

Fitted background correction

Mathematically models the measured spectrum : 1. Determining the offset component to model the

unstructured continuum background.

2. Determining the slope component to model the wings of large distant peaks.

3. Applying three Gaussian peak components to model: a. The analyte peak.

b. Any <u>potential interference peak to the left</u> of the analyte peak.

c. Any <u>potential interference peak to the right</u> of the analyte peak.4. Using an iterative procedure to estimate the width and position of the peaks.

5. Using a method of least squares to determine the magnitude of the offset, slope and peak heights.

Source: Agilent Technologies, Inc. 2012. Pub. number: 5991-0841EN. 'Fitted' — Fast, accurate and fully automated background correction. WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN in conjunction with the Wisconsin DNR and the Wisconsin Environmental Lab Association (WELA)

Understanding MSF Think of it as automatic simultaneous multi-point background correction. Requires only that a minimum of three solutions are analyzed: the blank, a pure solution of the element being determined, and pure solutions for each of the potentially interfering elements in the matrix. There are no limits on the number of interfering elements that can be included in a model.

Source: PerkinElmer, Inc. 2009 Multi-component spectral fitting. Pub. # 006081D_01 WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN in conjunction with the Wisconsin DNR and the Wisconsin Environmental Lab Association (WELA)

<section-header><text><text><text><text><text>

еL	Lab I	PT sa	am	npl	e by	v N	ISF
	<u>TV</u>	SLH	by MS	F		SLH	by IEC
AI	50	75.96	۷	152%	49.6	•	99%
Sb	75	58.8	۲	78%	67.4	•	90%
As	100	109.5	۷	110%	98	¥	98%
Ba	880	860.7	۷	98%	900	¥	102%
Be	5.5	5.556	۷	101%	5.2	•	95%
в	750	679	۲	91%	842	•	112%
Cd	35	33.59	۷	96%	35.2	¥	101%
Ca	13,500	13460	۲	100%	13292	¥	98%
Cr	25,000	24030	۷	96%	24610	•	98%
Co	240	230.6	۷	96%	235.7	•	98%
Cu	1,300	1275	۷	98%	1315	•	101%
Fe	110,000	109400	۷	99%	112185	¥	102%
Pb	40	42.23	۷	106%	39	۷	98%
Mg	8,750	9027	۷	103%	8485	•	97%

e L	ab P	T sa	am	ple	e by	M	ISF	
	τv	SLH I	by MS	F		SLH]	by IEC	
Mn	430	415.4	۲	97%	420.4	۲	98%	
Мо	17,000	16390	۲	96%	16239	۷	96%	
Ni	30	30.5	۲	102%	31.2	۲	104%	
Р	100	85.38	۲	85%	105.2	۲	105%	
К	7,500	7900	۲	105%	7462	۲	99%	
Se	250	230.4	۲	92%	235.2	۲	94%	
Ag	3000	-725.6	$\times{\nearrow}$	-24%	2957	۲	99%	
Na	14,000	13960	۲	100%	14360	۲	103%	
Sr	1,500	1437	۲	96%	1478	۲	99%	
ТІ	75	74.61	۲	99%	79	۷	105%	
Ti	8,000	8361	۲	105%	8054	۲	101%	
v	15	13.34	۲	89%	16.06	۲	107%	
Zn	60	95.82	×И	160%	53.5	۲	89%	

	For "un	spiked"	analytes	5
7	Compar	re the IC	CB to the	ICS-A
	LOD	<u>Blank</u> <u>Avg</u>	Al 50 + Fe 20 ppm	
Al	0.013	0.2974	49.14	LOD is questionable
Ba	a 0.001	-0.0001	0.2967	+300 ppb! IEC
Cı	u 0.001	0.0049	0.0042	Realistic LOD?
M	n 0.003	-0.0017	- 0.0040	Watch @ >Al/Fe
M	0.008	0.0012	- 0.0049	ОК
Zı	n 0.007	0.0037	- 0.0175	Possible IEC
WISCONSIN DEPT. OF NATU	WISC in conjunctio	CONSIN STATE LABORATO n with the Wisconsin DNR a	RY OF HYGIENE - UNIVER: and the Wisconsin Environme	SITY OF WISCONSIN Intal Lab Association (WELA)

Compare the ICB to the ICS-B									
LOD	<u>Blank</u>	ICS-B*							
0.0005	0.0009	-0.0167	Some interference						
0.013	0.2974	0.7383	Significant ↑ IEC!						
0.001	-0.0021	0.0003	Looks OK						
0.007	0.0037	-0.0139	Small IEC needed?						
-	Compa <u>LOD</u> 0.0005 0.013 0.001 0.007	LODBlank0.00050.00090.0130.29740.001-0.00210.0070.0037	LODBlankICS-B*0.00050.0009-0.01670.0130.29740.73830.001-0.00210.00030.0070.0037-0.0139						

PT Sample Results

Remember...the point of these samples was analogous to an antiviral application for a computer; the sample was designed to highlight potential gaps in your interference security system. If your lab did not fare well, please do not be discouraged, we will be spending the majority of our time highlighting what the likely causes of these results are and how to correct them.

Please also understand that these results are in no way reflective of any lab's day-to-day performance using ICP. These samples, particularly the home brewed one, were specifically presented because of the challenge they pose in terms of interferents and actual levels of interferents. Most labs will not encounter samples with such severe interferences routinely, but in the event you do, this will help you come up with a plan to upgrade your defense systems.

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN in conjunction with the Wisconsin DNR and the Wisconsin Environmental Lab Association (WELA)

\	but	the	re wa	as trou	ıble w	/these	
	#	repto	l #ok	↑ bias	♦ Bias	False -	
	V	11	2	3	2	4	
	Sb	13	5	7	0	1	
	Be	14	6	0	5	3	
	Al	14	7	6	0	1	
	P	7	4	3	0	0	
	Zn	17	10	7	0	0	
	Tl	13	8	1	2	2	
	B	12	9	2	1	0	
	Pb	17	13	0	3	1	
HISCONSIN DEPE OF NATURAL RESOURCES	in cor	WISCONSIN njunction with	I STATE LABORA the Wisconsin DN	ATORY OF HYGIENE - NR and the Wisconsin H	UNIVERSITY OF WI Environmental Lab As	SCONSIN sociation (WELA)	W E L A

PT San	npl	e: IS	S ar	nd I	EC	e	ffect	s
nt	IS?	×	\checkmark	×			TRUE	
moortaind	IEC?	×	×	\checkmark	\checkmark		Value	
TION THUS an	Al	453	428	56.2	48.3		50	
Fre for this	Sb	381	367	62.1	58.9		75	
IS 10 mpler	As	296	285	101	91.3		100	
Salire	Ва	890	86 7	899	873		880	
	Be	7.8	7.6	5.0	5.3		5.5	
Internal	В	623	605	834	804		750	
standards not	Cd	38.0	37.0	36.0	35.0		35	
as critical	Са	14.2	13.2	14.2	13.2		13.5	
because there	Cr	26230	25338	26243	25350		25000	
15 HO Mati 1X:	Со	257	237	253	236		240	
	Cu	1256	1221	1328	1286		1300	
	Fe	117	111	118	111		110	
	Pb	-12.0	-13.4	40.4	40.0		40	WE
WISCONEN DEPT. OF NATURAL RESOURCES IN CONJUNCTI	CONSIN S on with the	FATE LABOR Wisconsin D	ATORY OF H NR and the W	YGIENE - U /isconsin Env	NIVERSITY vironmental	OF W Lab A	VISCONSIN Association (WELA	

PT Sam								
	IS?	×	\checkmark	×	\checkmark		TRUE	
	IEC?	×	×		\checkmark		Value	
*	Mg	8.9	8.4	8.9	8.4		8.75	
portant	Mn	426	418	430	422		430	
wimpers and	Мо	16965	16390	16978	16403		17000	
Howellecthis	Ni	-3.7	-4.2	30.3	29.5		30	
Wersfor de?	К	8.0	7.5	7.8	7.4		7.5	
samp	Se	131	130	245	238		250	
-	Ag	3305	3322	3087	3110		3000	
	Na	15.1	14.1	15.1	14.1		14	
	Sr	1518	1448	1516	1448		1500	
	TI	28	27	90	85		75	
	Ti	8790	8118	8788	8116		8000	
	V	-171	-160	6.7	16.1		15	
	Zn	1333	-151	55.2	55.9		60	WE
WISCONEN DEPE OF NUTURAL RESOURCES in conjunction	ONSIN ST n with the	FATE LABOR Wisconsin D	ATORY OF H	IYGIENE - U /isconsin En	NIVERSITY	OF V Lab /	VISCONSIN Association (WEL/	

PT sam	All axial PT sample – MoMo. Ti IEC								
<u></u>									
AI 396.153	50	490	490	49.6	Mo				
B 249.677	750	764	758	842	other				
Be313.107	5.5	5.1	13.6	5.2	Ti				
P 178.221	100	61.8	57.8	105	Mo,?				
Pb220.353	40	- 13.7	- 16.2	39.0	Mo				
Sb206.836	75	- 144	- 122	67.4	Mo,Ti				
Se196.026	250	235	235	235	Neither				
TI 190.801	75	79.0	2.0	79.0	Ti				
V 292.402	15	- 7.2	- 0.9	16.1	Mo,Ti				
Zn 206.200	60	46.3	46.3	53.5	Mo				
Just rer	Just removing 2 IECs shows that Mo and Ti								
Were mit	CONSIN STATE LABO	DRATORY OF HYC DNR and the Wisc	CIENE - UNIVERSIT	IL AIIAIYLE Y OF WISCONSIN I Lab Association (WEL	S (* E L A) A				

Interference of Mo on V								
42 Molybdenum 95.96			Vanadium 50.9415					
	Mike	292.4						
	Delta	292.401						
	November	292.401	Alpha	292.464				
India 290.88	* SLH *	292.402	Golf	292.464				
Kilo 290.88	Bravo	292.402	Hotel	310.2				
	Juliet	292.402	Lima	311.837				
	Oscar	292.402						
	Papa P-E	292.402						
	Papa Thermo	292.402		WE				
WISCONSIN STAT	TE LABORATORY OF HYG	IENE - UNIVERSIT onsin Environmenta	Y OF WISCONSIN	LA				

Interferenc	e of M	o on V
IV=15 ACCO November - Papa < Oscar Bravo < Juliet <1 Delta 1 Lima 1 India 1 SLH 1	eptanc - 2.24 0.34 3 5 10.4 11.27 12.8 13.5 16.06	e = 12.8 - 17.3 Alpha 18.6 Mike 22 Kilo 30.3 Hotel < 20 Golf < 28 CharlieN/A Echo N/A FoxtrotN/A QuebecN/A
WISCONSIN STATE BETCONNINAL RESOURCES in conjunction with the Wisc	E LABORATORY OF HY consin DNR and the Wis	GIENE - UNIVERSITY OF WISCONSIN

Int	erferenc	ce of (Cr on	Sb	
	24 Chromium 51 991		20	51 Sb Antimony 121.760	
		Alpha	206.833		
		Juliet	206.833		
		Papa P-E Papa Thermo	206.833		
Hotel	206.8	Bravo	206.833	ltima	217.582
Mike	206.8	Delta	206.834	Linta	217.502
		November	206.834		
		Charlie	206.835		
		*SLH *	206.836		
		Golf	206.836		
		India	206.836		
		Kilo	206.836		WE
WISCONSIN DEPE OF NATURAL RESOURCES	WISCONSIN STAT	FE LABORATORY O	F HYGIENE - UN e Wisconsin Envir	IVERSITY OF WISCONS ronmental Lab Associatio	IN L on (WELA) A

In	Interference of Mo on Al									
42 Molybde 95.96	O			9	13 Aluminum 26.981538					
	November Papa Charlie Delta Echo Juliet Quebec Hotel Mike	237.312 237.312 237.313 308.215 308.215 308.215 308.215 308.217 396.1 396.1	Bravo Alpha Lima Quebec * SLH * Golf India Kilo Oscar	396.152 396.152 396.152 396.152 396.153 396.153 396.153 396.153 396.153						
DEPE OF MITURAL RESOURCES in con	WISCONSIN S junction with th	STATE LABORATO e Wisconsin DNR	DRY OF HYGIEN and the Wisconsi	E - UNIVERSIT in Environmenta	Y OF WISCONSIN Il Lab Association (WE	ELA)				

V= 50 ug /]	L Acc	eptance	= 18 - 99
Lima	40.7	Č harlie	350
Oscar	46.2	India	575
November	48.4	Golf	696
SLH	49.6	Hotel	710
Delta	58	Echo	< 120
Kilo	66.6	Quebec	< 65
Mike	82	Bravo	< 20
Juliet	120	Foxtrot	N/R
Alpha	231		

Interference of Mo on Al

Problems with AI on the PT sample were purely related to interference from Mo.

At 50 ppb, the level AI was somewhat of a challenge, but well above the mean/median LODs reported.

High bias observed is related to either not having interference correction for Mo, or having set the correction at a much lower level than that of Mo (17 ppm) in the PT sample.

We suspect the false negative to be a result of either an unrealistic LOD or over-correction.

> WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN in conjunction with the Wisconsin DNR and the Wisconsin Environmental Lab Association (WELA)

Int	erfe	rence of	Cu on P	
	29 Copper 63.546	u	Phospho 30.97370	Drus 52
Papa Therm	0 177.495	Oscar	< 200	
* SLH *	178.221	November	r 92.7	TV- 100
Oscar	213.617	Quebec	101	1 v = 100
Delta	213.618	Pana	101 7	84-115
Lima	213.618	I upu I imo	101.7	
November	213.618		105	
Quebec	213.618	SLH	105.2	
Hotel	214.9	Kilo	205	
Kilo	214.914	Delta	216.3	
ESCONEIN DETLO MATURAL RESOURCES	WISC in conjunction	Hotel ONSIN STATE LABORATORY (with the Wisconsin DNR and t	500 DF HYGIENE - UNIVERSITY OF he Wisconsin Environmental Lab	WISCONSIN Association (WELA)

Mike	208.9	10524		
Papa P-E	208.957		5	
Papa Therm	o 208.959			TV = 750 p
* SLH *	249.677			
Golf	249.677	HIM	Boron 10.811	638 to 863
India	249.677	UER		
Bravo	249.678	629	Calf	
Delta	249.678	032	GOII	764 Quebec
Juliet	249.678	718	Lima	790 Miko
Lima	249.678	729.4	Delta	
Hotel	249.7	797	Drovo	842 SLH
Kilo	249.772	131	Dravo	850 Hotel
November	249.772	738	November	1770 Kilo
Quebec	249.772	743	Iuliet	
Alpha	249.773	740		2574 Papa 🖊

Ciubi	and a second	FIECS	IEC	k1	K2	Calo-in-fit?
189.042 {478}		1 1	Мо	0.001424	0.000000	No
08.959 (461)		11	AJ	0.000779	0.000000	No
1			Ca	0.000886	0.000000	No
			Cr	0.022993	0.000000	No
			Cu	0.022399	0.000000	No
			Fe	0.002208	0.000000	No
	0	1	Mg	0.000953	0.000000	No
			Mo	0.046550	0.000000	No
	3	1	Ni	0.023264	0.000000	No
			Tì	0.028057	0.000000	No
			V	0.025402	0.000000	INIO
	189.042 (478) 08.959 (461)	189.042 (478)	189.042 (478) <u>1</u> 08.959 (461) <u>11</u>	189.042 (478) 1 Mo 08.959 (461) 11 Al Ca Cr Cu Fe Mg Mo Ni Ti	189.042 (478) 1 Mo 0.001424 08.959 (461) 11 Al 0.000779 Ca 0.000886 Cr 0.022993 Cu 0.022399 Fe 0.002289 Fe 0.002208 Mg 0.002953 Mo 0.046550 Ni 0.023264 Ti 0.023057 Ti 0.023057	189.042 (478) 1 Mo 0.001424 0.000000 08.959 (461) 11 Al 0.000386 0.000000 Ca 0.000886 0.000000 Cr 0.022993 0.000000 Cu 0.022399 0.000000 Fe 0.002208 0.000000 Fe 0.002208 0.000000 Mg 0.002000 Ni 0.002000 Mo 0.046550 0.000000 Ti 0.023264 0.000000

P	o an	d ba	ackgro	ound co	rrec	tion 🛛 🖉
P-E	Out of	the b	ox defaul	ts for Pb = λ	220.3	53 and
2 ha	ckaro	ind co	orraction r	nointe: -22 a	$nd \pm 2i$	0 nm
						o pm.
All la	abs us	ed the	e default v	vavelength.		
	Papa Thermo	182.205				_
	Hotel	220.3	< 1.2	Charlie	37	Quebec
	Mike	220.3	00	0	077	
	Charlie	220.351	22	Uscar	37.7	India
	Bravo	220.353	26	Golf	38.9	Lima
	Alpha	220.353			00.0	<u>Liiiia</u>
	Delta	220.353	27.4	Papa	39	SLH
	Echo	220.353	20	Brovo	40 1	November
	Foxtrot	220.353	30	Dravu	40.1	november
	Golf	220.353	30	Hotel	40.4	Alnha
	India	220.353		110001	10.1	
	Juliet	220.353	30.9	Kilo	40.4	Echo
	Kilo	220.353	21	Fortrot	16	Milzo
	Lima	220.353	31	FUXILUL	40	WIIKE
	Oscar	220.353	33.53	Delta	49	Juliet /
_ \	Quebec	220.353	00100	2010	10	
	Papa P-E	220.354				W _
	Рара Р-Е	220.354	N STATE I ADODATOI		SITY OF WISCO	E

Real World Sample Scoring												V					
	200 1000 1000	A	B	C	D	E	F		H	Ι	J	K	and the second	M	N	0	P
As	ND	FP	ND	ND	ND	ND	ND	ND	FP	FP	FP	ND	ND	FP	ND	NA	FP
Ba	Ý	√	√	1	√	NA	NA	V	√	OUT	√	√	¥	ok	OUT	Ý	√
Cd	ND	ND	ND	ND	FP	FP	ND	ND	FP	FP	FP	ND	ND	FP	ND	ND	FP
Cr	V	√	ND	1	√	√	30%	V	OUT	√	√	OUT	V	√	√	30%	OUT
Cu	V	√	ND	OUT	√	√	ND	¥	√	1	√	30%	Ý	√	√	\checkmark	√
Fe	V	√	1	√	√	√	OUT	V	√	1	√	√	Ý	√	√	Ý	√
Mg	V	√	√	OUT	√	√	NA	√	√	1	√	√	Ý	√	1	Ý	√
Mn	¥	√	1	1	√	NA	OUT	V	1	1	√	√	V	1	1	Ý	√
Ni	30%	√	ND	30%	√	1	30%	V	30%	1	√	√	V	√	√	Ý	√
Se	ND	ND	FP	ND	ND	ND	FP	ND	FP	FP	FP	ND		ND	FP	NA	ND
Ag	ND	ND	ND	FP	NA	NA	ND	ND	FP	ND	ND	ND	ND	FP	ND	ND	FP
Zn	Ý	√	OUT	√	√	√	OUT	30%	√	30%	√	√	Ý	√	√	Ý	1
		OUT	Outl	ier res	ult [FP	False	posit	ive	30%	Resu	t outsi	de 30	% of r	nean		W E

R	eal	Wo	orld:	IEC	and	IS	imp	act	
		Acceptance Limits				IEC: 🗹	IEC: 🗵	IEC: 🗹	
		-30% Mean +30%			IS: 🗷	IS: 🗷	IS: ☑	IS: ☑	
	As	Not Present		69.6	TOO NEGATIVE	111	< 5.0		
	Ba	222	318	413	240	237	323	319.2	
	Cd	N	Not Present			< 1.0	6.5	< 1.0	
	Cr	76	109	141	65	58.7	87	79.6	
	Cu	62.5	89.3	116	44.4	60.9	60.6	82.2	
	Fe	9450	12600	15750	10150	10150	11770	11770	
	Mg	7725	10300	12875	7642	7642	8863	8863	
	Mn	1550	2220	2880	1667	1365	2240	1890	
	Ni	187	267	347	159	112	218	164	
	Se	N	ot Preser	nt	TOO NEGATIVE	74.3	TOO NEGATIVE	< 10	
	Ag	Ne	ot Presei	nt	< 2	< 10	4.8	< 2	
	Zn	257	367	477	197	212	260	277.2	WR
WISCONSIN DEPT. OF NATURAL RESOURCES	in	WISCON conjunction w	ISIN STATE LA ith the Wiscons	BORATORY O	F HYGIENE - U e Wisconsin En	NIVERSITY OI vironmental La	WISCONSIN b Association (V	WELA)	LA

