CHEMISTRY refresher

Llanie Nobile

Petroleum

- Physical and chemical properties
 - Like dissolves like
 - Volatility
 - Polarity
 - Density
- Compare fresh vs. weathered
 - Reaction (how and why)
- Bioremediation
 - Oxidation and reduction

Chlorinated Solvents

- Nomenclature
- Physical and chemical properties
- Chemical reaction, mechanism
 - How and why

Petroleum

- Physical and chemical properties
 - Like dissolves like
 - Volatility
 - Polarity
 - Density
- Compare fresh vs. weathered
 - Reaction (how and why)
- Bioremediation
 - Oxidation and reduction

Chlorinated Solvents

- Nomenclature
- Physical and chemical properties
- Chemical reaction, mechanism
 - How and why

Table 7. Major organic compounds in a typical gasoline blend.1

[n, C₅-C₁₃ carbon chain; MTBE, methyl *tert*-butyl ether; TBA, *tert*-butyl alcohol]

Major compounds	Percent composition by weight
n-alkanes	17.3
Branched alkanes	32.0
Cycloalkanes	5.0
Olefins	1.8
Aromatic hydrocarbons	30.5
Benzene	3.2
Toluene	4.8
Ethylbenzene	1.4
Xylenes	6.6
Other benzenes	11.8
Other aromatics	2.7

Other possible additives

Octane enhancers: MTBE, TBA, ethanol Antioxidants: N, N'-dialkylphenylenediamines, di- and trialkylphenols, butylated methyl, ethyl and dimethyl phenols Metal deactivators: various N, N'-disalicylidene compounds Ignition controllers: tri-o-cresylphosphate (TOCP) Detergents/dispersants: alkylamine phosphates, poly-isobutene amines, long-chain alkyl phenols, alcohols, carboxylic acids, and amines

Corrosion inhibitors: phosphoric acids, sulfonic acids, carboxylic acids

¹Harper and Liccione, 1995

 C_4H_{10} $CH_3CH_2CH_2CH_3$

Alkanes $C_n H_{2n+2}$ **CYCLO ALKANES ALKANES ADDITIVES** GASOLINE **ALKENES AROMATICS**

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Butane

or n-butane

Branched Alkanes C_nH_{2n+2}

Prefix	Number of Carbon Atoms			
meth-	1			
eth-	2			
prop-	3			
but-	4			
pent-	5			
hex-	6			
hept-	7			
oct-	8			
non-	9			
dec-	10			

Number	Prefix	
1	mono-	
2	di-	
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	

Alkanes

- Aliphatic (linear and/or branched) C₃-C₁₃ are the most common
- C₃-C₈ have high vapor pressures (rapidly evaporate)
- C₃-C₈ are volatile by photochemical oxidation
 - Molecular oxygen (O_2) needs to be present
 - $CH_3CH_2CH_3 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ $\Delta H = -2220kJ$ (negative value means release of E)
 - Why does this oxidation happen?
 - products are favored because they are more stable, lower in energy

Alkanes – Fresh vs. Weathered

TABLE 2

Composition (Mass Fractions) of Fresh and Weathered Gasolines

Γ	Compound	Mw	Fresh	Weathered	Approximate
	Name	(g)	Gasoline	Gasoline	Composition
	propane	44.1	0.0001	0.0000	Ĵ.
i	isobutane	58.1	0.0122	0.0000	U
	n-butane	58.1	0.0629	0.0000	
t	trans-2-butene	56.1	0.0007	0.0000	0
0	cis-2-butene	56.1	0.0000	0.0000	0
	3-methyl-1-butene	70.1	0.0006	0.0000	0
i	sopentane	72.2	0.1049	0.0069	0.0177
	1-pentene	70.1	0.0000	0.0005	0
	2-methyl-1-butene	70.1	0.0000	8000.0	0
	2-methyl-1,3-butadiene	68.1	0.0000	0.0000	0
	n-pentane	72.2	0.0586	0.0095	
t	trans-2-pentene	70.1	0.0000	0.0017	0
	2-methyl-2-butene	70.1	0.0044	0.0021	0
	2-methyl-1,2-butadiene	68.1	0.0000	0.0010	0
	3,3-dimethyl-1-butene	84.2	0.0049	0.0000	0
0	cyclopentane	70.1	0.0000	0.0046	0.0738
	3-methyl-1-pentene	84.2	0.0000	0.0000	0
	2,3-dimethylbutane	86.2	0.0730	0.0044	0
	2-methylpentane	86.2	0.0273	0.0207	<u> </u>
	3-methylpentane	86.2	0.0000	0.0186	0

 $CH_3CH_2CH_3 + 5O_2 \rightarrow 3CO_2 + 4H_2O \quad \Delta H = -2220kJ$

P.C.Johnson, C.C.Stanley, M.W. Kemblowksi, D.L.Byers, and J.D. Colthart A Practical Approach to the Design, Operation, and Monitoring of In Situ Soil Venting Systems Spring 1990 GWMR, pp. 159-178

• Nonpolar molecules

н

н

н

Alkanes

• Nonpolar molecules

н

• Polar molecule

н

Alkanes

• Nonpolar molecules

• Polar molecule

• C₃-C₈ have <u>low water solubility</u> due to being nonpolar molecules

"Like dissolves like"

Solvent	Solute	Is Solution Likely?
Polar	Polar	Yes
Polar _{H2} O	Nonpolar Alkanes	No
Nonpolar	Polar	No
Nonpolar	Nonpolar	Yes

THEY WON'T MIX.... BUT WHY?

- C₃-C₈ have low water solubility due to being nonpolar molecules
- Why can't alkanes dissolve in water???

Intermolecular Forces					
Туре	Strength	Present in:			
London Dispersion	Weak	all molecules and atoms			
Dipole-Dipole	Moderate	polar molecules			
Hydrogen bonds	Strong	H-F, H-N, H-O molecules			

Alkanes

• Higher molecular weight hydrocarbons absorb into the soil

"Like dissolves like"

Solvent	Solute	Is Solution Likely?
Polar	Polar	Yes
Polar	Nonpolar	No
Nonpolar	Polar	No
Nonpolar <mark>Soil</mark>	Nonpolar High MW alkanes	Yes

Alkanes

- What is present in the soil?
 - Microorganisms (bacteria, yeasts, fungi, etc.) love linear alkanes (C₁₀-C₂₂)
 - Ideal pH, temperature, O₂ levels, salinity

Bioremediation

- Cycloalkanes are very <u>similar to the alkanes in reactivity</u>, except for the very small ones especially cyclopropane.
 - The reason has to do with the bond angles in the ring. Normally, when carbon forms four single bonds, the bond angles are about 109.5°. In cyclopropane, they are 60°.

 Cycloalkanes are also <u>nonpolar</u> and do not have intermolecular hydrogen bonding; they are usually <u>hydrophobic</u> (meaning they do not dissolve in water) and are <u>less dense</u> than water.

Alkenes C_nH_{2n}

2-butene

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Alkenes C_nH_{2n}

C_4H_8 $CH_3CH=CHCH_3$

2-butene

2-butene

2-butene

• Cis vs. Trans alkenes

Cis-2-butene

Alkenes C_nH_{2n}

1,3-pentadiene

Prefix	Number of Carbon Atoms	
meth-	1	
Number	Prefix	
1	mono-	
2	di-	
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	

4

Fatty Acids

- Sometimes called <u>olefins</u>
- Most alkenes like to absorb into the soil
 - Nonpolar compounds

Solvent	Solute	Is Solution Likely?
Polar	Polar	Yes
Polar	Nonpolar	No
Nonpolar	Polar	No
Nonpolar <mark>Soil</mark>	Nonpolar alkenes	Yes

"Like dissolves like"

• Small MW alkenes are oxidized by O₃ (ozonolysis - fast reaction)

Alkenes

TABLE 2 Composition (Mass Fractions) of Fresh and Weathered Gasolines

Compound	Mw	Fresh	Weathered	Approximate
Name	(g)	Gasoline	Gasoline	Composition
propane	44.1	0.0001	0.0000	0
isobutane	58.1	0.0122	0.0000	0
n-butane	58.1	0.0629	0.0000	0
trans-2-butene	56.1	0.0007	0.0000	
cis-2-butene	56.1	0.0000	0.0000	0
3-methyl-1-butene	70.1	0.0006	0.0000	<u> </u>
isopentane	72.2	0.1049	0.0069	0.0177
1-pentene	70.1	0.0000	0.0005	J
2-methyl-1-butene	70.1	0.0000	0.0008	
2-methyl-1,3-butadiene	68.1	0.0000	0.0000	0
n-pentane	72.2	0.0586	0.0095	0
trans-2-pentene	70.1	0.0000	0.0017	<u> </u>
2-methyl-2-butene	70.1	0.0044	0.0021	<u> </u>
2-methyl-1,2-butadiene	68.1	0.0000	0.0010	<u> </u>
3,3-dimethyl-1-butene	84.2	0.0049	0.0000	<u> </u>
cyclopentane	70.1	0.0000	0.0046	0.0738
3-methyl-1-pentene	84.2	0.0000	0.0000	0
2,3-dimethylbutane	86.2	0.0730	0.0044	0
2-methylpentane	86.2	0.0273	0.0207	0
3-methylpentane	86.2	0.0000	0.0186	0

Aromatics

Benzene

- Water soluble fractions (nonpolar, less dense than water = float)
- BTEX Benzene, toluene, ethylbenzene, xylene are mostly associated with health issues

Ethyl benzene

Low water solubility: less than 10 mg/L or 10 ppm Moderate water solubility: 10-1,000 mg/L or 10-1,000 ppm High water solubility: more than 1,000 mg/L or 1,000 ppm

Xylene /

Ar	IUPAC name ¹	Common or alternative name ²	Water solubility³ (mg/L at 25°C)
	benzene		1,780
Water s	1,1,1-trichloroethane	methyl chloroform	1,290
(nonpol	1,1,2-trichloroethene	1, 1, 2-trichloroethylene, TCE	1,280
water =	tetrachloromethane	carbon tetrachloride	1,200
	methylbenzene	toluene	531
BTEX - E	chlorobenzene	_	495
ethylbe	stryrene	vinyl benzene	321
mostly a	tetrachloroethene	perchloroethylene, tetrachloroethylene, PCE	210
issues	1,2-dimethylbenzene	o-xylene	207
	1,4-dimethylbenzene	<i>p</i> -xylene	181
	1,3-dimethylbenzene	<i>m</i> -xylene	161
۲		http://pubs.usgs.gov/of/2000	5/1338/pdf/ofr2006-1338.pd

Gasoline Polynuclear Aromatic Hydrocarbons (PAHs)

Aromatics

- Higher molecular weight components partition to sediments.
 - Naphthalene
 - Vinyl benzene (styrene)
 - 1,2,4-trimethylbenzene

Higher molecular weight com

Aromatics

- Naphthalene
- Vinyl benzene (styrene)
- 1,2,4-trimethylbenzene

IUPAC name ¹	Common or alternative name ²	Soil-sorption coefficient (Log K _{oc} in soil)		
1,2,4-trimethylbenzene	pseudocumene	³ 3.34		
1,2,3-trichlorobenzene	1,2,6-trichlorobenzene	43.18-33.42		
naphthalene	naphthene	³ 2.98		
1,2,4-trichlorobenzene	1,2,4-trichlorobenzol	⁵ 2.94		
vinyl benzene	styrene	² 2.72-2.74		
1,2-dichlorobenzene	o-dichlorobenzene	⁶ 2.46- ⁵ 2.51		
tetrachloroethene	perchloroethylene, tetrachloroethylene, PCE	72.37		
ethylbenzene	—	⁵ 2.22		
1,1-dichloroethene	1,1-dichloroethylene, DCE	² 2.18		
1,3-dimethylbenzene	<i>m</i> -xylene	72.11-2.46		
1,1,1-trichloroethane	methyl chloroform	⁸ 2.03		
1,1,2-trichloroethene	1,1,2-trichloroethylene, TCE	72.00		
chlorobenzene	monochlorobenzene	⁵ 1.91		
1,1,2-trichloroethane	methyl chloroform	71.78-2.03		
tetrachloromethane	carbon tetrachloride	⁹ 1.78		
methylbenzene	toluene	71.75-102.28		
chloroethene	vinyl chloride, chloroethylene	² 1.75		
1,2-, 1,4-dimethylbenzene	o-xylene, p-xylene	² 1.68–1.83		
chloroethane	ethyl chloride	41.62		
cis-1,2-dichloroethene	cis-1,2-dichloroethylene	² 1.56–1.69		
1,2-dichloroethane	1,2-ethylidene dichloride, glycol dichloride	⁶ 1.52		
trans-1,2-dichloroethene	trans-1,2-dichloroethylene	² 1.56–1.69		
1,1-dichloroethane	1,1-ethylidene dichloride	121.52		
benzene	—	⁵ 1.49- ⁷ 1.73		
methyl tert-butyl ether	MTBE	111.09		

- Some small molecular weight compounds are oxidized by O₂ (which attacks the ring structure)
 - Oxidized slowly by O₃ (ozone)

Additives

- Used to improve performance and stability of gasoline
- Typically are oxygenates enriches gasoline with oxygen to improve combustion efficiency and reduction of CO emissions
- such as methyl tert-butyl ether (MTBE), ethanol, methanol, antirust agents, lubricants, detergents, dyes

 methyl tert-butyl ether (MTBE), ethanol, methanol – water soluble because they are POLAR

IUPAC name ¹	Common or alternative name ²	Water solubility ³ (mg/L at 25°C)
2-methoxy-2-methylpropane	methyl tert-butyl ether, MTBE	36,200

http://pubs.usgs.gov/of/2006/1338/pdf/ofr2006-1338.pdf

Additives

Summary of gasoline's fate in the environment

1. Compound's tendency to volatilize

2 Compound's tondonou to dissolve in water (polarity)

Table C-1. Default physicochemical constants for BTEXN an

Chemical/carbon range ¹	Molecular weight	Vapor pressure (atms)				
Benzene	78	0.1				
Ethylbenzene	106	0.01				
Toluene	92	0.04				
Xylenes, m-	106	0.01				
Naphthalene	128	1.0 × 10⁻⁴				
C5–C8 Aliphatics	93	0.1				
C9–C12 Aliphatics	149	8.7 × 10⁴				
C13–C18 Aliphatics	170	1.4 × 10⁻⁴				
C19–C36 Aliphatics	280	1.1 × 10 ⁻⁶				
C9–C10 Aromatics	120	2.9 × 10 ⁻³				
C11–C22 Aromatics	150	3.2 × 10 ⁻⁵				
¹ Constants for BTEXN from USEPA RSL guidance (USEPA 2014a); vapor pressures from T						
except C13-C18 Aliphatics (based o	n EC > 12-16) and C19-C	36 Aliphatics (based on EC > 1				

loat (density)

in the ground (polarity)

Summary of gasoline's fate in the environment

1. Compound's tendency to volatilize

2. Compound's tendency to dissolve in water (polarity)

Table C-1. Default physicochemical constants for BTEXN and TPH carbor									
Chemical/carbon range ¹	Molecular weight	Vapor pressure (atms)	Solubility in water (mg/L)	(
Benzene	78	0.1	1,790						
Ethylbenzene	106	0.01	169						
Toluene	92	0.04	526						
Xylenes, m-	106	0.01	161						
Naphthalene	128	1.0 × 10⁻⁴	31						
C5–C8 Aliphatics	93	0.1	11						
C9–C12 Aliphatics	149	8.7 × 10-4	0.07						
C13–C18 Aliphatics	170	1.4 × 10 ⁻⁴	3.5 × 10⁻⁴						
C19–C36 Aliphatics	280	1.1 × 10-	1.5 × 10⁻⁵						
C9–C10 Aromatics	120	2.9 × 10⁻³	51						
C11–C22 Aromatics	150	3.2 × 10 ⁻⁵	5.8						
¹ Constants for BTEXN from USEPA	RSL guidance (USEPA 2	014a); vapor pressures from	TOXNET (US						
except C13-C18 Aliphatics (based o	n EC > 12-16) and C19-C	36 Aliphatics (based on EC >	16-35 aliphat	1					

e ground (polarity)

Low water solubility: less than 10 mg/L or 10 ppm Moderate water solubility: 10-1,000 mg/L or 10-1,000 ppm High water solubility: more than 1,000 mg/L or 1,000 ppm

Summary of gasoline's fate in the environment

- 1. Compound's tendency to volatilize
- 2. Compound's tendency to dissolve in water (polarity)
- 3. Compound's tendency to sink or float (density) Floaters – aliphatics, olefins, cyclo's, aromatics Sinkers – PAH's
- 4. Compound's tendency to dissolve in the ground (polarity)

Summary of gasoline'

- 1. Compound's tendency to vola
- 2. Compound's tendency to diss
- 3. Compound's tendency to sink $\frac{1,1}{1,1}$
- 4. Compound's tendency to diss

"Like dissolves like"

Solvent	Solute	Is Solution Likely?
Polar	Polar	Yes
Polar	Nonpolar	No
Nonpolar	Polar	No
Nonpolar	Nonpolar	Yes

IUPAC name ¹	Common or alternative name ²	Soil-sorption coefficient (Log K _{ec} in soil)
1,2,4-trimethylbenzene	pseudocumene	³ 3.34
1,2,3-trichlorobenzene	1,2,6-trichlorobenzene	43.18-33.42
naphthalene	naphthene	³ 2.98
1,2,4-trichlorobenzene	1,2,4-trichlorobenzol	52.94
vinyl benzene	styrene	² 2.72-2.74
1,2-dichlorobenzene	o-dichlorobenzene	62.46-52.51
tetrachloroethene	perchloroethylene, tetrachloroethylene, PCE	72.37
ethylbenzene	_	52.22
1,1-dichloroethene	1,1-dichloroethylene, DCE	² 2.18
1,3-dimethylbenzene	<i>m</i> -xylene	72.11-2.46
1,1,1-trichloroethane	methyl chloroform	⁸ 2.03
1,1,2-trichloroethene	1,1,2-trichloroethylene, TCE	72.00
chlorobenzene	monochlorobenzene	⁵ 1.91
1,1,2-trichloroethane	methyl chloroform	71.78-2.03
tetrachloromethane	carbon tetrachloride	91.78
methylbenzene	toluene	71.75-102.28
chloroethene	vinyl chloride, chloroethylene	² 1.75
1,2-, 1,4-dimethylbenzene	o-xylene, p-xylene	² 1.68–1.83
chloroethane	ethyl chloride	41.62
cis-1,2-dichloroethene	cis-1,2-dichloroethylene	² 1.56–1.69
1,2-dichloroethane	1,2-ethylidene dichloride, glycol dichloride	61.52
trans-1,2-dichloroethene	trans-1,2-dichloroethylene	² 1.56–1.69
1,1-dichloroethane	1,1-ethylidene dichloride	121.52
benzene	_	⁵ 1.49- ⁷ 1.73
methyl tert-butyl ether	MTBE	111.09

http://pubs.usgs.gov/of/2006/1338/pdf/ofr2006-1338.pdf

?'s

Petroleum

- Physical and chemical properties
 - Like dissolves like
 - Volatility
 - Polarity
 - Density
- Compare fresh vs. weathered
 - Reaction (how and why)
- Bioremediation
 - Oxidation and reduction

Chlorinated Solvents

- Nomenclature
- Physical and chemical properties
- Chemical reaction, mechanism
 - How and why

Chlorinated Volatile Organic Compounds

Easily evaporated at normal temperatures

Covalent (share electrons in the bond) molecule with carbon

Chlorinated Aliphatics

Chlorinated Aromatics

Nomenclature – IUPAC name (international union of pure and applied chemistry)

- Tetrachloroethene (perchloroethylene; PCE; PERC[®]; ethylene tetrachloride)
- 1,1,2-trichloroethene (1,1,2-trichloroethylene; TCE; acetylene trichloroethylene)
- Cis-1,2-dichloroethene (Cis-1,2-dichloroethylene; 1,2 DCE; Z-1,2-dichloroethene)
- Trans-1,2-dichloroethene (Trans-1,2-dichloroethylene; E-1,2-dichloroethene)
- 1,1-dichloroethene (1,1-dichloroethylene; DCE)
- Chloroethene (vinyl chloride; chloroethylene; monovinyl chloride; MVC)

Tetrachloroethene (perchloroethylene; PCE; PERC[®]; ethylene tetrachloride)

- Heavily used in cleaning and degreasing products, processing, finishing of raw and finished textiles
- Polar or nonpolar?
 - Not very water soluble (nonpolar)
- Vaporize easily
- More dense than water \rightarrow sink
 - Nonpolar nature means it is attracted to soil

1,1,2-trichloroethene (1,1,2-trichloroethylene; TCE; acetylene trichloroethylene)

- Solvents, degreasers
- Volatile
- Polar molecule (water soluble)
- More dense than water \rightarrow sink

Cis-1,2-dichloroethene (Cis-1,2-dichloroethylene; 1,2 DCE; Z-1,2-dichloroethene)

Trans-1,2-dichloroethene (Trans-1,2-dichloroethylene; E-1,2-dichloroethene)

- Degradation products
- Volatile
- Polarity
 - Trans is nonpolar
 - Cis is polar
- Cis is more soluble than trans
- More dense than water \rightarrow sink

1,1-dichloroethene (1,1-dichloroethylene; DCE)

- Degradation product
- Volatile
- Polar (soluble in water)
- More dense than water \rightarrow sink

Chloroethene (vinyl chloride; chloroethylene; monovinyl chloride MVC)

- Degradation product
- As volatile as PERC[®]
- Polar (water soluble)
- More dense than water \rightarrow sink

• PCE > 1,1-DCE > TCE > VC > cis (affinity for soil matter)

Degradation of Chlorinated VOCs

PCE \rightarrow TCE \rightarrow DCE \rightarrow VC \rightarrow Ethene \rightarrow Ethane \rightarrow CO₂

- Most organic compounds degrade but the speed is determined by:
 - Presence of ENERGY HUNGRY microorganisms
 - Environmental conditions (temperature, oxygen, soil composition)

Degradation of Chlorinated VOCs

- The most common method is microbial reductive dechlorination under <u>anaerobic</u> <u>conditions</u> (PCE and TCE are favored)
- Biodegradation of TCE, DCE's, and VC can also proceed via oxidation pathways under <u>aerobic conditions</u>
 <u>Aerobic Conditions</u>
 <u>Anaerobic Conditions</u>

Degradation of Chlorinated VOCs

• Why do certain bacteria like PERC [®]?

Four C-Cl bonds have a ton of energy stored in the bonds.

Bacteria are ENERGY HUNGRY!!!

 $\longrightarrow 2H^+ + 2e^-$

 H_2

Degradation of Chlorinated VOCs

• Why is the first step <u>anaerobic</u>?

Hydrogen gas is a byproduct of fermentation (naturally present in soil)

Degradation of Chlorinated VOCs

• How does PCE breakdown to TCE?

Oxidation and Reduction

LEO the lion says GER!

OIL RIG

Loss of Electrons is Oxidation. Gain of Electrons is Reduction.

xidation Is Loss of electrons.
 Reduction Is Cain of electrons.

 H_2

Degradation of Chlorinated VOCs

How does PCE breakdown to TCE?

Degradation of Chlorinated VOCs

• How does TCE breakdown to DCE's?

Degradation of Chlorinated VOCs

• Why does TCE breakdown to DCE's?

CO,

CO,

Ethane

Degradation of Chlorinated VOCs

• Why don't DCE's continue to break down as fast as PCE and TCE?

Degradation of Chlorinated VOCs

- Biodegradation of DCE's, and VC can also proceed via oxidation pathways under aerobic conditions
- Why? Because they are polar and will migrate into the aqueous phase (lots of oxygen)
- How?
 - VC acts as the electron donor (oxidized)
 - Oxygen is the electron acceptor (reduced)

Abiotic (chemical) Transformation

- Abiotic Reductive Dechlorination oxidation/reduction reaction (uses oxidized metals to attract Cl)
- Hydrolysis substitution reaction (OH in place of Cl)

Summary of CVOC's fate in the environment.

1. Compound's tendency to volatilize

7 Compound's tendency to dissolve in water (nolarity) Table 2.5 Characteristics of Chlorinated Aliphatic Hydrocarbons and Dechlorination Products

Compound	Molecular Formula	Molecular Weight (g/mol) ^{a/}	Density (g/mL @ approx. 20 to 25 °C) ^{b/}	Henry's Law Constant (atm-m ³ /mol) ^{e/}	Solubility (mg/L @ approx. 20 to 25 °C) ^{c/}	Vapor Pressure (mm Hg @ 20 °C) ^{d/}	Octanol/Water Partition Coefficient (log Kow) ^{f/}	Octanol/Carbon Partition Coefficient (log Koc) ^{g/}
Chloroethenes								
Tetrachloroethene (PCE)	C_2Cl_4	165.8 (1)	1.62(1)	0.0132 (2)	150 (3)	14.0 (3)	2.53 (4)	2.42 (5)
Trichloroethene (TCE)	C ₂ HCl ₃	131.4 (1)	1.46 (1)	0.0072 (2)	1,100 (3)	60.0 (3)	2.42 (4)	2.03 (5)
cis-1,2- Dichloroethene (cis-DCE)	C ₂ H ₂ Cl ₂	96.94 (1)	1.28 (1)	0.0030 (2)	3,500 (3)	200 (6)	0.70	1.65 (7)
trans-1,2- Dichloroethene (trans-DCE)	C ₂ H ₂ Cl ₂	96.94 (1)	1.26 (1)	0.0073 (2)	6,300 (4)	340 (6)	2.06 (7)	1.77 (5)
1,1-Dichloroethene (1,1-DCE)	$C_2H_2Cl_2$	96.94 (1)	1.22 (1)	0.021 (2)	2,250 (5)	500 (3)	2.13 (4)	1.81 (5)
Vinyl Chloride (VC)	C ₂ H ₃ C1	62.51 (1)	Gas	0.218 (2)	1,100 (3)	2,660 (3)	0.60 (4)	1.23 (5)
Ethene	C_2H_4	28.05 (1)	Gas	8.60 (7)	131 (7)	30,800 (7)	1.13 (8)	2.48 (7)

Summary of CVOC's fate in the environment.

1. Compound's tendency to volatilize

2. Compound's tendency to dissolve in water (polarity)

Compound	Molecular Formula	Molecular Weight (g/mol) ^{a/}	Density (g/mL @ approx. 20 to 25 °C) ^{b/}	Henry's Law Constant (atm-m ³ /mol) ^{e/}	Solubility (mg/L @ approx. 20 to 25 °C) ^{c/}	Vapor Pressure (mm Hg @ 20 °C) ^{d/}	Octanol/Water Partition Coefficient (log Kow) ^{f/}	Octanol/Carbon Partition Coefficient (log Koc) ^{g/}
Chloroethenes								
Tetrachloroethene (PCE)	C ₂ Cl ₄	165.8 (1)	1.62(1)	0.0132 (2)	150 (3)	14.0 (3)	2.53 (4)	2.42 (5)
Trichloroethene (TCE)	C ₂ HCl ₃	131.4 (1)	1.46 (1)	0.0072 (2)	1,100 (3)	60.0 (3)	2.42 (4)	2.03 (5)
cis-1,2- Dichloroethene (cis-DCE)	C2H2C12	96.94 (1)	1.28 (1)	0.0030 (2)	3,500 (3)	200 (6)	0.70	1.65 (7)
trans-1,2- Dichloroethene (trans-DCE)	C2H2C12	96.94 (1)	1.26 (1)	0.0073 (2)	6,300 (4)	340 (6)	2.06 (7)	1.77 (5)
1,1-Dichloroethene (1,1-DCE)	$C_2H_2Cl_2$	96.94 (1)	1.22(1)	0.021 (2)	2,250 (5)	500 (3)	2.13 (4)	1.81 (5)
Vinyl Chloride (VC)	C ₂ H ₃ C1	62.51 (1)	Gas	0.218 (2)	1,100 (3)	2,660 (3)	0.60 (4)	1.23 (5)
Ethene	C_2H_4	28.05 (1)	Gas	8.60 (7)	131 (7)	30,800 (7)	1.13 (8)	2.48 (7)

Table 2.5 Characteristics of Chlorinated Aliphatic Hydrocarbons and Dechlorination Products

Enhanced Anaerobic Bioremediation

of Chlorinated Solvents

Summary of CVOC's fate in the environment.

- 1. Compound's tendency to volatilize
- 2. Compound's tendency to dissolve in water (polarity)
- 3. Compound's tendency to sink or float (density)

Table 2.5	Characteristics of C	hlorinated A	Aliphatic H	<u>Ivd</u> rocarbons	and Dechlorination	on Products

Compound	Molecular Formula	Molecular Weight (g/mol) ^{a/}	Density (g/mL @ approx 20 to	Henry's Law Constant (atm-m ³ /mol) ^{e/}	Solubility (mg/L @ approx_20 to	Vapor Pressure (mm Hg @)	Octanol/Water Partition Coefficient	Octanol/Carbon Partition Coefficient
		(g/mor)	25 °C) ^{b/}	(atil-iii /iiioi)	25 °C) ^{c/}	20 °C) ^d	(log Kow) ^{f'}	(log Koc) ^{g/}
Chloroethenes								
Tetrachloroethene (PCE)	C ₂ Cl ₄	165.8 (1)	1.62(1)	0.0132 (2)	150 (3)	14.0 (3)	2.53 (4)	2.42 (5)
Trichloroethene (TCE)	C ₂ HCl ₃	131.4 (1)	1.46 (1)	0.0072 (2)	1,100 (3)	60.0 (3)	2.42 (4)	2.03 (5)
cis-1,2- Dichloroethene	$C_2H_2Cl_2$	96.94 (1)	1.28 (1)	0.0030 (2)	3,500 (3)	200 (6)	0.70	1.65 (7)
(cis-DCE)								
trans-1,2- Dichloroethene	$C_2H_2Cl_2$	96.94 (1)	1.26(1)	0.0073 (2)	6,300 (4)	340 (6)	2.06 (7)	1.77 (5)
(trans-DCE)								
1,1-Dichloroethene (1,1-DCE)	$C_2H_2Cl_2$	96.94 (1)	1.22 (1)	0.021 (2)	2,250 (5)	500 (3)	2.13 (4)	1.81 (5)
Vinyl Chloride (VC)	C ₂ H ₃ C1	62.51 (1)	Gas	0.218 (2)	1,100 (3)	2,660 (3)	0.60 (4)	1.23 (5)
Ethene	C_2H_4	28.05 (1)	Gas	8.60 (7)	131 (7)	30,800 (7)	1.13 (8)	2.48 (7)

Enhanced Anaerobic Bioremediation

of Chlorinated Solvents

Summary of CVOC's fate in the environment.

- 1. Compound's tendency to volatilize
- 2. Compound's tendency to dissolve in water (polarity)
- 3. Compound's tendency to sink or float (density)
- 4. Compound's tendency to degrade in the environment
 - 1. PCE and TCE (anaerobic)
 - 2. DCE's and VC (anaerobic and aerobic)

Figure 2.2 Reaction Sequence and Relative Rates of Degradation for Chlorinated Ethenes (modified from Wiedemeier et al., 1999)

Reaction Summary – oxidation/reduction rxn

- Hydrogen (H₂) loses its electrons and becomes oxidized.
- Hydrogen substitutes in place of the Cl atom.
- Haloalkene gains electrons and becomes reduced.

?'s