Aquatic Plant Giant reed; Giant cane		
I. Current Status and Distribution Arundo donax		
a. Range	Global/Continental	Wisconsin
Native Range Eastern Asia ^{1,2,3} ; also considered by some to be native to the countries surrounding the Mediterranean Sea	Figure 1: U.S and Canada Distribution Map ⁴ Also reported from Indiana and Colorado ⁵	Not recorded in Wisconsin ⁴
Abundance/Range Widespread: Locally Abundant: Sparse:	Rio Grande River ^{1,6} ; California ^{1,7} Mexico ¹ Undocumented	Not applicable Not applicable Not applicable
Range Expansion		
Date Introduced:	Intentionally introduced to southern California in the early 1800's ^{1,2}	Not applicable
Rate of Spread:	Rapid	Not applicable
Density Risk of Monoculture: Facilitated By:	High ¹ ; can produce up to 35 tons of above ground biomass per acre ⁶ Vegetative reproduction ¹	Undocumented Undocumented
b. Habitat	Riparian areas, wetlands, marshes, floody streams, drainage canals, ditches, grasslar areas, forests, shrublands, coastlands, des	plains, reservoirs, lakes, ponds, nds, prairies, seeps ¹ , agricultural
Tolerance	Chart of tolerances: Increasingly dark coloptimal range	lor indicates increasingly
pH ⁹ 10,11,12,13,14 Temperature (°C)	4 5 6 7 8 0 5 10 15 20 **range determined by measurable photosynthetic activity, survival range is broader	9 10 11 25 30 35
Preferences	Disturbed sites ^{1,7,14} ; water tables at or near saline conditions, drought, and periods of a wide range of soil types, but prefers we habitats ⁸ ; areas of enriched nitrogen ^{8,15,17}	f excessive mositure ⁶ ; tolerant of
c. Regulation		
Noxious/Regulated ⁴ :	TX	
Minnesota Regulations:	Not regulated	
Michigan Regulations:	Not regulated	
Washington Regulations:	Secondary Species of Concern	

II. Establishment Potential and Life History Traits		
a. Life History	Rhizomatous perennial herbaceous aquatic grass ¹	
Fecundity	High	
Reproduction		
Importance of Seeds:	Rarely produces viable seeds in North America ^{1,6}	
Vegetative:	Sprouts from rhizomes and stem nodes ¹⁸ ; fragmentation ¹	
Hybridization	Ornamental var. <i>versicolor</i> is widely cultivated ^{1,6,19} ; var. <i>macrophylla</i> ²⁰	
Overwintering		
Winter Tolerance:	Can survive very low temperatures when dormant, but subject to damage	
	by frosts after initiation of spring growth ⁶	
Phenology:	In California, spring and summer are the main growing season for new	
	ramets ^{12,21} ; flowers in late summer ⁷	
b. Establishment		
Climate		
Weather:	Warm-temperate to subtropical ⁶ ; annual precipitation from 12-158	
	inches ²⁰ ; currently inhabits USDA zones 6-11 ⁽⁸⁾	
Wisconsin-Adapted:	Uncertain; cultivated as far north as Washington D.C. ⁶	
Climate Change:	Likely to facilitate growth and distribution	
Taxonomic Similarity	1	
Wisconsin Natives:	Medium; family Poaceae ⁴	
Other US Exotics:	Medium; family Poaceae ⁴	
Competition	22 2	
Natural Predators:	Zyginidia quyumi (leaf hopper) ²² ; Sesamia spp. (stalk borer) ¹⁶	
Natural Pathogens:	Armillaria mellea (root rot), Leptostroma donacis (fungi), Papularia	
	sphaerosperma (fungi), Puccinia coronata (crown rust), Selenophoma	
Commotitive Strategy	donacis (stem speckle) ²⁰	
Competitive Strategy:	Can establish and spread in communities of various successional stages ¹ ; growth rate is 2-5 times faster than native vegetation ⁸	
Known Interactions:	Can outcomplete and displace native riparian vegetation ^{1,12}	
Reproduction	Can outcomplete and displace native riparian vegetation	
Rate of Spread:	Rapid ^{1,2} ; up to 80 stems/m ² in high nutrient locations ¹²	
Adaptive Strategies:	Ability to rapidly reproduce from established rhizomes and fragments ^{1,18}	
Timeframe	Under optimal conditions, can grow 1.5 to 4 inches per day ¹ ; rhizomes	
- IIIICII WIIIC	averaged 1 to 2.5 inches per day ^{1,6}	
c. Dispersal		
Intentional:	Cultivated throughout Asia, southern Europe, northern Africa and the	
	Middle East for thousands of years 1,2,6; ornamental 1,3,6; erosion control 1,6;	
	biomass for energy generation ^{2,3}	
Unintentional:	Escape from cultivation ¹ ; wind ¹ ; water currents ¹ ; seed contaminant ³ ;	
	mechanical equipment ¹²	
Propagule Pressure:	Medium; fragments easily introduced, but source populations not near	
	Wisconsin	

Figure 2: Courtesy of Larry Allain²³
Figure 3: Courtesy of James H. Miller, USDA Forest Service, Bugwood.org²⁴

III. Damage Potential		
a. Ecosystem Impacts		
Composition	Dense stands may inhibit growth of other plant species ^{1,12} ; does not provide food or habitat for native wildlife, bird, and invertebrate species ^{1,7,25}	
Structure	Lack of natural canopy structure may result in warmer water temperatures in riparian habitats ^{1,7} ; riverbanks destabilized during flood events ¹	
Function	May alter fire regime characteristics, hydrology, and successional processes ^{1,7,26} ; increased transpiration of water compared to native vegetation ¹ ; alters nutrient cycling ⁸	
Allelopathic Effects	Contains a wide variety of chemicals which help protect the plant from most insects and grazers ^{1,7,27}	
Keystone Species	Undocumented	
Ecosystem Engineer	Undocumented	
Sustainability	Undocumented	
Biodiversity	Decreases ^{1,7,25,28}	
Biotic Effects	Declines in several native stream fishes has been attributed to lack of natural structure and shading after infestation of <i>A. donax</i> ¹ ; drastic reductions in abundance and diversity of invertebrates ²⁸	
Abiotic Effects	A. donax canopy structure may result in changes in water quality (pH, ammonia) ¹	
Benefits	Undocumented	
b. Socio-Economic Effects		
Benefits	Used to make reeds for a variety of musical instruments ⁶ ; planted for erosion control ¹ ; promising bioenergy crop ^{2,16} ; ornamental trade ^{1,3,6} ; used for thatching roofs ¹ ; used in making pulp for paper and in the manufacture of rayon ^{6,9} ; rhizomes used medicinally ^{3,6} ; used in phytoremediation of nitrate or heavy metal contaminated waters and soils ^{29,30,31,32,33}	
Caveats	Risk of release and population expansion outweighs benefits of use	

I a ske of Double is the co	Transporting monitoring advection and proceeds	
Impacts of Restriction	Increase in monitoring, education, and research costs	
Negatives	Dense stands may serve as fuel for wildfires ^{1,7} ; floating vegetation can	
	form debris dams causing flooding ¹	
Expectations	Undocumented	
Cost of Impacts	Undocumented	
"Eradication" Cost	Very expensive	
IV. Control and Prevention		
a. Detection		
Crypsis:	Morphologically similar to <i>Phragmites australis</i> ¹⁰	
Benefits of Early Response:	High; killing or removing rhizomes before they are well established	
	assists in potential control	
b. Control		
Management Goal 1	Nuisance relief	
Tool:	Biocontrol (Trabutina mannipar, Trabutina romana, Rhizaspidiotus	
	donacis) ^{34,35,36,37}	
	Release approval recommended but not granted yet ^{34,35} ; many infested	
Caveat:	areas inaccessible by foot ³⁸	
Cost:	Undocumented	
Efficacy, Time Frame:	Quite variable depending on the insect population, leaf morphology and	
	the presence of other organisms ^{34,39}	
l	34	
Tool:	Chemical (glyphosate, imazapyr, imazamox) ³⁴	
Caveat:	Glyphosate is non-selective; negative impacts on non-target species	
Cost:	Undocumented	
Efficacy, Time Frame:	Foliar application during post-flowering period may be more effective	
	than cut-stem treatment	
Tool:	Chamical (fluorifon butyl cathovidan) ⁷	
Caveat:	Chemical (fluazifop-butyl, sethoxidan)	
Caveat. Cost:	Not currently labeled for wetland use ⁷ Undocumented	
Efficacy, Time Frame:	Monocot-specific ⁷ ; fluazifop is effective, especially when applied after	
Efficacy, Time Traine.	flowering 19	
	nowering	
Tool:	Mechanical and herbicide (combination) ^{7,18,40}	
Caveat:	Labor-intensive ^{7,18}	
Cost:	Similar expenses to only foliar spraying ⁷	
Efficacy, Time Frame:	Foliar spray of herbicide applied 3 to 6 weeks after stalks are cut and	
	biomass is removed ⁷ ; requires less herbicide and can be applied more	
	precisely ⁷	
Management Goal 2	Eradication	
Tool:	Mechanical (hand pulling)	
Caveat:	Only feasible for small localized populations ¹ ; plants should be less than	
	2m tall and all rhizomes and fragments must be removed ¹	
Cost:	Expensive	
Efficacy, Time Frame:	Extremely difficult; most effective in loose soils ¹	

- ¹ McWilliams, J.D. 2004. *Arundo donax*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Retrieved March 1, 2011 from:
- http://www.fs.fed.us/database/feis/plants/graminoid/arudon/all.html
- ² Mariani, C., R. Cabrini, A. Danin, P. Piffanelli, A. Fricano, S. Gomarasca, M. Dicandilo, F. Grassi, C. Soave. 2010. Origin, diffusion and reproduction of the giant reed (*Arundo donax* L.): a promising weedy energy crop. Annals of Applied Biology 157:191-202.
- ³ USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved March 2, 2011 from: http://www.ars-grin.gov/cgi-bin/npgs/html/taxdump.pl?arundo%20donax
- ⁴ United States Department of Agriculture, Natural Resource Conservation Service. 2011. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved February 28, 2011 from: http://plants.usda.gov/java/profile?symbol=ARDO4
- ⁵ Ahmad, R., P. Liow, D.F. Spencer, M. Jasieniuk. 2008. Molecular evidence for a single genetic clone of invasive *Arundo donax* in the United States. Aquatic Botany 88:113-120.
- ⁶ Perdue, R.E., Jr. 1958. *Arundo donax*-source of musical reeds and industrial cellulose. Economic Botany 12(4):368-404.
- ⁷ Bell, G P. 1997. Ecology and management of *Arundo donax*, and approaches to riparian habitat restoration in southern California. p.103-113 in: Brock, J.H., M. Wade, P. Pysek, D. Green (Eds.), Plant invasions: studies from North America and Europe. Backhuys Publishers, Leiden, The Netherlands. Retrieved March 3, 2011 from:
- http://ceres.ca.gov/tadn/ecology_impacts/arundo_ecology.pdf
- ⁸ Global Invasive Species Database. 2011. *Arundo donax*. Retrieved March 4, 2011 from: http://issg.org/database/species/ecology.asp?si=112&fr=1&sts=sss&lang=EN
- ⁹ DiTomaso, J.M. 1998. Biology and ecology of giant reed. In: Bell, Carl E., ed. In: Arundo and saltcedar: the deadly duo: Proceedings of a workshop on combating the threat from arundo and saltcedar; 1998 June 17; Ontario, CA. Holtville, CA: University of California, Cooperative Extension:1-5.
- ¹⁰ Spencer, D.F., G.G. Ksander. 2006. Estimating *Arundo donax* ramet recruitment using degreeday based equations. Aquatic Botany 85:282-288.
- Rossa, B., A.V. Tuffers, G. Naidoo, D.J. von Willert. 2006. *Arundo donax* L. (Poaceae) a C3 species with unusually high photosynthetic capacity. Botanica Acta 111(3):216-221.
- Wijte, A.H.B.M., T. Mizutani, E.R. Motamed, M.L. Merryfield, D.E. Miller, D.E. Alexander. 2005. Temperature and endogenous factors cause seasonal patterns in rooting by stem fragments of the invasive giant reed, *Arundo donax* (Poaceae). International Journal of Plant Sciences 166(3):507-517.
- ¹³ Graziani, A., S.J. Steinmaus. 2009. Hydrothermal and thermal time models for the invasive grass, *Arundo donax*. Aquatic Botany 90:78-84.
- Quinn, L.D., J.S. Holt. 2008. Ecological correlates of invasion by *Arundo donax* in three southern California riparian habitats. Biological Invasions 10:591-601.
- ¹⁵ Rezk, M.R., T.Y. Edany. 1979. Comparative responses of two reed species to water table levels. Egyptian Journal of Botany 22(2):157-172.
- ¹⁶ Lewandowski, I., J.M.O. Scurlock, E. Lindvall, M. Christou. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25:335-361.

- ¹⁷ Quinn, L.D., M.A. Rauterkus, J.S. Holt. 2007. Effects of nitrogen enrichment and competition on growth and spread of giant reed (*Arundo donax*). Weed Science 55(4):319-326.
- ¹⁸ Boose, A.B., J.S. Holt. 1999. Environmental effects on asexual reproduction in *Arundo donax*. Weed Research 39:117-127.
- ¹⁹ US Forest Service. Pacific Island Ecosystems at Risk (PIER). 2010. *Arundo donax* L., Poaceae. Retrieved March 3, 2011 from: http://www.hear.org/pier/species/arundo_donax.htm
- ²⁰ Purdue University. 1997. *Arundo donax* L. Retrieved February 28, 2011 from: http://www.hort.purdue.edu/newcrop/duke_energy/Arundo_donax.html
- ²¹ Decruyenaere, J.G., J.S. Holt. 2001. Seasonality of clonal propagation in giant reed. Weed Science 49:760-767.
- ²² Ahmed, M., A. Jabbar, K. Samad. 1977. Ecology and behaviour of *Zyginidia quyumi* (Typhlocybinae: Cicadellidae) in Pakistan. Pakistan Journal of Zoology 9(1):79-85.
- ²³ Allain, L. USDA-NRCS PLANTS Database. Retrieved February 28, 2011 from: http://plants.usda.gov/java/profile?symbol=ARDO4
- ²⁴ Miller, J.H. USDA Forest Service, Bugwood.org
- ²⁵ Herrera, A.M., T.L. Dudley. 2003. Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (*Arundo donax*) invasion. Biological Invasions 5:167-177.
- ²⁶ Coffman, G.C., R.F. Ambrose, P.W. Rundel. 2010. Wildfire promotes dominance of invasive giant reed (*Arundo donax*) in riparian ecosystems. Biological Invasions 12:2723-2734.
- Hong, Y., H.Y. Hu, A. Sakoda, M. Sagehashi. 2010. Isolation and characterization of antialgal allelochemicals from *Arundo donax* L. Allelopathy Journal 25(2):357-367.
- ²⁸ Dudley, T. 1998. Exotic plant invasions in California riparian areas and wetlands. Fremontia 26(4):24-29.
- ²⁹ Ovez, E., S. Ozgen, M. Yuksel. 2006. Biological denitrification in drinking water using *Glycyrrhiza glabra* and *Arundo donax* as the carbon source. Process Biochemistry 41:1539-1544.
- ³⁰ Tzanakakis, V.E., N.V. Paranychianakis, A.N. Angelakis. 2007. Performance of slow rate systems for treatment of domestic wastewater. Water Science and Technology 55:139-147.
- ³¹ Mirza, N., Q. Mahmood, A. Pervez, R. Ahmad, R. Farooq, M.M. Shah, M.R. Azim. 2010. Phytoremediation potential of *Arundo donax* in arsenic-contaminated synthetic wastewater. Bioresource Technology 101:5815-5819.
- ³² Abissy, M., L. Mandi. 1999. The use of rooted aquatic plants for urban wastewater treatment: case of *Arundo donax*. Revue Des Sciences De L'Eau 12(2):285-315.
- ³³ Sagehashi, M., T. Fujii, H. Hong Ying, A. Sakoda. 2010. Removal of cadmium from aqueous solutions by charcoals prepared from giant reed (*Arundo donax*). Journal of Water and Environment Technology 8(4):305-312.
- ³⁴ Army Corps Engineer Research and Development Center Aquatic Plant Information System. Retrieved February 28, 2011 from:
- http://el.erdc.usace.army.mil/aqua/apis/PlantInfo/plantinfo.aspx?plantid=3
- ³⁵ Goolsby, J.A., D.F. Spencer, L.C. Whitehand. 2009. Pre-release assessment of impact on *Arundo donax* by the candidate biological control agents *Tetramesa romana* (Hymenoptera: Eurytomidae) and *Rhizaspidiotus donacis* (Hemiptera: Diaspididae) under quarantine conditions. Southwest Entomologist 34:359-376.
- ³⁶ Goolsby, J.A., P.J. Morgan, J.J. Adamczyk, A.A. Kirk, W.A. Jones, M.A. Marcos, E. Cortés. 2009. Host range of the European, rhizome-stem feeding scale *Rhizaspidiotus donacis* (Hemiptera: Diaspididae), a candidate biological control agent for giant reed, *Arundo donax* (Poales: Poaceae) in North America. Biocontrol Science and Technology 19(9):899-918.

³⁷ Goolsby, J.A., P.J. Morgan. 2009. Host range of *Tetrames romana* Walker (Hymenoptera: Eurytomidae), a potential biological control of giant reed, *Arundo donax* L. in North America. Biological Control 49:160-168.

³⁸ Racelis, A.E., J.A. Goolsby, R. Penk, W.K. Jones, T.J. Roland. 2010. Development of an inundative, aerial release technique for the Arundo wasp, biological control agent of the invasive *Arundo donax* L. Southwestern Entomolgist 35(4):495-501.

³⁹ Spencer, D.F., W. Tan, L.C. Whitehand. 2010. Variation in *Arundo donax* stem and leaf strength: implications for herbivory. Aquatic Botany 93:75-82.

⁴⁰ Finn, M., H. Martin, D. Minnesang. 1990. Control of giant reed grass in a southern California riparian habitat. Restoration and Management Notes 8(1):53-54.