

Getting the Best Chlorine Residual Data

- Measurement of total residual chlorine (TRC) at levels low enough to meet wastewater discharge limits has been (historically) difficult at best.
- Methods approved for measurement of chlorine in wastewater are often technically demanding and time consuming.
- Commercial test kits are available to simplify these procedures. However, commercial test kits often gloss over the very important aspects of the testing, including calibration, spiking and other quality control (QC) processes.

Tips for Determining the Chlorine Demand and Dosing Rate

- Collect a sample of effluent prior to the chlorine contact chamber.
- Fill a series of beakers with sample and treat each with varying dosages of hypochlorite
- Mix the samples thoroughly and allow them to sit for the same length of time the effluent would be in the chlorine contact chamber.
- Keep the temperature of the solutions in the same range as the effluent
- After the desired contact time, test each solution for free and total residual chlorine, and pH.
- Use this information to determine the dosage that satisfies the demand and provides the desired residual chlorine level.
- Use the free & total residual chlorine levels and pH to assess the disinfection effectiveness
- Work with your engineer to adjust the chlorine and dechlorination feed rates based on the dosing tests.

Why is DE- The Chlorine of	chlorination (So Impo	ortai	1†?
0.2	0.1	0.037	0.015	0.012
Fish kill	Permit Limit	Permit	LOD	LOD
< Fish	stressed>	Goal	(ISE)	(DPD)
	SECTION 1. PRODUCT IDENTIFICAT			
CHEMICAL NAME:	Chlorine	FORMULA: Cl ₂		
	SECTION 12. ECOLOGICAL INFORM	ATION		
AQUATIC TOXICITY: The fo LC ₅₀ Bluegill: 0.44 mg/l (96 h LC ₅₀ Yellow perch: 0.88 mg/l LC ₅₀ Channel catfish (fingerlin LC ₅₀ Daphnia magna: 0.017 r	llowing aquatic toxicity data are available iours) (1 hour) g): 0.07 mg/l (96 hours) ng/l (46 hours)	for Chlorine:		
To prevent stress, cor	ncentrations as low as 0.00	03 ppm may be	e require	d. ure

Chlorination _	Balancing	De-Chlorination
	Act	
INSUFFICIENT Dangerous pathogens disc Beaches unsafe permit violation	harged Cl ₂ CHLORINATIO	EXCESSIVE Cl ₂ toxic to aquatic life More toxics (THMs) produced Requires more dechlorination DN higher costs permit violation
INSUFFICIENT Cl ₂ toxic to aquatic life fish kills More toxics (THMs) produ permit violation	ced DE-CHLORIN/	EXCESSIVE SO ₃ scavenges O ₂ , drops DO potential fish kills higher costs potential enforcement ATION

What Other States Are Doing

Wisconsin:

- current permit limits set at 0.037 mg/L total residual chlorine (TRC)
- Accept 0.100 mg/L as an LOD

North Carolina:

- current chlorine standards are 0.017 mg/L total residual chlorine (TRC) for trout waters
- 0.017 mg/L TRC as an action level for non-trout waters.

Pennsylvania:

• current permit limits set at 0.011 mg/L total residual chlorine (TRC)

Ion Selective Electrode (ISE) Theory

- Based on iodometric measurement of chlorine
- Iodide (I⁻)and acid (H⁺) are added to the sample
- lodide reacts with chlorine to form iodine
- The iodine concentration is equal to the chlorine concentration
- The ISE contains a platinum sensing element and iodine sensing reference element
- The platinum element develops a potential that depends on the relative amount of iodine and iodide in solution.
- The iodine-sensing element develops a potential that depends on the iodide level in solution
- The meter measures the difference between these potentials (the iodine concentration)
- Iodine concentration = total residual chlorine concentration
- Differences from ammonia:
 - A. Slope is positive
 - B. mV per decade of concentration is 29.0, not 58

Suggested Way to Prepare Working Chlorine Standards

Chlorine Conc. (mg/L)	mL of 100 ppm iodate solution diluted to 100 mL
0.10	0.100
0.20*	0.200
0.50	0.500
0.70	0.700
1.00	1.000
2.0*	2.0

*Used for slope check

14. Repeat steps 3-13 to measure the remaining standards.

Slope Check and Other Considerations

- Check the slope by finding the difference between the 2.0 and 0.20 mg/L (one decade) chlorine standards. (e.g., 610.5 – 581.9 = 28.6 mV).
- The slope must be in the 26-30 mV/decade range
- The manufacturer states the ISE is only linear from 0.2 to 20 mg/L. Consequently, the 26-30 mV/decade specification is only valid above 0.2 mg/L.
- The observed mV readings increase with increasing concentrations of chlorine.

NOTE: The opposite is true for most other ISE applications (such as ammonia).

Measuring Chlorine in Samples using the ISE

1. Add a magnetic stir bar to a 150 mL beaker

3. Insert a clean disposable tip a 1000 μL pipettor.

2. Pipet 100 mL of sample into a clean 150 mL beaker.

4. Add 1 mL of iodide reagent to the beaker.

	T	otal Res	sidua	I Chlorir	ne by ISE			200 100	
Sample Location Raw Final <i>If composite:</i> Sample Date/Time Stock Standard m Working Std m	(specific) Flow p :: ng/L g/L	S proportional Collected Lot # Lot # Lot # Lot #	Time Time I by: Expir Expir	pe (Grab, co	mposite) 	y = 28.013x + R ² = 0.9	602.21 615 998 605 590 590 590 590 500 500 500 500 500 500 500 500 500	5	B
Correlation (r)= Slope= Intercept= LOD=	0.99988 28.01 602.21 0.015	≥ (0.995) 26 to 30 mV	ok ok			-1.5 -1 log of	-0.5 0 0.1	₅ A	E NI
		Influe Efflue Influe Efflue	nt Repli nt Repli nt Spike nt Spike	cate icate e	Contro 18.1 0.04 75% 80%	I Limits I % RPD A Range to to	 enter "%RPD" or "Range" 125% 120% 	M P	C
Sample	Sample mLs	Sample + DI mLs	DF	mV	Cl ₂ mg/L	True Value Notes	Quality Control		Н
Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 Standard 5	50 50 50 50 50 50	50 50 50 50 50 50	1 1 1 1 1	574.4 582.4 593.6 597.8 602.5 610.6	0.10 0.20 0.49 0.70 1.02	0.1 0.20 0.5 0.70 1.0 2.0	101.7% 98.2% 98.6% 99.5% 102.4%		S
Blank Known Standard	50	50 50	1	532.3	0.003	Criteria: <lod 0.037 Criteria: 90-110%</lod 	93.1 % pass 108.6% pass		H
Effluent 4/1/02 Effluent	50	50	1	567.5	0.058		Range 0.009		Ł
Replicate Effluent Spike	50 50	50 50	1	569.2 574.3	0.066		pass 116.9% pass		Ε
	50 50.0185 100 0.0185	mLs mLs mg/L mLs	Sample Total ve Concer Volume	Volume us olume samp ntration of s of spike so	ed ble + spike pike solution blution added				T

Preparing Calibration Standards	Stock sol. (1000ppm) Working sol. (1 ppm)	Prepare working standard by diluting 1 mL of 1000 ppm to 1L with DI water. Must use pipettor & 1L volumetric flask.
Working Solution	Final Volume	Final Concentration
3.00 ml	100 ml	0.03 ppm DNR LOD goal
5.00 ml	100 ml	0.05 ppm 0.037ppm
10.00 ml	100 ml	0.10 ppm DNR req'd LOD 0.100 ppm
15.00 ml	100 ml	0.15 ppm
20.00 ml	100 ml	0.20 ppm
25.00 ml	100 ml	0.25 ppm

Preparing Calibration Standards with a Variable Volume Pipettor

Working Solution 10 ppm	Final Volume	Final Concentration
0.30 ml*	100 ml	0.03 ppm DNR LOD goal
0.5 ml*	100 ml	0.05 ppm 0.037ppm
1.0 ml*	100 ml	0.10 ppm DNR req'd LOD 0.100 ppm
1.5 ml**	100 ml	0.15 ppm
2.0 ml **	100 ml	0.20 ppm
2.5 ml **	100 ml	0.25 ppm
* Use a 0.1-1 ** Use a 0.5-5	mL variable volu 5 or 1-10 mL varia	me pipettor able volume pipettor

Approaches for Color Development

- Commercially available DPD ampules
- Dry powder "pillows"
- Commercially available DPD Solutions (per Standard Methods)

Sample Locati Raw Final <i>If composite</i> Sample Date/T Stock Standard	on (specific)	proportional Co	Time	e (grab, composit	e) 	$\begin{array}{c c} 0.25 \\ y = 1.51 \\ 0.15 \\ 0.16 \\ 0.05 \\ \end{array}$	56x + 0.0136 = 0.9953		A
Working Standa Spike Standard Influent Replicate Affluent Replicate Influent Spike	ard mg/L mg/L Contro 8.24 84.6%	bl Limits %RPD %RPD to to	# + 123.4%	Expires	Correlation (r)= Slope= Intercept= LOD=	0.000 0.020 0.000 0.020 0.99584 1.57375 0.00890 0.015	0.040 0.060 0.080 Chlorine ppm 'r' acceptable acceptable	0.100 0.120 0 <u>Criteria</u> ≥ 0.995 < LOD	P
Sample	Sample mLs	Sample + DI mLs	DF	Absorbance	Instrument Cl ₂ mg/L	Cl, mg/L	True Value Notes	Quality Control	Ļ
alibration Blank Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 Standard 6 Standard 7	50 50 50 50 50 50	50 50 50 50 50 50	1 1 1 1 1	0.000 0.013 0.022 0.034 0.061 0.122	0.01 0.03 0.04 0.06 0.10 0.20	RF= 0.433 RF= 0.440 RF= 0.486 RF= 0.610 RF= 0.610	0.0 0.03 0.05 0.07 0.10 0.20	97.9% 87.0% 89.2% 104.9% 100.5%	
Aethod Blank	50	50	1	0.003	0.014	0.014	Criteria: <lod< td=""><td>pass</td><td></td></lod<>	pass	
(nown Standard	50	50	1	0.06	0.103	0.103	0.1 Criteria: 90-110%	103.3% pass	
Effluent x/x/04	50	50	1	0.047	0.083	0.083		%RPD	
Effluent Replicate	50	50	1	0.051	0.089	0.089		7.318 pass	
	50	50	1	0.109	0.180	0 180	Same to See Series	121.0%	

Don't forge	t the	e p	ape	erv	vorł	< İ	
		Sample	Sample + DI				
	Sample	mLs	mLs	DF	Absorbance	Cl ₂ mg/L	Cl ₂ mg/L
	Calibration Blank	50	50	1	0.000	0.01	1
	Standard 1	50	50	1	0.013	0.03	RF= 0.433
	Standard 2	50	50	1	0.022	0.04	RF= 0.440
	Standard 3	50	50	1	0.034	0.06	RF= 0.486
	Standard 4	50	50	1	0.061	0.10	RF= 0.610
	Standard 5 Standard 6 Standard 7	50	50	1	0.122	0.20	RF= 0.610 RF=
	Method Blank	50	50	1	0.003	0.014	0.014
	Known Standard	50	50	1	0.06	0.103	0.103
	Effluent x/x/04	50	50	1	0.047	0.083	0.083
	Effluent Replicate	50	50	1	0.051	0.089	0.089
	Effluent Spike	50	50	1	0.109	0.180	0.180
		10 10.031 26.1 0.031	mLs mLs mg/L mLs	Sample Total vo Concent Volume	Volume used i ume sample + ration of spike of spike solutio	n the Spike spike solution on added	ed sample 0.08

LOD data by approach										
Spikes	Spikes level: 0.090 mg/L 0.090 mg/L 0.090 mg/L									
	GeneSys10HACH DR890HACH DR250Abs.CURVEAbs.CURVEAbs.CURVEAbs.CURVE									
rep #1	0.023 0.089	0.041 0.091	0.053 0.092							
rep #2	0.021 0.081	0.037 0.084	0.048 0.084							
rep #3	0.021 0.081	0.039 0.087	0.047 0.083							
rep #4	0.023 0.089	0.040 0.089	0.049 0.086							
rep #5	0.022 0.085	0.036 0.082	0.047 0.083							
rep #6	0.021 0.081	0.038 0.086	0.054 0.094							
rep #7	0.021 0.081	0.041 0.091	0.049 0.086							
mean stdev LOD=	0.084 0.00370 0.0116	0.087 0.00365 0.0115	0.0868 0.0044 0.0133							

Met	•h	od (5	tartun Costs		
11101	11	uu .	ر	rui rup cosis		
Cost Cor	mpa	arison for	E	quipment Needed to Test for		
Total R	esic	Jual Chlo	orir	ne in Water and Wastewater		
	1					
	App	proximate			Appro	ximate
ISE	Cos	st		DPD	Cost	
ISE meter	\$	1,300.00	_	Spectrophotometer	\$	2,200.00
Orion Chlorine Electrode	\$	450.00		Holder for 1" cells	\$	100.00
Optional printer	\$	600.00		Cells, 2.5 cm (1"), pk of 8	\$	18.00
12-150 mL Glass beakers	\$	30.00		DPD Power Pillows, 100 pk	\$	17.00
6-Magnetic stir bars	\$	18.00		0.1-1.0 mL pipettor	\$	225.00
Magnetic stirrer	\$	130.00		1-10 mL pipettor	\$	225.00
0.1-1.0 mL pipettor	\$	225.00		6-100 mL volumetric flasks	\$	110.00
0.5-5 mL or 1-10 mL pipettor	\$	225.00		KMN04 chlorine standard, 1000 ppm	\$	12.00
Chlorine standard 100 ppm (iodate)	\$	15.00				
Acid reagent	\$	15.00				
lodide reagent	\$	15.00				
2-Glass bottles for collecting samples	\$	5.00				
Total estimated cost	\$	3,028.00		Total estimated cost	\$	2,907.00
Total cost without ISE meter/printer	\$	1,128.00		Total cost without spectrophotometer	\$	707.00

Conclusions

- ⊕ An LOD of <u>less than</u> 0.037ppm IS achievable
- ⊕ 0.100 ppm is certainly a realistic LOQ.
- Quality low level calibrations CAN be easily developed.
- The use of electronic or mechanical pipettors is required to obtain quality data at these trace levels.
- # Either technique will get the results you need
- # Effective chlorination WILL kill E. coli
- Use tools to fine-tune dosing rate and disinfection process...allowing more efficient disinfection/dechlorination & reducing costs

More Conclusions

DPD

- The best DPD data will be obtained using a technique providing a path-length of ≥ 2 cm.
- Both hand-held and table-top spectrophotometers are available that will meet your needs.
- Internal calibrations not sufficiently accurate.
- Vacu-vials (< 2 cm path) may not be suitable at low levels required for compliance monitoring.

ISE

- Use the more stable potassium iodate standard for calibration
- Avoid calibrating below 0.1 ppm due to non-linearity
- Check the slope from 0.2 to 2.0 (start above 0.1)
- 30-45 minutes for 5-pt calibration
- ISE method is extremely temperature-sensitive

