| Aquatic Plant | Float | ing pennywort; Marsh pennywort | |---|---|--| | I. Current Status and Distribution Hydrocotyle ranunculoides | | | | a. Range | Global/Continental | Wisconsin | | Native Range North America ^{1,2,3} ; Africa ^{1,2} (considered naturalized ⁴); South and Central America ^{1,2,4} (considered naturalized ³) | Figure 1: U.S and Canada Distribution Map ⁵ | Figure 2: WI Distribution Map ⁶ | | Abundance/Range | 1 igure 11 eta ana canada 2 apromen map | 1 igm of 71 2 innouncer raup | | Widespread:
Locally Abundant: | Undocumented
Europe, United Kingdom, Netherlands,
Western Australia ² | Undocumented Lake Delavan (Walworth Co.) inlet and outlet ⁶ | | Sparse: | Endangered in Illinois, New Jersey, and New York ⁵ | Undocumented | | Range Expansion | | | | Date Introduced: | Southern Europe, 1970s ⁽²⁾ ; Australia, 1983 ⁽²⁾ | First discovered in October 2010 ⁽⁶⁾ | | Rate of Spread: | Rapid; can grow up to 20 cm per day and 15 m from the bank in a single season ³ ; can double its biomass in 3 to 7 days ³ | Undocumented | | Density | | | | Risk of Monoculture: | High; can form dense interwoven mats ² | Can form 'patchy' monocultures ⁶ | | Facilitated By: | Undocumented | Undocumented | | b. Habitat | Ponds, ditches, dykes, streams, rivers, marshes, wetlands, lake margins, wet ground, fenland pools ² | | | Tolerance | Environmental tolerances undocumented | | | Preferences | Slow-flowing systems ² ; eutrophic to mesotrophic conditions ² ; high levels of nitrate, phosphate, and organic matter ² ; grows below 1500m ⁽²⁾ ; full sun to light shade ⁷ | | | c. Regulation | | | | Noxious/Regulated ⁵ : | Not regulated | | | Minnesota Regulations: | Not regulated | | | Michigan Regulations: | Not regulated | | | Washington Regulations: | Not regulated | | | II. Establishment Potential and Life History Traits | | | |---|---|--| | a. Life History | Aquatic floating leaved to emergent stonoliferous perennial plant ² | | | Fecundity | High | | | Reproduction | | | | Importance of Seeds: | Can reproduce by seeds ² ; achenes can float, aiding in spread to new | | | - | locations ⁷ ; flower and seed production may be stimulated by conditions | | | | unfavorable for vegetative growth ⁸ | | | Vegetative: | Primary means of reproduction ² | | | Hybridization | Different levels of ploidy between populations may influence | | | | invasiveness ² | | | Overwintering | | | | Winter Tolerance: | Low frost tolerance ² ; surrounding natural vegetation may provide | | | | protection from frost damage ⁸ ; hardy to zone 7 (-15°C) ² ; overwinters in | | | | the margins and on banks in the United Kingdom ³ | | | Phenology: | Flowers from July to October in native range ² ; flowers and fruits in May | | | | in the Netherlands ^{2,9} ; peak growth starting in early July ³ ; maximum | | | | growth in late summer ^{3,6} | | | b. Establishment | | | | Climate | | | | Weather: | Associated with temperate to tropical forests, temperate steppes, and | | | | Mediterranean forests ² | | | Wisconsin-Adapted: | Yes ⁶ | | | Climate Change: | Longer growing season and higher summer temperatures will support the | | | T | further spread of <i>H. ranunculoides</i> ^{10,11} | | | Taxonomic Similarity | 11: 1 11 12 | | | Wisconsin Natives: | High; H. americana ¹² | | | Other US Exotics: | High; H. sibthorpioides, H. moschata, H. bowlesioides ⁵ | | | Competition | 1,23.13 | | | Natural Predators: | Listronotus elongatus (weevil) ^{2,3,13} ; Myocastor coypus (nutria) ¹⁰ | | | Natural Pathogens:
Competitive Strategy: | Unidentified pathogen ³ Rapid growth rate ² | | | Known Interactions: | Can outcompete nearshore emergent plants ² ; can shade out submerged | | | Known interactions. | aquatic plants ² | | | Reproduction | aquate piants | | | Rate of Spread: | Can double its biomass in 3 to 7 days in its non-native range ³ | | | Adaptive Strategies: | Can regenerate from small root fragments ^{2,3} | | | Timeframe | Can become dominant in less than two years 14 | | | c. Dispersal | 1 WOMMING IN 1900 MINI VII O J VALO | | | Intentional: | Aquarium trade, garden ornamental ^{2,3,6} | | | Unintentional: | Water and wind currents ^{2,7} ; waterfowl ² ; contaminant of other aquatic | | | Similonai. | plants ^{2,6} | | | Propagule Pressure: | High; fragments relatively easily accidentally introduced | | | Propagule Pressure: | High; fragments relatively easily accidentally introduced | | Figure 2: Courtesy of John Hilty, Illinois Wildflowers⁷ Figure 3: Courtesy of Lisa Reas | III. Damage Potential | | | |---------------------------|---|--| | a. Ecosystem Impacts | | | | Composition | Can form dense interwoven mats ² ; can outcompete native flora ² ; can | | | | affect fauna through habitat modification ² | | | Structure | Undocumented | | | Function | Reduces light penetration and dissolved oxygen content ² ; alters ecosystem | | | | function ² ; can reduce water flow ¹⁵ | | | Allelopathic Effects | Allelopathic anti-algal compounds 16 | | | Keystone Species | Undocumented | | | Ecosystem Engineer | Undocumented | | | Sustainability | Undocumented | | | Biodiversity | Can reduce biodiversity ² | | | Biotic Effects | Can reduce keystone and endangered species ² ; reduced dissolved oxygen | | | | may induce fish mortality ² | | | Abiotic Effects | Decaying plants can cause eutrophication ¹⁷ | | | Benefits | Provides habitat for aquatic invertebrates ^{6,18} | | | b. Socio-Economic Effects | | | | Benefits | Aquaria and water garden plant ^{2,3} ; remediation of wastewater ¹⁹ | | | Caveats | Risk of release and population expansion outweigh benefits of use | | | Impacts of Restriction | Increase in monitoring, education, and research costs | | | Negatives | Dense mats can inhibit recreational and aesthetic value ² ; can damage | | | | waterworks and clog drainage systems, which can lead to flooding ² ; dense | | | | mats can be a hazard to humans who mistake them as solid ground ¹⁷ ; | | | | serves as a host for the destructive bacterial wilt <i>Ralstonia solanacearum</i> ²⁰ | | | Expectations | Undocumented | | | Cost of Impacts | Decreased recreational and aesthetic value; decline in ecological integrity; | | | | increased research expenses | | | "Eradication" Cost | First year of control cost 200,000 AUD (204300 USD) in Western | | | | Australia ² ; have spent over 1 million EUR (1379500 USD) in the | | | | Netherlands ² | | | IV. Control and Prevention | | | |-----------------------------|---|--| | a. Detection | | | | Crypsis: | Confused with <i>Hydrocotyle</i> spp. ^{2,7,21} ; <i>Ranunculus</i> spp. ¹⁸ ; <i>Marsilea</i> spp. ¹⁸ | | | Benefits of Early Response: | Eradication may be possible in the very early stage of invasion ^{2,3} | | | b. Control | | | | Management Goal 1 | Control | | | Tool: | Mechanical removal ^{2,3,14,22} | | | Caveat: | Harvesting causes fragmentation which can increase distribution and | | | | density ^{2,3,14} ; negative impacts on non-target species | | | Cost: | Estimates of £10,000 (\$15,800 USD) per km ⁽¹⁴⁾ | | | Efficacy, Time Frame: | All cut material must be removed from the waterbody ^{2,3,22} ; downstream areas should be netted or fenced off to prevent spread ^{2,3,22} ; short term reduction; repeated cuttings necessary throughout the growing season ^{3,22} | | | Tool: | Handpulling ⁶ | | | Caveat: | Time and labor intensive ⁶ ; plant interweaves with other vegetation making removal off all plant material very difficult ⁶ | | | Cost: | Undocumented | | | Efficacy, Time Frame: | Not very efficient ⁶ | | | Tool: | Chemical herbicide (2,4-D amine) ^{6,14} | | | Caveat: | Non-target impacts on native species | | | Cost: | Undocumented | | | Efficacy, Time Frame: | Applied at 4.23 kg/ha active ingredient ¹⁴ ; should be applied at the end of the growing season ¹⁴ ; follow up treatments or mechanical removal should occur 2-4 weeks after the first treatment ^{6,14} ; new runners and shoots observed spreading to new areas a week after vegetative death ⁶ ; plants in full sun died quicker than those in shade ⁶ ; surfactant beneficial in maximizing herbicide contact with target plants ⁶ | | | Tool: | Chemical herbicide (glyphosate) ^{3,14} | | | Caveat: | Resistant to glyphosate at 2.16 kg/ha active ingredient ¹⁴ ; non-target impacts on native species | | | Cost: | Early season treatments reduce labor and chemical costs ³ | | | Efficacy, Time Frame: | Application rates of 4-6 L/ha ⁽³⁾ ; spray applications may not reach all plant | | | | material if dense mats are present ³ ; follow up treatments or mechanical | | | | removal should occur 2-4 weeks after the first treatment ³ ; decomposition | | | | of plant material may take up to 6 weeks ³ | | | Tool: | Shading ³ ; increasing water flow ³ ; dredging ³ ; barriers ³ | | | Caveat: | Not practical to implement in large scale invasions ³ | | | Cavcat.
Cost: | Expensive ³ | | | Efficacy, Time Frame: | Efficacy undocumented ³ | | . ¹ USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved March 7, 2011 from: http://www.ars-grin.gov/cgibin/npgs/html/taxon.pl?419736 - ² European and Mediterranean Plant Protection Organization. 2006. Datasheets on quarantine pests: *Hydrocotyle ranunculoides*. OEPP/EPPO Bulletin 36:3-6. - ³ Newman, J.R., M.A. Duenas. 2010. Information Sheet: Control of Floating Pennywort (*Hydrocotyle ranunculoides*). Center for Ecology and Hydrology. Retrieved March 7, 2011 from: http://www.ceh.ac.uk/sci_programmes/documents/Hydrocotyleranunculoides.pdf - ⁴ Newman, J.R., R. Shaw, M.A. Duenas. 2009. *Hydrocotyle ranunculoides* L.f. Origins and control options. In: 49th Annual Meeting of the Aquatic Plant Management Society, Milwaukee, Wisconsin (USA), 12th-15th July 2009. Aquatic Plant Management Society:42. - ⁵ United States Department of Agriculture, Natural Resource Conservation Service. 2011. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved September 15, 2011 from: http://plants.usda.gov/java/profile?symbol=HYRA - ⁶ Bunk, H. A. Greene. 2010. Personal communication. - ⁷ Hilkey, J. 2011. Water pennywort (*Hydrocotyle ranunculoides*). Illinois Wildflowers. Retrieved March 7 2011 from: http://www.illinoiswildflowers.info/wetland/plants/wt_pennywort.htm - ⁸ Bass, W.J., L.H. Duistermaat. 1999. The invasion of floating pennywort (*Hydrocotyle ranunculoides* L. f.) in the Netherlands, 1996-1998. Gorteria 25(4):77-82. - ⁹ Van der Meijden, R., W.J. Holverda, W.J. Van der Slikke. 2001. New records of rare plants in 1999 and 2000. Gorteria 27(6):121-132. - ¹⁰ Hussner, A., R. Lösch. 2007. Growth and photosynthesis of *Hydrocotyle ranunculoides* L. fil. in Central Europe. Flora 202:653-660. - ¹¹ Hussner, A., C. Meyer. 2009. The influence of water level on the growth and photosynthesis of *Hydrocotyle ranunculoides* L.fil. Flora 204:755-761. - ¹² University of Wisconsin Madison. 2005. *Hydrocotyle americana* L. Wisconsin Botanical Information System, Wisflora. Retrieved September 15, 2011 from: http://www.botany.wisc.edu/cgi-bin/detail.cgi?SpCode=HYDAME - ¹³ Cordo, H.A., C.J. De Loach, R. Ferrer. 1982. The weevils *Lixellus, Tanysphiroideus*, and *Cyrtobagous* that feed on *Hydrocotyle* and *Salvinia* in Argentina. Coleopterists Bulletin 36:279-286. - ¹⁴ Newman, J.R., F.H. Dawson. 1999. Ecology, distribution and chemical control of *Hydrocotyle ranunculoides* in the UK. Hydrobiologia 415:295-298. - ¹⁵ US Forest Service, Pacific Island Ecosystems at Risk (PIER). 2011. Hydrocotyle ranunculoides L. f., Apiaceae. Retrieved March 7, 2011 from: http://www.hear.org/pier/species/hydrocotyle_ranunculoides.htm - ¹⁶ Della Greca, M. A. Fiorentino, P. Monaco, L. Previtera. 1994. Polyoxygenated oleanane triterpenes from *Hydrocotyle ranunculoides*. Phytochemistry 35:201-204. - ¹⁷ Government of South Australia. 2011. Declared Plant Policy *Hydrocotyle ranunculoides*. Retrieved March 7, 2011 from: - http://www.pir.sa.gov.au/_media/pdf/pirsa_internet/biosecurity/nrm_biosecurity/pest_weed_policies/declared_plants_2/Hydrocotyle_policy.pdf - ¹⁸ Washington State Department of Ecology. 2011. Hydrocotyle ranunculoides water pennywort. Retrieved March 7, 2011 from: - http://www.ecy.wa.gov/programs/wq/plants/plantid2/descriptions/hydran.html - ¹⁹ Bretsch, K. 2003. Remediation of stormwater residuals decant with *Hydrocotyle ranunculoides*. National Conference on Urban Stormwater: Enhancing Programs at the Local Level. Retrieved March 7, 2011 from: www.epa.gov/owow/NPS/natlstormwater03/03Bretsch.pdf ²⁰ Hong, J.C., M.T. Momol, J.B. Jones, P. Ji, S.M. Olson, C. Allen, A. Perez, P. Pradhanang, K. Guven. 2008. Detection of *Ralstonia solanacearum* in irrigation ponds and aquatic weeds associated with the ponds in north Florida. Plant Disease 92(12):1674-1682. ²¹ Van de Wiel, C.C.M., J. Van der Schoot, J.L.C.H. Van Valkenburg, H. Duistermaat, M.J.M. Smulders. 2009. DNA barcoding discriminates the noxious invasive plant species, floating pennywort (*Hydrocotyle ranunculoides* L.f.), from non-invasive relatives. Molecular Ecology Resources 9:1086-1091. ²² Kelly, A. 2006. Removal of invasive floating pennywort *Hydrocotyle ranunculoides* from Gillingham Marshes, Suffolk, England. Conservation Evidence 3:52-53.