Climate variability and groundwater recharge in southwest Wisconsin

Madeline Gotkowitz¹
Doug Joachim²
Steve Vavrus³
Steve Loheide²
Ken Bradbury¹

¹ Wisconsin Geological and Natural History Survey, Madison, WI

² Dept. of Civil and Environmental Engineering, UW – Madison, Madison, WI

³ Gaylord Nelson Institute of Environmental Study, UW- Madison, Madison, WI

Acknowledgements

- Funded by the UW System Groundwater Research Program, administered by the UW Water Resources Institute
- Ken Potter, UW Madison
- Pete Schoephoester, Steve Mauel, WGNHS
- Steve Westenbroek, USGS

Motivation: water table rise caused long-lasting flooding in 2008

A series of models simulate future climate conditions and groundwater recharge

- Daily precipitation and temperature estimates from 8 down-scaled global circulation models (GCMs) (Serbin & Kucharik, 2009.)
- Soil water balance model (SWB)
 estimates daily runoff and infiltration
 over a 30-meter grid
- 3) Three-dimensional, transient MODFLOW simulates the groundwater system, water table elevation

Spring Green, Wisconsin

Hydrogeologic conceptual model

GCM results:
12-inch range
in annual
average
precipitation

GCMs predict at least 6° increase in average annual temperature

Annual recharge

"Base case" conditions,

14 inches/year on

average, ranging from
about 2 to 20 in/yr

Simulated Recharge

Frequency of annual recharge

Simulated temperature increases, driving up ET and decreasing recharge

Base case average ET = 17.8 inches /year, increasing to over 21 inches/ year by 2100.

Groundwater flow model calibration

Additional observed and simulated water table response, 2008

Simulated water table elevation

- Simulated average recharge decreases 10%, due to increase in temperature and ET.
- Variability in simulated recharge is high, and high groundwater conditions occur infrequently.
- Current flood mitigation efforts may prove useful to preserve existing land use.