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* Per- and polyfluoroalkyl substances (PFAS)

* PFAS are a large class of synthetic organic chemicals used in
a variety of applications, such as surface coatings, firefighting
foams, carpets, clothing, food packaging, etc.

Water flow

v
Aquifer Materials

Groundwater

* Per- and polyfluoroalkyl substances (PFAS) in groundwater
adsorption on to aquifer materials when PFAS pass through
the aquifer material with groundwater.

Methods

* Aquifer Materials selection
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* Sites were selected according to the contamination site,

geographical coverage and aquifer material composition.

* Adsorption isotherm study
* Mixture of 6 PFAS: PFHpA, PFOA,

PFNA, PFBS, PFHXS, PFOS

* Concentration range: 100 - 5,000

ng/L for each PFAS

* Natural groundwater: pH ~8.5
* Aquifer materials loading: 100 g/L

e Contacttime: 7 days

Results

* Aquifer Material Characterization
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Dolomite content in the aquifer materials used in this study followed the trend: AM6 < AM5 =

AM4< AM3 < AM2 < AM1
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* Adsorption Isotherm Results

| Freundlich Model

| Linear Model

Q =KF*C n m Q =ch ‘ K =Q /C K,: solid-water partition coefficient (L/kg)
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* Adsorption isotherms of PFAAs onto aquifer materials (a) AM1, (b) AM2, (c) AM3, (d) AM4, (e)

AMS5, (f) AM6
* PFAAs matrix in groundwater with 100 g/L aquifer material.
* Dash lines represent linear isotherm model fits
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Conclusions

* Multilinear Regression Model
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Measured log K, (L/Kg)

e Retardation Factor: R

p

R=1+Ka,

K;: solid-water partition coefficient, L/kg
p: bulk density, kg/L

0: porosity
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The comparison between the model
calculated log Kd and measured log Kd
shown that the data points fell closely
along the 1:1 line, suggesting that the
multilinear regression model may be used
to estimate the adsorption affinity of
various PFAS onto aquifer materials with
varied fractions of dolomite.

* 1-D transport model
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For comparison purposes, we selected
half of the source concentration(C,/2)
and calculated the corresponding
PFAAs travel distance. Compared with
a sand-rich aquifer , the travel distance
of PFAAs could be reduced by 4 to over
10 folds in a dolomite-rich aquifer.

* Environmental implications

* Dolomite are abundant in groundwater aquifers, its impact on
the transport of emerging contaminants such as PFAS has been
largely overlooked. Our results suggested that dolomite had a
strong adsorption affinity with PFAAs and thus could play an
Important role in the transport of PFAAs in groundwater systems.
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