Aquatic Plant		Eurasian watermilfoil (and hybrids)	
I. Current Status and Distribution		Myriophyllum spicatum	
		+ hybrids	
a. Range	Global/Continental	Wisconsin	
Native Range Eurasia ¹ , northern Africa ⁵	Figure 1: U.S and Canada Distribution Map ² Also reported from KS, ID, and NV ⁵	Figure 2: WI Distribution Map ^{3,4}	
Abundance/Range		- ignor - in - i	
Widespread:	Northeastern United States ^{2,5,6}	Southeastern Wisconsin	
Locally Abundant:	Meso-eutrophic systems ⁷	Eutrophic and mesotrophic waters	
Sparse:	Oligotrophic systems ⁷	Northern Wisconsin	
Range Expansion			
Date Introduced: Rate of Spread:	Chesapeake Bay, 1880s ⁸ Among fastest recorded rates; can grow to dominance in 2 years ^{9,10}	Southern Wisconsin, 1960s ³ Slowing in the south, rapid expansion in north; can displace natives in 2-3 years ¹¹	
Density			
Risk of Monoculture:	High	High in certain systems	
Facilitated By:	Intermediate trophic state index, total phosphorous ⁷ ; fine organic sediment ⁸	Undocumented	
b. Habitat	Lakes, ponds, canals, reservoirs, wetlands, wadeable streams, rivers, low energy systems ^{5,12}		
Tolerance	Chart of tolerances: Increasingly dark col range	lor indicates increasingly optimal	

Taxonomic Similarity		
Wisconsin Natives:	High; genus Myriophyllum	
Other US Exotics:	High; genus Myriophyllum	
Competition		
Natural Predators:	<i>Euhrychiopsis lecontei</i> (herbivorous weevil) 16	
Natural Pathogens:	Fungal pathogen ¹⁷ ; celluloytic microorganisms ¹⁸	
Competitive Strategy:	Rapid canopy; adaptive seasonality; broad environmental tolerance ⁸	
Known Interactions:	Many; can outcompete most natives when disturbance is present	
Reproduction		
Rate of Spread:	High; can spread from 400 ha to 26,800 ha in one season ⁸	
Adaptive Strategies:	Fragmentation, auto-fragmentation, stoloniferous	
Timeframe	Can establish and grow to dominance in as little as 2 years ¹⁹ ; established	
	population may rapidly decline after approximately 10-15 years ⁹	
c. Dispersal		
Intentional:	Aquarium trade, ornamental use, aquaculture ⁸	
Unintentional:	Wind, water, animals, humans (boats/trailers) ⁸	
Propagule Pressure:	High; fragments easily transported	

Figures 3 and 4: Courtesy of Michelle Nault; Wisconsin Department of Natural Resources

III. Damage Potential	
a. Ecosystem Impacts	
Composition	Native plant richness and abundance decreases ^{5,20,21} ; macroinvertebrate
	biomass and density decreases ²²
Structure	Monocultures; biomass distribution into dense canopies; dense canopies
	change community architecture; fish respond to change in architecture
Function	Increased nutrient loading; fluctuating dissolved oxygen concentration and
	temperature; decreased light penetration; less suitable habitat for fish ²³ ;
	threat to waterfowl food source due to low nutritional value ²³
Allelopathic Effects	Yes; inhibits cyanobacteria, green algae, duckweed, mosquitoes, midges ²⁴
Keystone Species	Undocumented
Ecosystem Engineer	Yes; dense canopy decreases light penetration ²⁵
Sustainability	Undocumented
Biodiversity	Decreases ⁵
Biotic Effects	Impacts native species at multiple trophic levels ⁷
Abiotic Effects	Increased nutrient loading; fluctuating dissolved oxygen concentration and
	temperature; decreased light penetration ²⁶
Benefits	Inhibits algae (increase in clarity), provides habitat for invertebrates and fish

b. Socio-Economic Effects		
Benefits	Provides some habitat; can increase water clarity	
Caveats	Dense monocultures provide poor habitat; dissolved oxygen fluctuations; can	
	also decrease water clarity	
Impacts of Restriction	Increase in monitoring, education, and research costs	
Negatives	Dense canopy growth inhibits recreation and reduce aesthetic value ⁵ ;	
	decreases native diversity and abundance; requires expensive control with	
	non-target species often impacted	
Expectations	More negative impacts can be expected in eutrophic to mesotrophic systems	
Cost of Impacts	Decreased recreational and aesthetic value; decline in ecological integrity;	
-	increased research expenses	
"Eradication" Cost	Quite expensive	
IV. Control and Prevention		
a. Detection		
Crypsis:	High; confused with native <i>Myriophyllum</i> spp. 8	
Benefits of Early Response:	Unknown to high (early response may decrease root stock, seed bank)	
b. Control		
Management Goal 1	Eradication	
Tool:	Various	
Caveat:	May be impossible, no confirmed long-term successes; non-target plant	
	species can be negatively impacted	
Cost:	Extremely expensive	
Efficacy, Time Frame:	May take over 10 years of annual effort	
Management Goal 2	Nuisance relief	
Tool:	Mechanical harvest	
Caveat:	Harvesting causes fragmentation which increases distribution and density;	
	non-target plant species are negatively impacted	
Cost:	Undocumented	
Efficacy, Time Frame:	Annual effort necessary	
Tool:	Small-scale chemical	
Caveat:	Non-target plant species can be negatively impacted	
Cost:	Varies depending on scale	
Efficacy, Time Frame:	Depends on ecological conditions	
Tool	Drowdown	
Tool: Caveat:	Drawdown Only fassible on systems where water levels can be manipulated	
Caveat: Cost:	Only feasible on systems where water levels can be manipulated Undocumented	
Efficacy, Time Frame:		
Efficacy, Time Frame:	Depends on ecological conditions	
Tool:	Biological control – <i>Euhrychiopsis lecontei</i> (weevil)	
Caveat:	Requires suitable overwintering habitat	
Cost:	Approximately \$1 per weevil, plus planning, and consulting fees	
Efficacy, Time Frame:	Depends on ecological conditions; large numbers of weevils needed	
Legal Issues	Whole-lake treatments proposed, with possibility of ecosystem-wide effects	
negai issues	minore take treatments proposed, with possibility of ecosystem-wide effects	

- ¹ US Forest Service, Pacific Island Ecosystems at Risk (PIER). 2010. Myriophyllum spicatum L., Haloragaceae. Retrieved December 22, 2010 from:
 - http://www.hear.org/pier/species/myriophyllum_spicatum.htm
- ² United States Department of Agriculture, Natural Resource Conservation Service. 2010. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved March 26, 2010 from: http://plants.usda.gov/java/profile?symbol=MYSP2
- ³ Wisconsin Department of Natural Resources. 2010. Eurasian Water-Milfoil in Wisconsin. Retrieved November 24, 2010 from:
 - http://dnr.wi.gov/lakes/invasives/Species.aspx?species=EWM&countyCode=
- ⁴ University of Wisconsin Madison. 2005. Family Haloragaceae. Wisconsin Botanical Information System Wisflora. Retrieved December 22, 2010 from: http://wisplants.uwsp.edu/scripts/detail.asp?SpCode=MYRSPI
- ⁵ Jacono, C.C. and M.M. Richerson. 2003. United States Geologic Survey Nonindegenious Aquatic Species . Retrieved December 22, 2010 from: http://nas.er.usgs.gov/taxgroup/plants/docs/my_spica.html
- ⁶ Grillas, P. 1990. Distribution of submerged macrophytes in the Camargue in relation to environmental factors. Journal of Vegetation Science 1(3):393-402.
- ⁷ Madsen, J.D. 1998. Predicting invasion success of Eurasian watermilfoil. Journal of Aquatic Plant Management 36:28-32.
- ⁸ Nichols, S.A. and B.H. Shaw. 1986. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 131(1):3-
- ⁹ Carpenter, S.R. 1980. The decline of *Myriophyllum spicatum* in a eutrophic Wisconsin (USA) lake. Canadian Journal of Botany 58(5):527-535
- ¹⁰ Les, D.H. and L.J. Mehrhoff. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biological Invasions 1:281-300.
- ¹¹ Aiken, S.G., P.R. Newroth and I. Wile. 1979. The Biology of Canadian Weeds. 34. Myriophyllum spicatum L. Canadian Journal of Plant Science 59(1):201-215.
- ¹² O'Hare, M.T., K.A. Hutchinson and R.T. Clarke. 2007. The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquatic Botany 86(3):253-259.
- ¹³ Smith, C.S. and J.W. Barko. 1990. Ecology of Eurasian watermilfoil. Journal of Aquatic Plant Management 28:55-64.
- ¹⁴ Nichols, S.A. and L.A. Buchan. 1997. Use of native macrophytes as indicators of suitable Eurasian watermilfoil habitat in Wisconsin lakes. Journal of Aquatic Plant Management 35:21-
- ¹⁵ Madsen, J.D. and C.W. Boylen. 1989. Eurasian watermilfoil seed ecology from an oligotrophic and eutrophic lake. Journal of Aquatic Plant Management 27:119-121.
- ¹⁶ Creed, R.P., Jr. 1998. A biogeographic perspective on Eurasian watermilfoil declines: additional evidence for the role of herbivorous weevils in promoting declines? Journal of Aquatic Plant Management 36:16-22.
- ¹⁷ Shearer, J.F. 2002. The potential role of an endophytic fungus in the decline of stressed Eurasian watermilfoil. Journal of Aquatic Plant Management 40:76-78.
- ¹⁸ Gunner, H.B. 1983. Microbiological control of Eurasian watermilfoil. Final Report: U.S. Army Aquatic Plant Control Research Program: Vicksburg, MS. 6pp.
- ¹⁹ Madsen, J.D. and D.H. Smith. 1997. Vegetative spread of Eurasian watermilfoil colonies. Journal of Aquatic Plant Management 35:63-68.

²⁰ Boylen, C.W., L.W. Eichler and J.D. Madsen. 1999. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 415:207-211.

²¹ Knapton, R.W. and S.A. Petrie. 1999. Changes in distribution and abundance of submerged macrophytes in the inner bay at Long Point, Lake Erie: implications for foraging waterfowl. Journal of Great Lakes Research 25(4):783-798

²² Cheruvelil, K.S., P.A. Soranno, J.D. Madsen and M.J. Roberson. 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21(2):261-277.

²³ Keast, A. 1984. The introduced aquatic macrophyte, *Myriophyllum spicatum*, as habitat for fish and their invertebrate prey. Canadian Journal of Zoology 62(7):1289-1303.

²⁴ Glomski, L.M., K.V. Wood, R.L. Nicholson and C.A. Lembi. The search for exudates from Eurasian watermilfoil and hydrilla. Journal of Aquatic Plant Management 40:17-22

²⁵ Crooks, J.A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97(2):153-166.

²⁶ Larson, D. 2003: Predicting the threats to ecosystem function and economy of alien vascular plants in freshwater environments. Department of Environmental Assessments, Swedish University of Agricultural Sciences Report 2003: p7