# DETERMINING SEDIMENT BACKGROUND CONCENTRATIONS

Contaminated Sediments External Advisory Group Work Group Meeting
May 25, 2016

### Background: Naturally Occurring

- Ambient concentrations of substances or agents present in the environment without any human influence
- Concentration is not due to a release of a chemical from human activities
- Present in the environment in forms that have not been influenced by human activity
- Dependent upon topography, geology, geography, and physical, biological, and chemical properties
- Source is geomorphological processes such as erosion, weathering, and dissolution of mineral deposits

### Background: Anthropogenic

- Chemicals present in the environment that are not clearly attributable to a specific source
- Concentrations of substances or agents present in the environment due to human-made, non-site sources
- Presence of a chemical in the environment is due to human activities, but is not the result of site-specific use, or release of waste or products, or industrial activity
- Chemicals have typically resulted from the use of a product in its intended manner and may be present at generally low levels over large areas

### Goals of a background assessment

- Identify contaminants of potential concern (COPCs)
- To compare background data to site data
- Assess risks to human and ecological receptors

# Proposed assumptions for determining background concentrations

- Site contamination cannot exist if the chemical substances have not, at least in part, been introduced as a result of an activity at the site or elsewhere
- Background concentrations are often used to delineate the area where liability for clean-up begins and ends
- Suitable background values may be derived through sediment profiles by examining concentrations at depth with the assumption that the lowest concentration at depth represents the pre-industrial or predevelopment sediment horizon
- Dependence on site-specific sampling as opposed to data from other unrelated sites
- Data sets with fewer than 10 samples generally provide poor estimates of mean concentrations

# Proposed assumptions for determining background concentrations (cont.)

- In areas and sites where the background/reference site concentrations are greater than the CBSQG TEC values, the local background/reference site concentration should be used as the practical lower limit for doing sediment evaluations and making management decisions for additional sediment assessments
- Chemicals detected at concentrations below the upper bound of the background range can be excluded from the full baseline risk assessment
- The particle size fractions (for metals) and TOC content (for nonpolar organic compounds) of all samples should be used to normalize concentrations in order to do relevant and appropriate site-to-site comparisons

#### Data collection and evaluation

- Upper bounds of background concentration range must be identified to:
  - Evaluate and/or delineate the extent of a site-related chemical release
  - Calculate residual risks caused by a site-related release
  - Determine the scope of required cleanup, should it become necessary
- Considerations
  - Scientifically defensible
  - Technically feasible
  - Risk-based
  - Cost effective

### Data collection and evaluation (cont.)

- Methods
  - Statistical and graphical techniques
  - Chemical fingerprinting
  - Can't use statistics alone, need an understanding of the geological, geochemical, and hydrological processes that control the occurrence and concentrations of naturally occurring chemicals

### Difficulties in determining background concentrations

- Replication of data is difficult due to the natural environment being heterogeneous and part
  of a dynamic system (e.g. redistribution of contamination due to current and wave action as
  well as deposition of new sediments)
- Background concentrations greater than target cleanup levels
  - Clean-up to background levels or risk-based levels to protect human health and the environment?
- PAHs are widespread
- Background chemicals, particularly metals, can occur naturally in all sediments and may be present at concentrations high enough to represent unacceptable risks to human and ecological receptors and exceed standards
- Determining the quality and quantity of samples that are needed
- Interpretation of total organic carbon (TOC)
- Normalizing data
- Chemical fingerprinting

# Proposed requirements for valid background samples

- Samples collected from areas that are not affected by the same activities as the site being assessed
- Background/reference site has all the characteristics of the study site sediments as close as practicable, which includes:
  - Sites should be reflective of the land uses and land cover of the watershed that the study is in
  - Similar particle size fractions
  - Total organic carbon content
  - Depositional attributes
  - Relative partitioning (e.g. water depth and stream cross-section) in the same water body as the study site location but needs to be out of the study site and the factors responsible for contaminating the study site

# Proposed requirements for valid background samples (cont.)

- Samples collected up-gradient, upstream, and upwind from site
- Use same sample techniques, laboratory methods, and laboratory as those used for the site
- Samples are analyzed for the appropriate parameters
- Metals must be characterized in order to accurately evaluate the nature and extent of site-related metal contamination and assess the associated risks

#### Resources

- Brownfields Study Group, 2015 Report, Investing in Wisconsin, Reducing Risk, Maximizing Return. http://dnr.wi.gov/topic/Brownfields/documents/bsg/BSG2015report.pdf
- EPA, South Australia, December 2008, EPA Guidelines, Site Contamination, Determination of Background Concentrations. www.epa.sa.gov.au/.../8369\_background\_concentrations\_27nov08.pdf
- Green Facts, Facts on Health and the Environment, Background level(s). <a href="http://www.greenfacts.org/glossary/abc/background-level.htm">http://www.greenfacts.org/glossary/abc/background-level.htm</a>
- ITRC, August 2014, Guidance Document, Contaminated Sediments Remediation, Remedy Selection for Contaminated Sediments. <a href="http://www.itrcweb.org/contseds\_remedy-selection/Content/Resources/CSRPDF.pdf">http://www.itrcweb.org/contseds\_remedy-selection/Content/Resources/CSRPDF.pdf</a>
- Missouri Department of Natural Resources, Draft May 5, 2005, Site-specific Background Concentrations. <a href="http://dnr.mo.gov/env/hwp/mrbca/ref/site-specific-background-concentrations-draft-050505.pdf">http://dnr.mo.gov/env/hwp/mrbca/ref/site-specific-background-concentrations-draft-050505.pdf</a>
- Naval Facilities Engineering Command, April 2003, Guidance for Environmental Background Analysis, Volume II: Sediment, NFESC User's Guide, UG-2054-ENV.
   <a href="http://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20Warfare%20Center/Environmental/Restoration/er\_pdfs/gpr/navfacesc-ev-ug-2054-env-bkgrd-seds-200304.pdf">http://www.navfac.navy.mil/content/dam/navfac/Specialty%20Centers/Engineering%20and%20Expeditionary%20Warfare%20Center/Environmental/Restoration/er\_pdfs/gpr/navfacesc-ev-ug-2054-env-bkgrd-seds-200304.pdf</a>
- U.S. EPA, September 2002, Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites, EPA 540-R-01-003. <a href="https://dec.alaska.gov/spar/csp/guidance\_forms/docs/background.pdf">https://dec.alaska.gov/spar/csp/guidance\_forms/docs/background.pdf</a>
- Wisconsin Department of Natural Resources, December 2003, Consensus-Based Sediment Quality Guidelines, Recommendations for Use & Application, Interim Guidance, WT-732 2003. <a href="http://dnr.wi.gov/topic/brownfields/documents/cbsqg\_interim\_final.pdf">http://dnr.wi.gov/topic/brownfields/documents/cbsqg\_interim\_final.pdf</a>