

Defining "depletion"

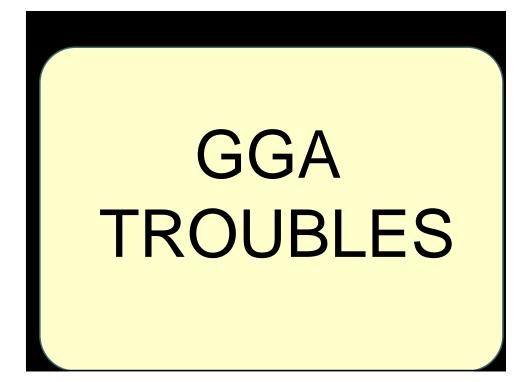
Dear Rock & Gonzo I have a question for you. With the following results from a **cBOD** run, how would the result be written down? Our samples make the requirement of at least 2 ppm, but once we subtract the seed correction factor it is under the 2ppm criterion. Thanks!

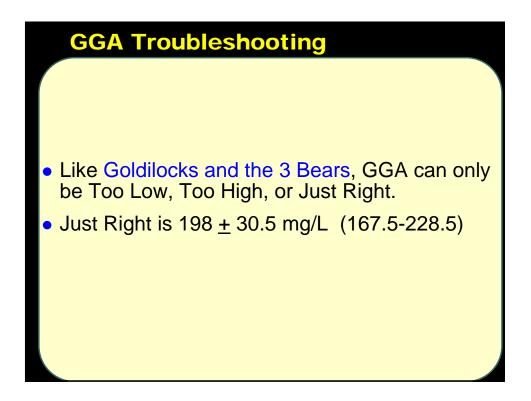
Scooter

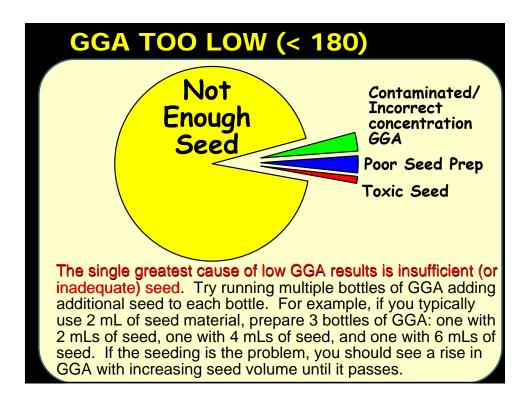
Sample Size: 275 ml (*Dilution factor: 1.09*) Initial DO: 8.65 Final DO: 6.59 Depletion: 2.06 Seed Correction factor: 0.62 Depletion After seed correction: 1.44 Result: 1.57 mg/L Do I record the result as 1.57 mg/L? ...or do I record as <2? ...or do I need more sample? Seed?

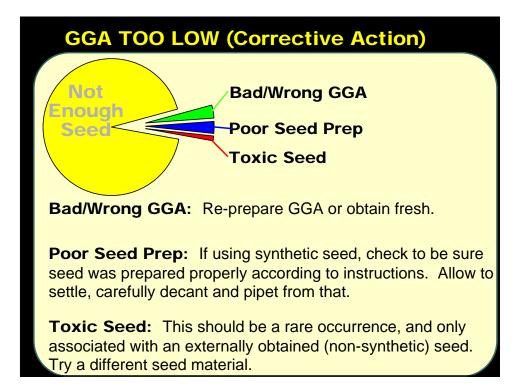
Defining Depletion

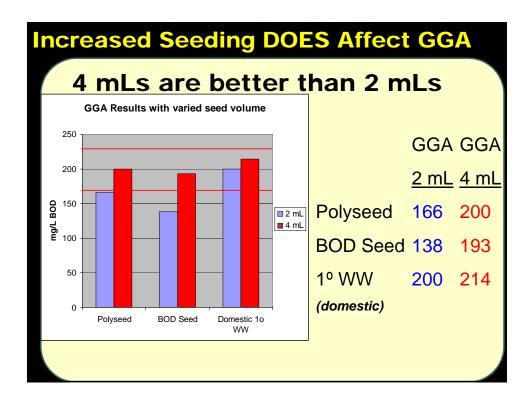
Reporting has to be dealt with separately. We first have to decide whether we have a reportable value; and then –if we do– how do we deal with it? The bottom line here is: "Was there adequate depletion?"

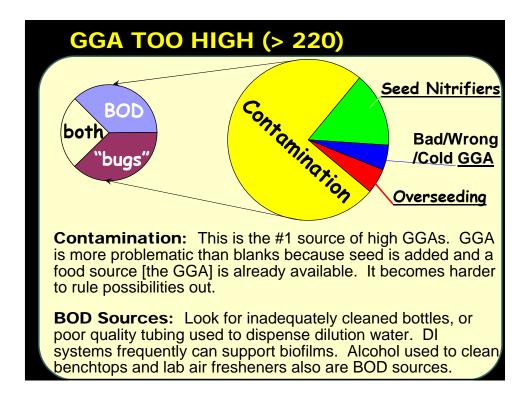

1. Is the depletion adequate?


Yes...but due to the supplement from the seed. The larger issue is...how much of the depletion was due to the seed (*or, actually...how much of the depletion was due to sample*). Here, the analyst has it: It's 1.57 ppm... which is below the LOD of 2.2.

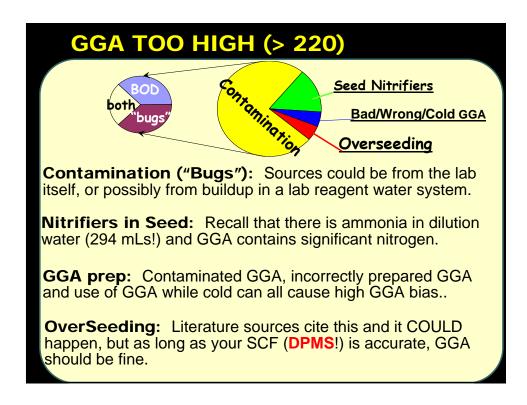

...as long as the combined deletion of sample + seed is at least 2 mg/L $\,$


2. What to report? So...the analyst can report < 2.2. The bigger issue is...the lab should use a full 300 mL bottle?


									vant II "<"	٠
C C		A Sample		В	c	D D Depletion	Е	F	BOD	
Sample	BotL#	mLs	mLs	DO_I	DO_F	B-C	SCF	300/A	F x (D-E)	REPORT
Dil'n Blank	Х	300	0	8.5	8.4	0.1				
Dil'n Blank	U	300	0	8.5	8.4	0.1				
	Α		5	8.5	6.2	2.3	0.46			
Seed Control	В		10	8.5	4.4	4.1	0.41			
	С		15	8.5	1.9	6.6	0.44			
	L	6	2	8.5	3.5	5	0.87	50	206.3	
GGA	Т	6	2	8.5	3.5	5	0.87	50	206.3	204.7
	Z	6	2	8.5	3.6	4.9	0.87	50	201.3	
The Pristine	VV	200	0	8.5	8.3	0.2	0	1.5	0.3	
Sample	F	250	0	8.4	8.2	0.2	0	1.2	0.2	
	AN	300	0	8.4	8.2	0.2	0	1	0.2	
	VV	250	2	8.4	7.5	0.9	0.87	1.2	0.0	UNDER
	VV	250	4		6.6	1.8	1.75	1.2	0.1	UNDER
	VV	250	6	.	5.7	2.7	2.62	1.2	0.1	
	VV	250	8		4.8	3.6	3.49	1.2	0.1	
The Pristine	VV	250	10		3.9	4.5	4.37	1.2	0.2	< 2.4
Sample II	VV	250	12	8.4	3.1	5.3	5.24	1.2	0.1	
	VV	250	14	8.4	2.2	6.2	6.11	1.2	0.1	
	VV	250	16	÷	1.3	7.1	6.99	1.2	0.1	01/55
	VV	250	18	8.4	0.5		7.86	1.2	0.0	OVER
	VV	250	₩20	8.4	0	8.4	8.73	1.2	-0.4	OVER

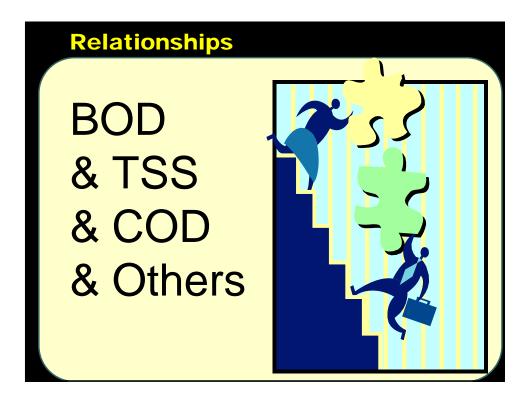

GGA & SEEDING – New Concept: DPMS

DPMS: mg/L DO Depletion Per mL of Seed


Many lab folks jump to the seed correction factor (SCF), which is the <u>average</u> DPMS. As with everything else, averages can be misleading. Look at the data that goes into the SCF!

Depletion per mL of seed: Monitor the depletion per mL of seed. Add enough seed to GGA which will result in a depletion of <u>about</u> 0.6 to 1.0 mg/L.

<u>Consistency</u> of seed controls: Most likely cause is drawing up settled seed. Consistency is critical. If you have 3 seed controls having depletions per mL of 0.2,0.4, and 0.6, two mL of seed will result in a depletion of between 0.4 and 1.2 mg/L. With a dilution factor of 50 for GGA, that's a range of 20-60 in your GGA. That could kill you.



SEEDING – A REVIEW

Seeding Review 1									
		Α	В	С	D	E	F		
		Seed			Depletion		DF	BOD	
Sample	BotL#		DO_I		B-C	DPMS	300/A	F x (D-E)	SCF
Exampl	<u>e 1:</u>	Gc	od,	Co	nsiste	nt S	eed		
	А	5	8.5	6.2	2.3	0.46	60	138	
Seed Control	В	10	8.5	4.3	4.2	0.42	30	126	0.44
	С	15	8.5	1.9	6.6	0.44	20	132	
A good q (BOD					Consiste		t 0.35-	.0.5	

See	din	g F	lev	iev	v 2				
		A	В	С	D	E	F		
		Seed			Depletion		DF	BOD	
Sample	BotL#	mLs	DO_I	DO_F	B-C	DPMS	300/A	Fx(D-E)	SCF
Exampl	e 3:	We							
	A	5	8.5	7.9	0.6	0.12	60	36	
Seed Control	B	10	8.5	7.1	1.4	0.14	30	42	0.14
	С	15	8.5	6.2	2.3	0.15	20	46	
	eed v	volur	ne is	need		ass G		Generally	:

Seeding Review 3									
		A Seed	В	С	D	E	F DF	BOD	
Sample	BotL#		DO_I	DO_F	Depletion B-C	DPMS	300/A	BOD F x (D-E)	SCF
Exampl	e 5:	Se	ed 7	Гохі	city				
	А	5	8.5	6.1	2.4	0.48	60	144	
Seed Control	В	10	8.5	5.7	2.8	0.28	30	84	0.33
	С	15	8.5	5.2	3.3	0.22	20	66	
	ent or	' sur	facta	nt in a	0	bottle	could	cause this	

BOD & TSS

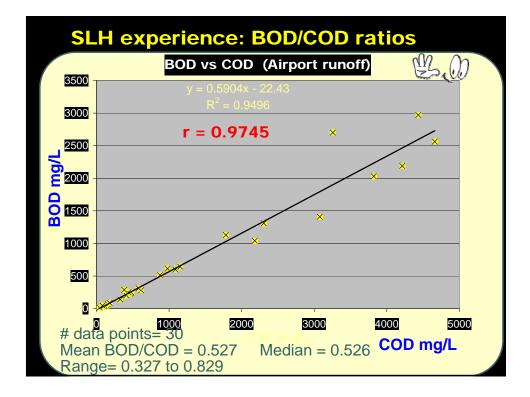
In a perfect world, TSS roughly approximates BOD (**BOD:TSS ratio = 0.8 to 1.2**). In fact, some small labs analyze TSS and after a 1 hr dry time, they use the TSS value to determine what are the best dilutions to use for the BOD assay.

BOD:TSS Ratio	Possible Causes	
0.25 to 0.67	Algae	
	Loss of old sludge	
0.8 to 1.2	Typical effluent	
> 1.2	Soluble BOD	
	Nitrification	
	Poor treatment	

Other ratios

Other ratios are often invaluable in performing detective work for a particular situation or facility.

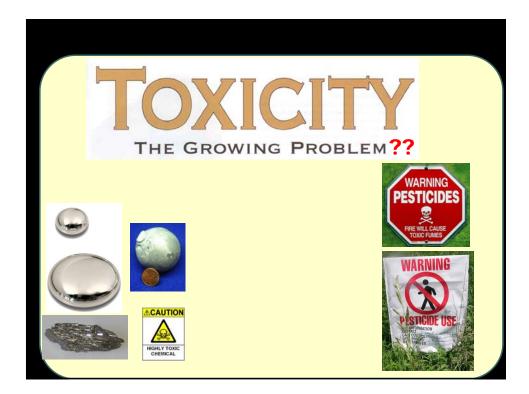
BOD:COD ratios: Think of it as "available" carbon (BOD) vs. "total" carbon. COD is always greater than BOD. Without sufficient data and a fairly constant waste stream, COD provides a rapid estimate of BOD.


BOD:cBOD ratios: This is the most significant tool in detecting nitrification—but understand that cBOD will always be less than BOD. The extent to which it is less and other factors indicate nitrification.

BOD	COD rat	ios var	y betw	een wastes	5
<u>Charac</u>	teristics	of som	ne grab	wastewate	r samples
	Oakfield	Green Lake	Ashland	Campbellsport	Green Bay
BOD mg/L	93	121	190	205	157
COD mg/L	388	300	462	450	427
BOD/COD	0.24	0.40	0.41	0.46	0.37
	Source: http://	www.dor.state	wi us/oro/wate	r/wm/ww/biophos/3bpr.h	tm

Other	Industry		ratios

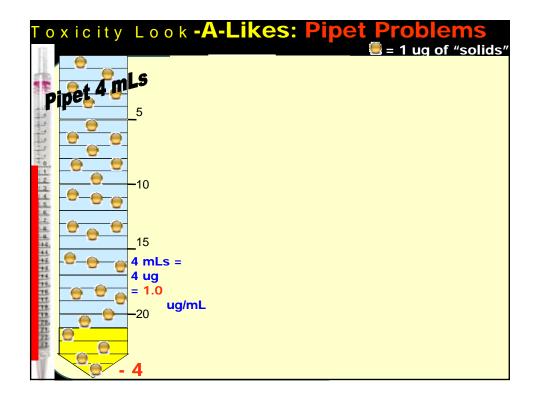
Typical Values of BOD5 and COD for Different Food Plant Wastewater.

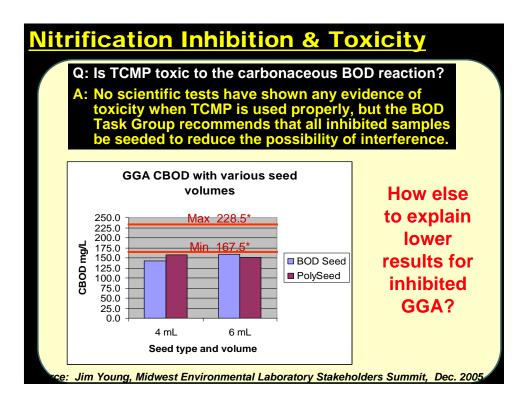

Type of Processor	BOD ₅ (mg/l)	COD (mg/l)	BOD ₅ /COD								
Bakery products	3,200	7,000	0.46								
Dairy processing	2,700	4,700	0.57								
Jams and jellies	2,400	4,000	0.60								
Meat packing	1,433	2,746	0.52								
Meat specialties	530	900	0.59								
Poultry processor	1,306	1,581	0.83								
and Liquid Waste Loa	d, K-State Research	and Extension	Source: Dairy Processing Methods to Reduce Water Use and Liquid Waste Load, K-State Research and Extension March 1997. http://www.oznet.ksu.edu/library/AGENG2/mf2071.pdf								

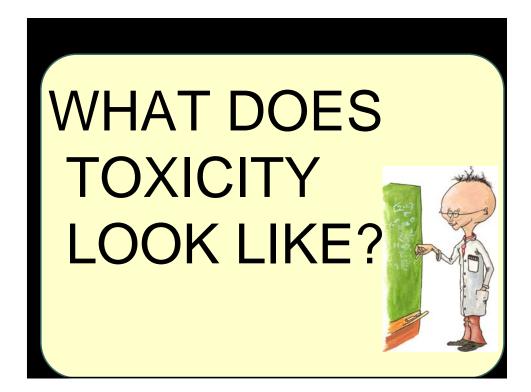
BOD/COD/TOC ratios in PT sam	ples
-------------------------------------	------

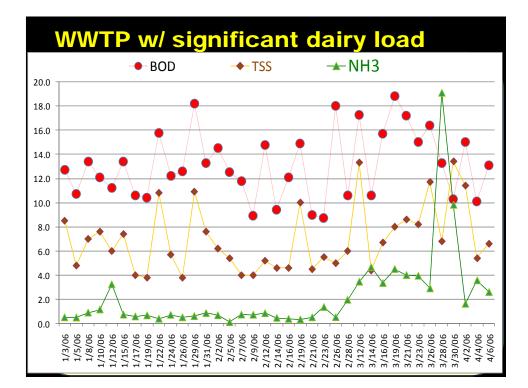
For a given "waste", analytical ratios can be incredibly consistent. Look at the consistency in PT samples.

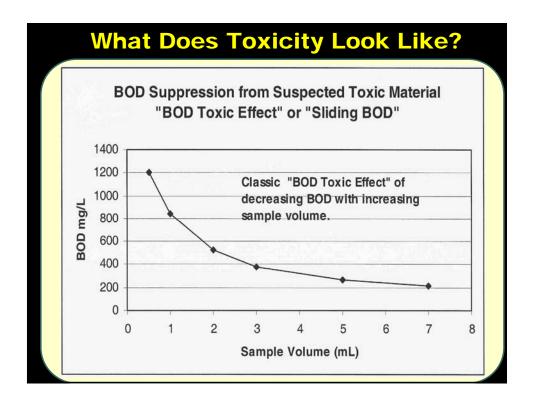
					Ratio	Ratio	Ratio	Ratio	
					BOD	BOD	BOD	<u>COD</u>	
	BOD	<u>cBOD</u>	COD	<u>TOC</u>	cBOD	COD	TOC	TOC	
Wibby WP0110	28	24.2	44.1	17	1.157	0.635	1.697	2.673	
Wibby WP0210	124	107	197	74	1.159	0.629	1.682	2.673	
NSI WP-158	107	91.9	173		1.164	0.618			
Absolute WP0041	139	120	231	92	1.158	0.602	1.519	2.525	
Absolute QTA	146	126	243	96	1.159	0.601	1.522	2.534	
ERA WP-180	75.3	64.8	122	48	1.162	0.617	1.562	2.531	
ERA WP-181	29.6	25.6	47.7	19	1.156	0.621	1.574	2.537	
ERA WP-182	58.1	50	93.8	37	1.162	0.619	1.566	2.528	
ERA WP-183	98	84.4	158	63	1.161	0.620	1.568	2.528	
ERA WP-185	41.9	36.1	67.5	27	1.161	0.621	1.569	2.528	
	mean 1.160 0.618 1.585 2.562								
Why is the cBO	D/BOD) ratio	2	SD	0.003	0.0105	0.0631	0.0630	
so eerily consis	stent?	~	/ %	RSD	0.22%	1.70%	3.98%	2.46%	

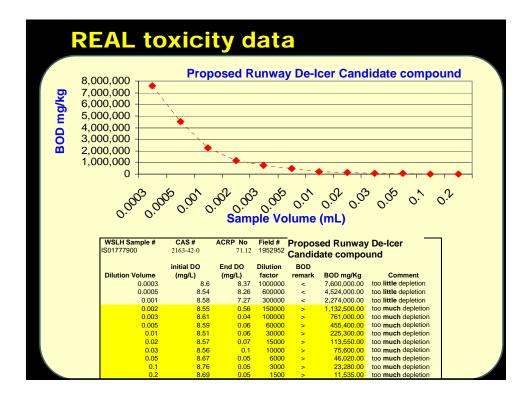

What is NOT sliding BOD

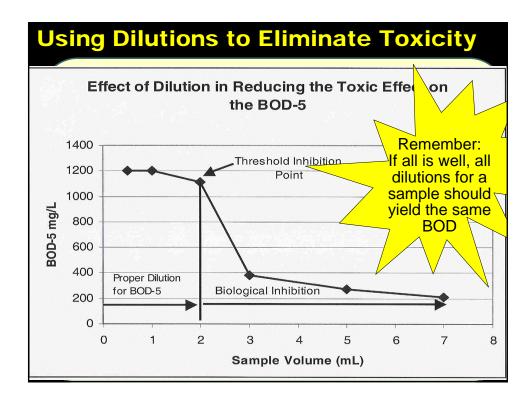

300 mLs → 2 mg/L BOD 200 mLs → 3 mg/L BOD 100 mLs → 4 mg/L BOD

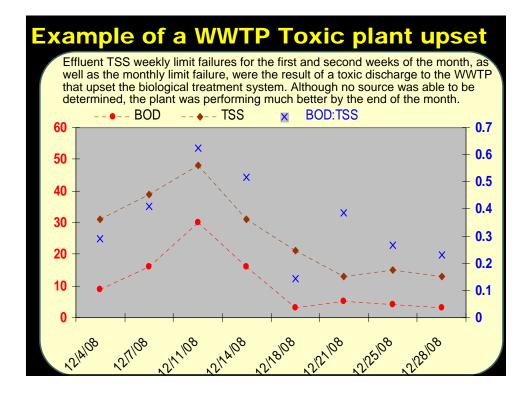

does NOT indicate sliding BOD


SM now says, "Identify samples in test reports when serial dilutions show more than 30% between high and low values."









Deal	Dealing with Toxicity Part 1										
					1						
Sample mLs	Initial Dilution	DO _l	DO _F	DO Depletion	BOD	Actual Sample mLs					
50	1	8.49	0.10	> 8.39	Final DO <1.0 Too much depletion	50					
100	1	8.40	2.40	6.00	18	100					
200	1	8.31	5.19	3.12	5	200					
			Avera	age=	11.3						
other with the world,	Average=11.3Here we have is two dilutionsone with a BOD of 5 and the other with a BOD of 18. While this isn't the best precision in the world, many operators might be inclined to stop here and report the average of the two dilutions (11)										

Dealing with Toxicity Part 2

Ultimately, however, now is the time to at least evaluate the other data we have and see what it tells us. If we look at the dilution that over-depleted (see below) we can see that --if calculated assuming a final DO of 0.1 mg/L was acceptable--the result would be at least 50 mg/L. Now, the THREE results-5, 18, and 50 mg/L-- look much more suspicious.

Sample	Initial			DO	1.00				
Volume	Dilution	DOI	DO_{F}	Depletion	BOD	volume			
50	1	8.49	0.10	> 8.39	9 > 50	50			
100	1	8.40	2.40	6.00) 18	100			
200	1	8.31	5.19	3.12	2 5	200			
Average= 11.3									
Best answer: report ">" plus the highest BOD determined (> 50) Furthermore, you MUST qualify these results as									
	ng "toxici		ST qua	any mese	e results a	5			

Deal	Dealing with Toxicity Part 3										
Sample	Initial		_	DO		Actual Sample					
Volume	Dilution	DO	DO_{F}	Depletion	BOD	volume					
5	5 10 8.50 7.12 1.38 0.5										
10	10	8.52	5.61	2.91	873	1					
15	10	8.51	4.30	4.21	842	1.5					
25	10	8.48	1.78	6.70	804	2.5					
5	1	8.51	0.00	> 8.51		5					
10	1	8.48	0.00	> 8.48		10					
30	1	8.47	0.00	> 8.47	80	30					
50	1	8.49	0.10	> 8.39	50	50					
100	1	8.40	2.40	6.00	18	100					
200 1 8.31 5.19 3.12 5 200											
discern th	e big pictu	ure. In t	his tabl	look at ALL e, BOD has y met deple	been cal	culated					

discern the big picture. In this table, BOD has been calculated for all dilutions, whether or not they met depletion criteria, in an effort to determine whether the plateau or Threshold Inhibition Point has been achieved.

Dealing with Toxicity Part 4									
Again, if we at least LOOK at dilutions that did not meet depletion criteria, it becomes clearer that we are "over the hump" and onto the coveted plateau zone of steady BOD									
Sample Volume	Initial Dilution	DO	DO _F	DO Depletion	BOD	Actual Sample			
		1		· ·		volume			
5	10	8.50	7.12	1.38	828	0.5			
10	10	8.52	5.61	2.91	873	1			
15	10	8.51	4.30	4.21	842	1.5			
25	10	8.48	1.78	6.70	804	2.5			
5	1	8.51	0.00	> 8.51	511	5			
10	1	8.48	0.00	> 8.48	254	10			
30	1	8.47	0.00	> 8.47	85	30			
50	1	8.49	0.10	> 8.39	50	50			
100	1	8.40	2.40	6.00	18	100			
200	1	8.31	5.19	3.12	5	200			

Got the Sliding BODs?

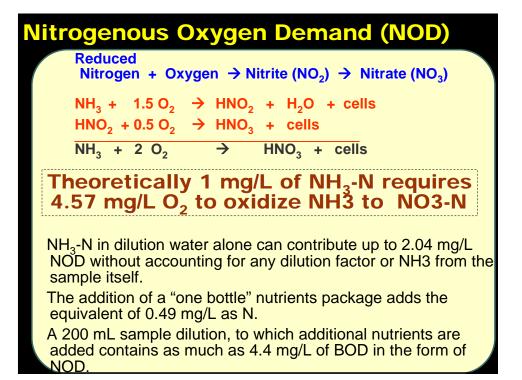
Dear Gonzo & Rock... My BODs look like the neighborhood kids on their Slip N' Slide and final clarifier effluent BOD is higher than my final effluent.

WTH???!!!

Day	1	Day	4	Day	6	Day	7
	BOD mg/L	Sample Volume <u>(mLs</u>)	BOD mg/L	Sample Volume <u>(mLs</u>)	BOD mg/L	Sample Volume <u>(mLs</u>)	
50	7.4	50	8.2	150	3.6	25	10.9
200	2.7	200	3.3	200	2.7	50	8.7
250	4.4	250	4.6	250	3.6	200	3.7
						250	4.9

He	p!	thin	k I ha	ave toxi	city!				
Let's take a closer look at one of the data sets that seem to best suggest toxicity.									
		Initial	Final D.O.			BOD ₅			
Sample	Volume	D.O. mg/l	mg/l	Difference mg/l	Multiplier	mg/l	Avg		
Blank	0	8.45	8.42	0.1	****	***	****		
Seed	20	8.47	5.21	3.46	*****	*****	*****		
Seed	25	8.47	4.83	4.51	****	*****	*****		
STD	6			\sim	50	\frown	*****		
Effluent	25	8.45	6.62	1.9392 = .91	12	10.9			
Effluent	50	8.45	6.08	2.3792 = 1.4	6.0	8.7			
Effluent	200	8.46	5.05	3.4192 = 2.4	1.5	3.7	(5.8)		
Effluent	250	8.47	3.48	4.9992 = 4.0	1.2	4.9			
Influent	6	8.4	5.74	2.66	50	133.0			
Influent	10	8.34	3.58	4.76	30	143.0	138		
Influent	15	8.29	1.46	6.93	20	137.0			
Final Clar Eff	50	8.49	5.9	2.5992 = 1.6	6.0	10.0			
Final Clar Ef	150	8.52	5.48	3.0492 = 2.1	2.0	4.2	7.1		

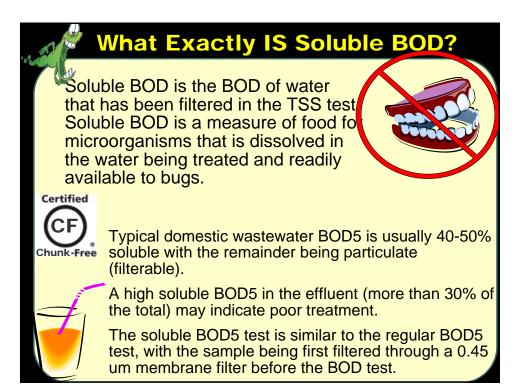
You nee	ou need helpbut you don't have toxicity												
	Volume	DO	DO _F		seea correction	Adjusted		BOD5	BOD				
Sample	(mLs)	mg/L	mg/L	Depletion	(6 mL)	depletion	DF	mg/L	Avg				
Blank	Blank 0 8.45 8.42 0.1 ***** ***** *****												
Seed	Seed 20 8.47 5.21 3.46 0.1630 DPMS ***** ***** 53												
Seed	25	8.47	4.83	4.51	0.1456	DPMS	*****	****	33				
Effluent	25	8.45	6.62	1.83	0.93	0.90	12	10.9					
Effluent	50	8.45	6.08	2.37	0.93	1.44	6.0	8.7	4.3				
Effluent	200	8.46	5.05	3.41	0.93	2.48	1.5	3.7	4.3				
Effluent	250	8.47	3.48	4.99	0.93	4.06	1.2	4.9					
Influent	6	8.4	5.74	2.66	0.00	2.66	50	133					
Influent	10	8.34	3.58	4.76	0.00	4.76	30	143	137				
Influent	15	8.29	1.46	6.83	0.00	6.83	20	137					
Final Clar Eff	50	8.49	5.9	2.59	0.93	1.66	6.0	10	4.2				
Final Clar Eff	Final Clar Eff 150 8.52 5.48 3.04 0.93 2.11 2.0 4.2												
	e DPMS = f seeded		· ·		seed	Depletion 6 X 0.15							


How did we do that!

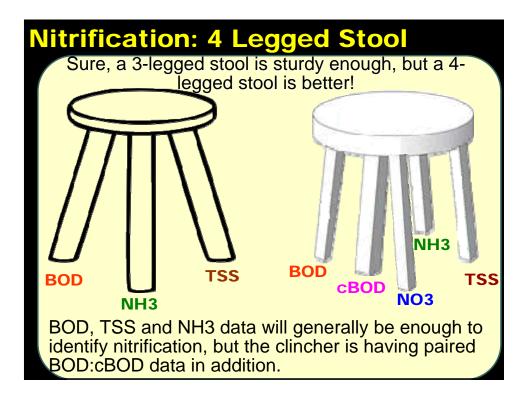
- 1. We fixed some errors in the spreadsheet/benchsheet calculations.
 - Slight error in seed correction
 - An 'oops' in calculated depletion
 - Errors in how dilutions are assessed
 - Errors are additive and all leads to a bad result.
- 2. We re-evaluated the seed in terms of "DPMS"
- 3. We looked at BOD of individual dilutions relative to the effective LOD for a particular dilution.
- 4. When all that is done, toxicity concerns disappear.

 Be wary of how you interpret data that hovers around the LOD. Remember: for a 25 mL dilution, the effective LOD for THAT ONE dilution is 2 mg/L X 12 = 24 mg/L (consider EACH dilution). Because you have a dilution of 250 mL, you can report down to 2.4 mg/L In the Jan 13 th data look at it this way: 25 mL 12x BOD =10.9but LOD is 24 50 mL 6.0x BOD= 8.7but LOD is 12 150 mL 1.5x BOD=3.7and LOD is 3.0so this is a detect 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	The Case of the Sliding BODsMaybe
 2.4 mg/L In the Jan 13 th data look at it this way: 25 mL 12x BOD =10.9but LOD is 24 50 mL 6.0x BOD= 8.7but LOD is 12 150 mL 1.5x BOD=3.7and LOD is 3.0so this is a detect 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	 Remember: for a 25 mL dilution, the effective LOD for THAT ONE dilution is 2 mg/L X 12 = 24 mg/L (consider EACH dilution).
 25 mL 12x BOD =10.9but LOD is 24 50 mL 6.0x BOD= 8.7but LOD is 12 150 mL 1.5x BOD=3.7and LOD is 3.0so this is a detect 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
 50 mL 6.0x BOD= 8.7but LOD is 12 150 mL 1.5x BOD=3.7and LOD is 3.0so this is a detect 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	•
 150 mL 1.5x BOD=3.7and LOD is 3.0so this is a detect 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
 250 mL 1.2x BOD=4.9and LOD is 2.4so this is a detect So report the average of (3.7,4.9) or 4.3with LOD of 2.4 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
 Nowneither of those values is above the LOQright? "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
 "LOQ" would be about 6-10 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
 So the results of the dilutions fall in that "gray" area where quantitation is much less accurate/reliable. Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results 	
because 2 of the 4 results are below the LOD The other 2 results	 So the results of the dilutions fall in that "gray" area where
are below the LOQ.	 Thereforeyou cant make any real/valid statement about toxicity because 2 of the 4 results are below the LOD The other 2 results are below the LOQ.
 For toxicity, we're usually dealing with samples well over the LOQ 	For toxicity, we're usually dealing with samples well over the LOQ

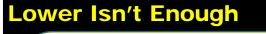
				ion LODs"	
Sample			Actual Sample		
Volume	<u>LOD</u>	BOD	volume	<u>DF</u>	
5	1200	828	0.5	600	
10	600	873	1	300	
15	400	842	1.5	200	
25	240	804	2.5	120	
5	120	511	5	60	
10	60	254	10	30	
30	20	85	30	10	
50	12	50	50	6	
100	6	18	100	3	
200	3	5	200	1.5	



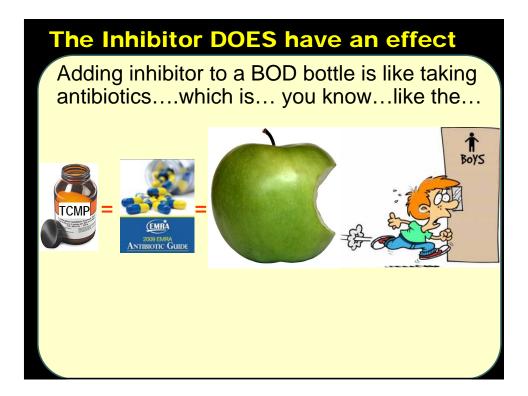
Dilution Water	IOD
BOD Phosphate buffer	445.3 mg/L as N
1.7 g NH4CI /L	N= 14 NH4CI= 53 NH4CI= 26.19% as N
1.7 g NH4Cl /L >	(26.19% = 0.4453 g/L) = 445.3 mg/L
"One shot" HACH Nutrients=	445.3 mg/L as N
	(same as BOD Phosphate buffer)
BOD Dilution water	0.445 mg/L as N
Equivalent O2 demand (x 4.5	(7) = (2.04 mg/L)
prep includes 1 mL of phosph	ate buffer diluted to 1 L)
445.3 mg/L X <u>1</u> 1000	mL = 0.445 mg/L mL


Nitr	oge	nou	s De	n	nand		of BOI) Nu	tri	ents	
							0mL bottl comes fro				
0.1	Sample Dilution NH3 from Nitrogenous BOD Volume Water Dil. H20 extra Total NH3 demand Dilution BOD (mLs) (mL) (mg/L) Nutrients mgL added (NOD) factor equivalent										
	300	0	(g , _) 0		0.490	┢	0.48983	2.239	1	2.2 mg/L	
	250	50	0.07422		0.490		0.56405	2.578	1.2	3.1 mg/L	
	200	100	0.14843		0.490		0.63826	2.917	1.5	4.4 mg/L	
	150	150	0.22265		0.000		0.22265	1.018	2	2.0 mg/L	
	100	200	0.29687	L	0.000		0.29687	1.357	3	4.1 mg/L	
	75	225	0.33398	L	0.000		0.33398	1.526	4	6.1 mg/L	
	60	240	0.35624		0.000		0.35624	1.628	5	8.1 mg/L	
	50	250	0.37108		0.000		0.37108	1.696	6	10.2 mg/L	
	25	275	0.40819		0.000		0.40819	1.865	12	22.4 mg/L	
	10	290	0.43046		0.000		0.43046	1.967	30	59.0 mg/L	
	3	297	0.44085		0.000		0.44085	2.015	100	201.5 mg/L	
NH3 from e	NH3 from extra nutrients (0.33 mL of Phophate buffer= 1 HACH "nutrient pillow" $\frac{445.3 \text{ mg}}{1000 \text{ mL}} \times 0.33 \text{ mL} = 0.146949 \text{ mg} \times \frac{1}{0.3 \text{ L}} = 0.49 \text{ mg}$										

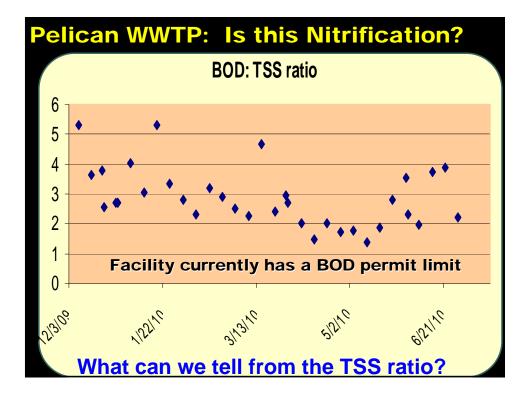
GGA Nitrogenous Demand Glucose 150 mg/L C6H12O6 MW = 180.16 g/mol Glutamic acid 150 mg/L C5H9NO4 MW = 147.13 g/mol N% = 9.5% of Glutamic acid Nmg = 14.3 mg/L (9.5% x 150 mg/L) 14.3 mg x 6 = 0.29 x 4.57 = 1.3 mg/L L 300 x 50 = 65.1 mg/L just from GGA GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57 = 3.2967706 x 50 = 164.839 164.839	GGA NO	D	
Glutamic acid 150 mg/L C5H9NO4 MW = 147.13 g/mol N = 9.5% of Glutamic acid N mg= 14.3 mg/L (9.5% x 150 mg/L) 14.3 mg x 6 = 0.29 x 4.57= 1.3 mg/L x 50= 65.1 mg/L just from GGA GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57= 3.2967706	GGA Nitrogen	ous Deman	nd
$N = 9.5\% \text{ of Glutamic acid} \\ N \text{ mg} = 14.3 \text{ mg/L} (9.5\% \times 150 \text{ mg/L}) \\ 14.3 \underline{\text{mg}} \times \underline{6} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ \underline{14.3 \underline{\text{mg}} \times \underline{6}} = 0.29 \times 4.57 = 1.3 \text{ mg/L} \\ 14.3 \underline{14.3 \underline{$	Glucose	150 mg/L	C6H12O6 MW = 180.16 g/mol
$N\% = 9.5\% of Glutamic acidN mg = 14.3 mg/L (9.5% x 150 mg/L)$ $14.3 \underline{mg} x 6 300 x 50 = 0.29 x 4.57 = 1.3 mg/L x 50 = 65.1 mg/L just from GGA$ $\boxed{GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L 3.2967706}$	Glutamic acid	150 mg/L	C5H9NO4 MW = 147.13 g/mol
N mg= 14.3 mg/L (9.5% x 150 mg/L) 14.3 mg x 6 = 0.29 x 4.57= 1.3 mg/L x 50= 65.1 mg/L just from GGA GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57= 3.2967706		Ū.	N MW =14
$\begin{array}{rcl} 14.3 & \underline{mg} & x & \underline{6} & = & 0.29 & x 4.57 = & 1.3 \text{mg/L} \\ & x 50 = & 65.1 \text{mg/L} & \text{just from GGA} \end{array}$	N%= 9.5%	of Gluta	amic acid
$\begin{array}{rcl} 14.3 & \underline{mg} & x & \underline{6} & = & 0.29 & x 4.57 = & 1.3 \text{mg/L} \\ & x 50 = & 65.1 \text{mg/L} & \text{just from GGA} \end{array}$	N mg= 14.3 mc	/L (9.5% x 1	150 mg/L)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,	č ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.3 mg x	6	= 0.29 x 4.57= 1.3 mg/L
GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57= 3.2967706	<u> </u>	300	5
GGA + Dilution water 294/300 x 0.4453 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57= 3.2967706		x	50 = 65.1 mg/L just from GGA
294/300 x 0.4453 0.43639 mg/L + 6/300*14.25 0.285 0.72139 x 4.57= 3.2967706		-	
+ $6/300*14.25$ 0.285 0.72139 x 4.57= 3.2967706			
0.72139 x 4.57= 3.2967706			5
x 50= 164.839	+ 0/300 14.23		
x 50= 164.839			
GGA+ dilution water NOD= 164.839			

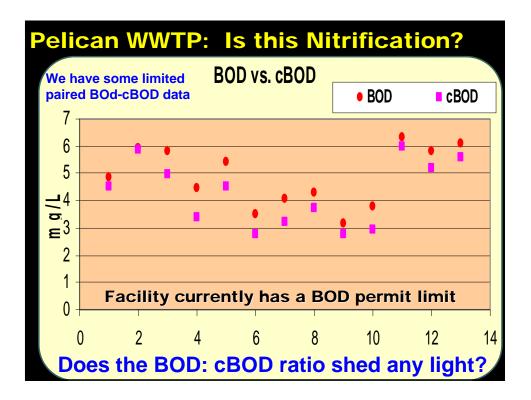

Nitrification Benchmarks

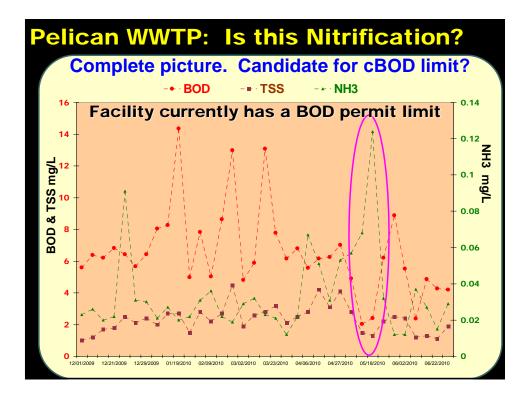
- If TSS is 50% or less of the BOD result (BOD: TSS ratio > 2:1) then <u>consider</u>...don't assume...the possibility of nitrification.
- Look at NH3 levels. If there's no measurable NH3, it can't be Nitrogenous Demand!
- NH3 x 4.57 = potential "BOD" due to nitrogenous oxygen demand (NOD).
- Nitrification occurs most often in warmer months. Nitrification doesn't occur below 10°C.
- Look at soluble BOD: run side-by-side an effluent BOD and the effluent BOD after passing effluent thru a TSS filter. Soluble BOD can cause high BOD:TSS ratios.
- Finally, run side-by-side cBOD/BOD determinations. cBOD should be considerably less than BOD (depends on available NH3, of course!). cBOD is about 80-90% of BOD if no nitrification is occurring.

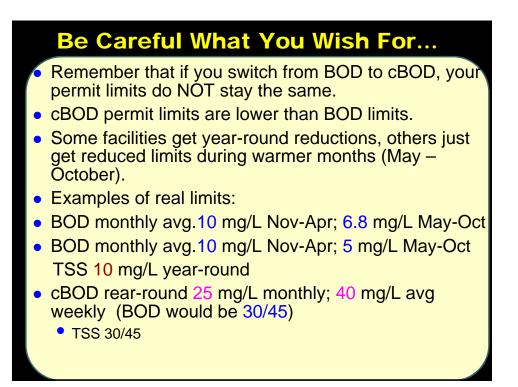

Nitrification & Other Parameters

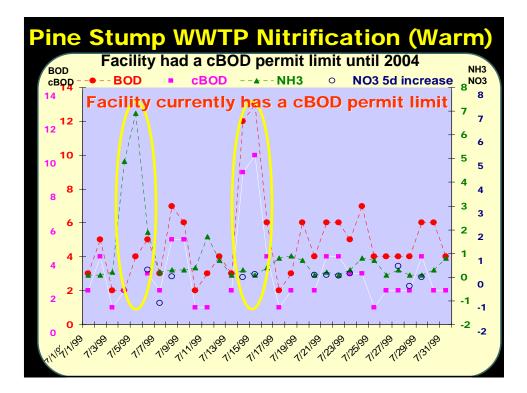
- Ammonia N (NH3-N) [Inf and eff] If substantial nitrification is taking place you would see a significant decrease.
- Nitrite(NO2) [Eff] -generally <0.5 mg/L, anything greater would be considered high.
- Nitrate (NO3) [Eff] Expect around zero if there is no nitrification taking place. If nitrification is occurring, expect nitrates anywhere from 3-15 mg/L or greater *depending on NH3 levels*.
- Alkalinity (measured as CaCO3) [Inf and Eff] -Expect a significant decrease if nitrification is taking place. Effluent concentrations <50 mg/L indicates potential for pH problems.

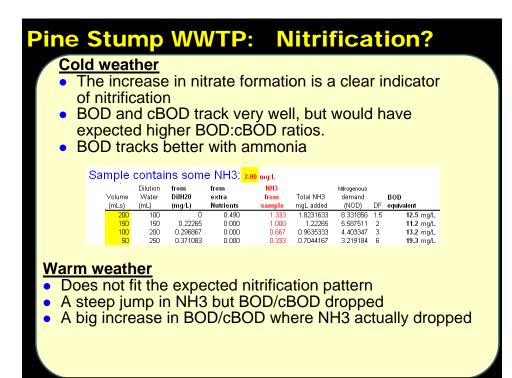


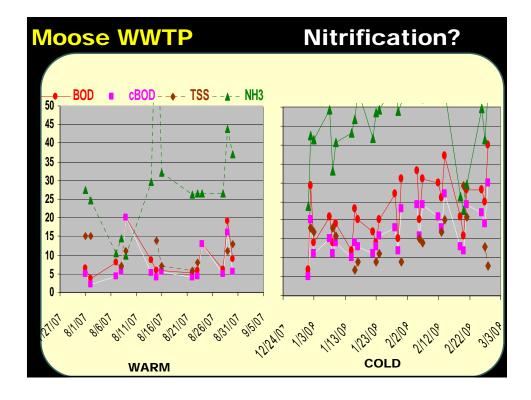

Just having a cBOD that is less than BOD is not enough to make a claim that nitrification is occurring

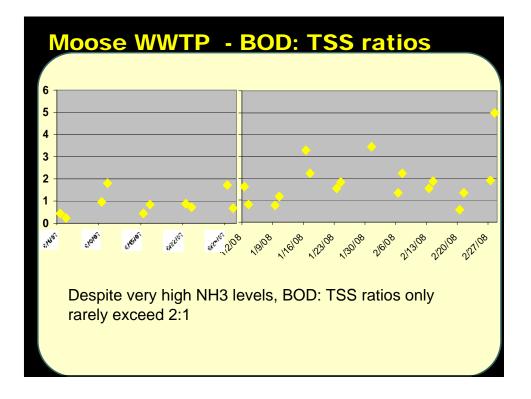

- Addition of cBOD nitrification inhibitor reagent will ALWAYS lower BOD.
- Hello!...McFly! It's a toxin!
- It's the EXTENT of the reduction (BOD:cBOD ratio) that tells the tale.










e	ica	n W	WTP	: Is	this	Nitri	ifica	ti	on?
Sar	mple c Sample Volume (mLs)	Contain Dilution Water (mL)	S SOME NH3 from DilH20	NH3 0.1 NH3 from extra Nutrients	03 mg/L NH3 from sample	Total NH3 mgL added	Nitrogenous demand (NOD)	DF	BOD equivalent
	300 150 100	0 150 200	(mg/L) 0 0.22265 0.296867	0.490 0.000 0.000	0.030 0.015 0.010	0.51983 0.23765 0.3068667	2.375623 1.086061 1.402381	1 2 3	2.4 mg/L 2.2 mg/L 4.2 mg/L
	tha • Th les	at onl e diff ss tha	y expla erence in the	NH3 le ains ab betwe Nitroge nple NI	out 2.4 en BC nous c	1 ppm o D and	of "BĊ cBOI	D D i	". S
		-		crease Ially dro		veral o	ccasio	ns	5

