11.61), Se(8.74)	40Ar40ArH	34S16O16O16O	
83 Kr(11.51)	na nang	34S16O16O16OH	
84 Kr(57.03), Sr(0.56)		³⁶ S ¹⁶ O ¹⁶ O ¹⁶ O	
		3000	

TABLE 7.5 Calcium Oxide and Hydroxide Species and OtherPotential Interferences in the Mass Region for Ni Determination			
Mass	Element ^a	Interferences	
56	Fe(91.72)	⁴⁰ ArO, ⁴⁰ CaO	
57	Fe(2.11)	⁴⁰ ArOH, ⁴⁰ CaOH	
58	Ni(68.27), Fe(0.28)	⁴² CaO, NaCl	
59	Co(100)	⁴³ CaO, ⁴² CaOH	
60	Ni(26.223)	⁴³ CaOH, ⁴⁴ CaO	
61	Ni(1.14)	⁴⁴ CaOH	
62	Ni(3.634)	⁴⁶ CaO, Na ₂ O, NaK	
63	Cu(69.17)	⁴⁶ CaOH, ⁴⁰ ArNa	
64	Ni(0.926), Zn(48.63)	$^{32}SO_2$, $^{32}S_2$, ^{48}CaO	
65	Cu(30.83)	³² S ³² S, ³³ SO ₂ , ⁴⁸ CaOH	

Advantages of ICP-MS

- Detection limits are 10-100 times superior to those of ICP-AES.
- Ability to provide elemental isotopic ratio information.
- Roughly 25 elements can be analyzed in duplicate and with good precision in 1-2 minutes.
- Large linear dynamic working range.
- The effective combination of differing types of ICP-MS instruments coupled with the many varied types of sample introduction allow for customization of techniques for a specific sample type or form of analyte.

Disadvantages of ICP-MS

- The lower-cost ICP-MS systems utilize single-quadrupole mass analyzer systems, which are inherently sequential systems, and have relatively low mass resolution.
- Higher cost than ICP-AES, with a much lower body of knowledge and understanding available than the other technique.
- Elements such as Ca and Fe are difficult to determine by conventional Ar ICP-MS because of mass spectral interferences by argides.
- If Ni cones are used, can have as much as 5 ppt of nickel being detected as orifice ions. This can be alleviated by switching to more expensive Pt cones.
- Generally requires a clean room environment for ultra-low detection limits.

Disadvantages of ICP-MS

•An outstanding ICP-AES instrument offers a long-term RSD of less than 1% compared to less than 4% for most ICP-MS systems.

•The presence of oxides and doubly-charged ions in the plasma deteriorates the quantitative capability of ICP-MS in ultratrace analysis.

•ICP-MS instruments are more susceptible to instability than ICP-AES intruments when running samples with higher levels of total dissolved solids.

•The relatively cooler sampler and skimmer cones provide direct contact points for sample deposition from the plasma, and can become clogged over time when difficult matrices are analyzed.

Needed Improvements in ICP-MS

Compared to other methods of elemental analysis, ICP-MS comes closer to being the ideal method, but still requires much work in the following areas:

- Speciation approaches must be devised or refined.
- Matrix interferences must be better understood and controlled.
- Less expensive instruments for the elimination of spectral interferences must be developed.
- Alternative sources and mass spectrometers should be considered and evaluated.
- Sample-introduction efficiency must be improved.
- Sample-utilization efficiency ought to be raised.
- Precision must be increased.
- Instrumentation should be reduced in price and made simpler to use.

References

Montaser, A., Ed., *Inductively Coupled Plasma Mass Spectrometry*, Wiley-VCH, New York, 1998.

Taylor, H.E., *Inductively Coupled Plasma Mass Spectrometry*, Academic Press, San Diego, 2001.

Thomas, R., "A Beginner's Guide to ICP-MS", *Spectroscopy* magazine, April 2001 - February 2003, in 14 parts.

VG Elemental, *PlasmaQuad Software Manual*, VG PlasmaQuad 3 User's Guide.