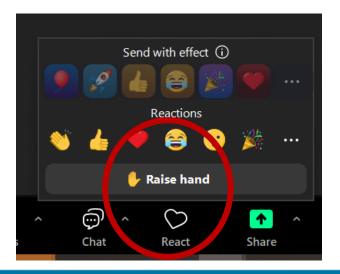


Back to Basics: Planning for Remediation and Continuing Obligations

DNR Remediation and Redevelopment Program

Meeting Logistics


Written Comments/Questions

- Use chat and select Zoom facilitator in the "To" dropdown
- Remarks will be read out loud by facilitator

Verbal Comments/Questions

- In-Person: Raise hand and inperson moderator will help manage
- By Zoom: Select React to Raise hand to request a turn to talk (* 9 on phone)
- Please unmute when your name is called (*6 on phone)

Objectives

Explain the importance of remedial action planning and design to achieve a successful project.

Identify and evaluate the impact of continuing obligations when project planning.

Compare different approaches to remedial action planning and design through real-world examples.

Incorporate best practices and tips shared by the program into future projects.

Wisconsin State Legislature

HOME SENATE ASSEMBLY COMMITTEES SERVICE AGENCIES

Menu » Administrative Rules Related » Administrative Code » Department of Natural Resources (NR) » Chs. NR 700-799; Environmental Protection – Investigation and Remediation of Environmental Contamination

Chapter NR 700 (PDF: 🔊) - General Requirements

Chapter NR 702 (PDF:) - Contingency Planning For Hazardous Substance Discharge Response By State Agencies

Chapter NR 704 (PDF:) - Contingency Planning For Abandoned Container Response

Chapter NR 706 (PDF:) - Hazardous Substance Discharge Notification And Source Confirmation Requirements

Chapter NR 708 (PDF:) - Immediate And Interim Actions

Chapter NR 712 (PDF:) - Personnel Qualifications For Conducting Environmental Response Actions

Chapter NR 714 (PDF:) - Public Participation And Notification

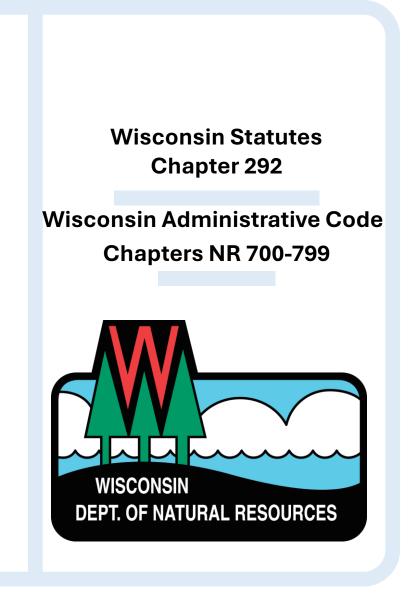
Chapter NR 716 (PDF:) - Site Investigations

Chapter NR 718 (PDF:) - Management Of Contaminated Soil Or Solid Wastes Excavated During Response Actions

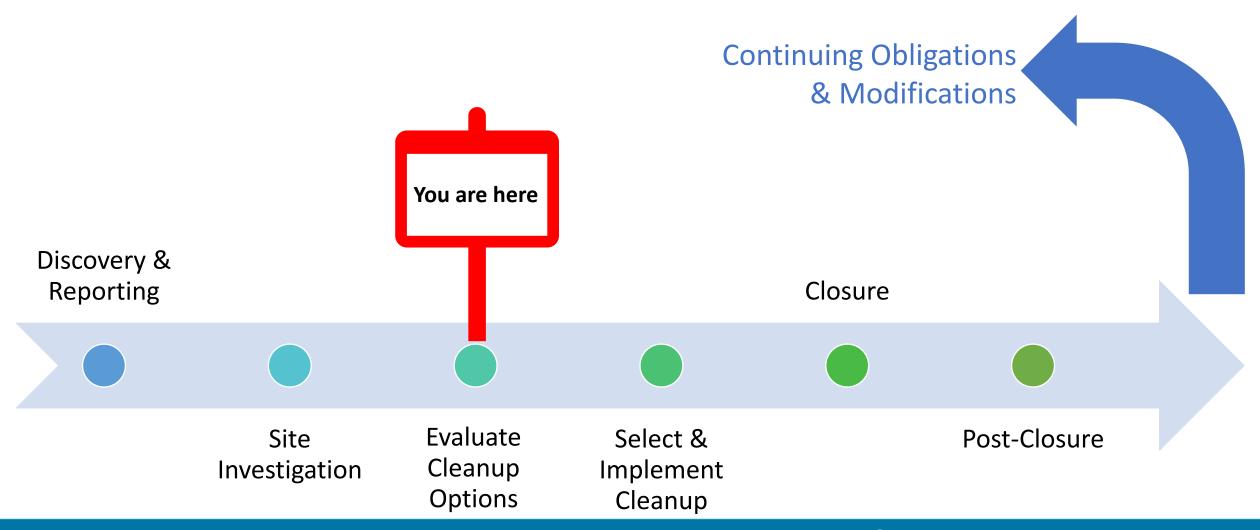
Chapter NR 720 (PDF:) - Soil Cleanup Standards

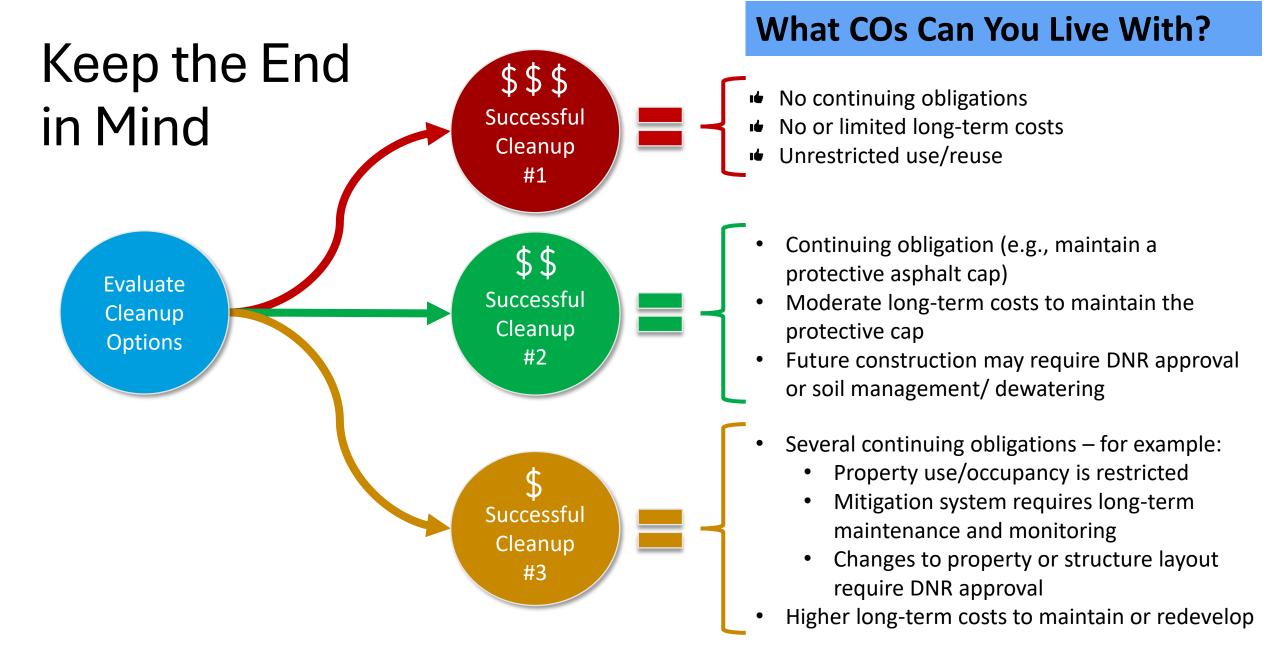
Chapter NR 722 (PDF:) - Standards For Selecting Remedial Actions

Chapter NR 724 (PDF:) - Remedial And Interim Action Design, Implementation, Operation, Maintenance And Mo


Chapter NR 725 (PDF:) - Notification Requirements For Residual Contamination And Continuing Obligations

NR 700 Process Overview


Jodie Thistle, PG RR Program


WI Regulatory Framework

- Self-implementing, responsible party follows the steps
- Timelines
- DNR approvals
- Request technical review from DNR

Wis. Admin. Code NR 700 - 799

Understanding Continuing Obligations & Selecting Remedial Actions

Tauren Beggs, DNR

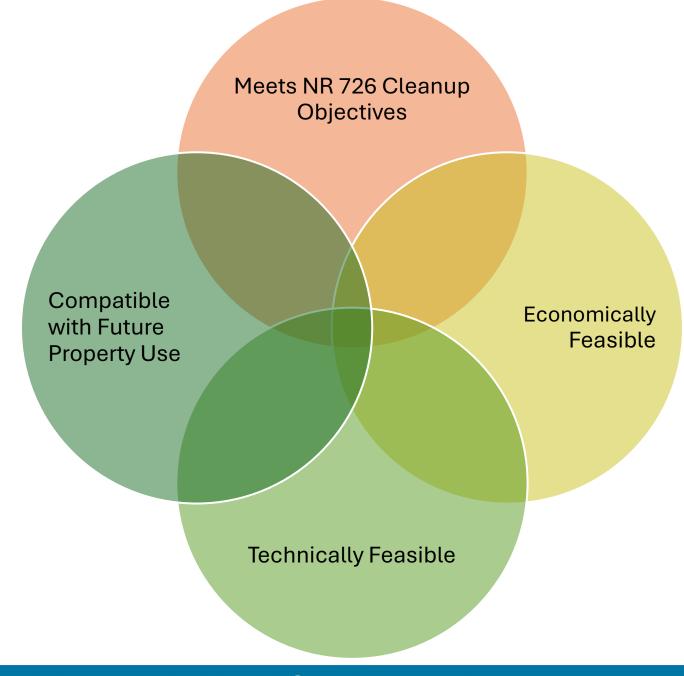
NR 700 Submittal Requirements

Site Investigation Report NR 716 Remedial Actions Options Report (RAOR) NR 722 Remedial Action Plan NR 724

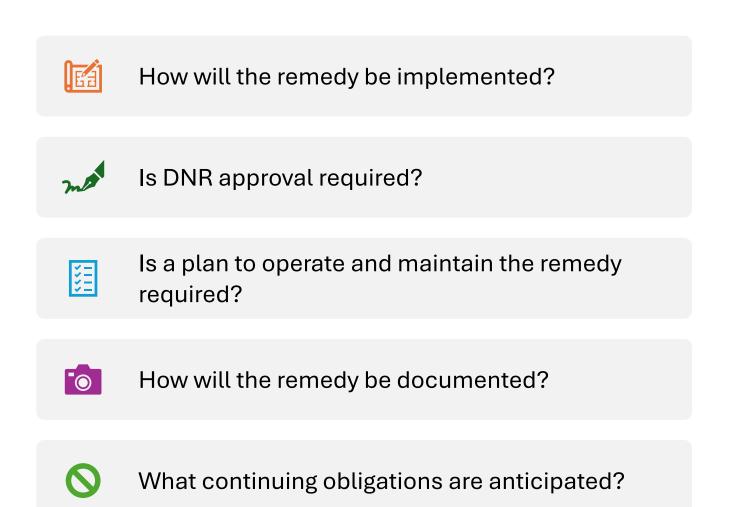
Documentation NR 724.15

Monitoring NR 724.17

Remedial Actions Options Report (RAOR)


- 1) Identify likely cleanup actions
- 2) Evaluate options
- 3) Select one or more cleanup actions
- 4 Submit RAOR to DNR

NR 726 Cleanup Objectives


- ✓ Restore the environment to the extent practicable
- ✓ Reasonable period of time
- Minimize the harmful effects of the contamination to air, land or waters of the state
- ✓ Address exposure pathways
- ✓ Address the source of the contamination

Remedial Actions Options Report (RAOR)

Remedial Action Plan

Are other regulatory approvals or coordination

needed?

=*

Continuing obligations

Legal requirements that may be imposed on the property due to residual contamination from soil, groundwater or vapor and may include:

Engineering controls

- Caps to prevent direct contact or groundwater infiltration
- Vapor mitigation to prevent indoor air contamination

Property restrictions

- Land use
- Occupancy
- Building layout

Other future obligations

- Abandoning lost monitoring wells
- DNR approval for new well construction
- Wastewater permits for dewatering
- Managing contaminated soil

Consider What COs You Can Live With

- Annual inspection requirements
- Who will maintain the CO? Future cost to maintain the CO and who will pay
- How does the CO affect future property use, market value/salability?
- Is future redevelopment planned? Is the CO compatible?
- Will COs also be needed on neighboring properties?
- Who owns the property?

Balancing Remediation Approach And Long-Term Continuing Obligations

OUTLINE

- 1. ABCA/RAOR
- 2. Case Study
- 3. Questions

Balancing Remediation Approach And Long-Term Continuing Obligations

OUTLINE

- 1. ABCA/RAOR
- 2. Case Study
- 3. Questions

Analysis of Brownfield Cleanup Alternatives / Ch. NR722 Remedial Action Options Report

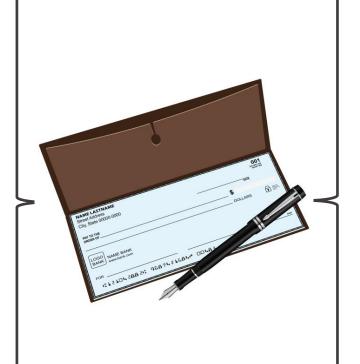
Systematic Approach to Evaluating **EFFECTIVE**Methods to Facilitate a Proposed Brownfield
Cleanup/Reuse

- 1. Effectiveness (short term/long term)
- 2. Implementability
- 3. Restoration Timeframe
- 4. Economic Feasibility (COST)
- 5. Sustainability

Is Cost Just the Remedial Solution?

ABCA/RAOR

Encourage You to Discuss Longterm Costs With Clients During the ABCA/RAOE


ABCA/RAOR

Onsite Cleanup (Short-Term)

Post-Development (Long-Term)

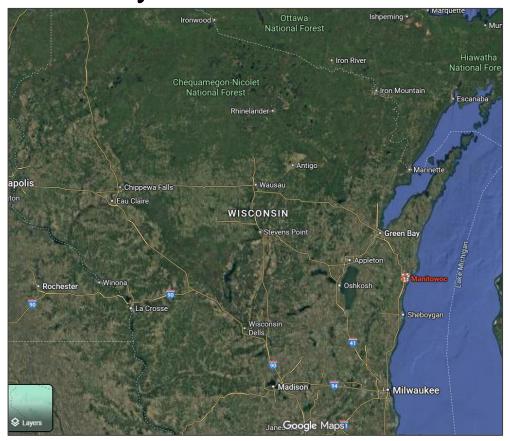
State of Wisconsin Department of Natural Resources dhr.wi.gov				Continuing Obligations Inspection and Maintenance Log Form 4400-305 (R 7/20) Page 1 of 2			
Personal info Wis. Stats.]. Department delete previous in the dosum using the BR	ormation collected When using this fo of Natural Resoun ous inspection reso e letter. The project IRTS ID number, a	will be used for administr orm, identify the condition ces. A copy of this inspec- ults. This form was develo-	ative purposes and may be provide that is being inspected. See the clo tion log is required to be maintained ped to provide a continuous history tentified from the database, BRRTS	r documenting the inspections and maintenance of lo requesters to the ordent required by Wiscon sure approval either for this site for requirement either on the property, or at a location specified of site inspection results. The Department of Ni on the Web, at			

STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES

GENERAL PERMIT TO DISCHARGE UNDER THE WISCONSIN POLLUTANT DISCHARGE ELIMINATION SYSTI

Balancing Remediation Approach And Long-Term Continuing Obligations

OUTLINE

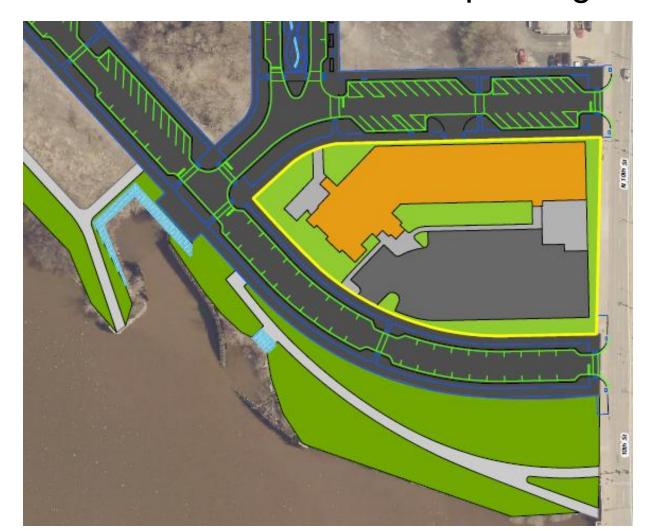

- 1. ABCA/RAOR
- 2. Case Study
- 3. Questions

Property Location – Riverpoint District (Manitowoc, Wisconsin)

Case Study

City of Manitowoc

Major Waterways

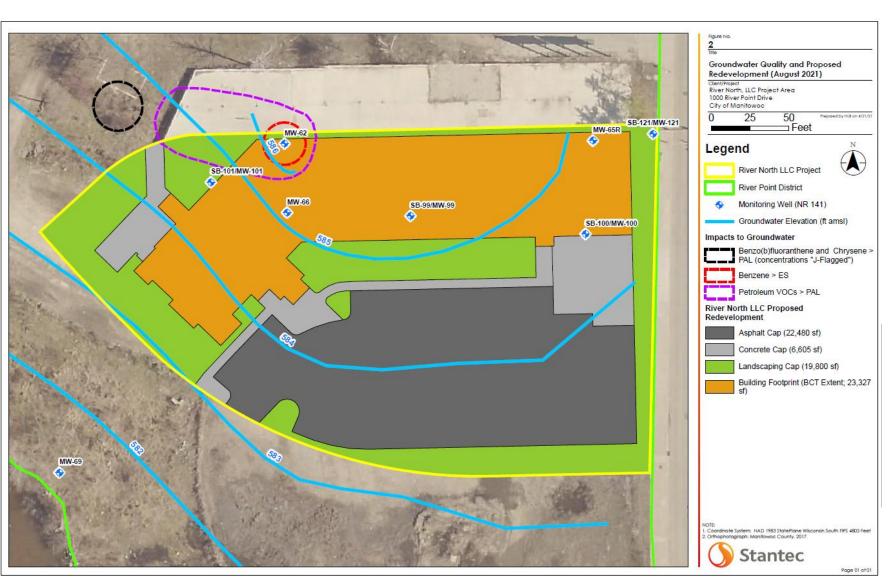

Property Location – Riverpoint District (Manitowoc, Wisconsin)

Case Study

Property = 1.6 acres

Reuse Plan = 87-Unit Apt. Bldg.

Site Challenges.....Prior Use (Shipbuilding; Railroad Depot; et al.)



Site Challenges.....Subsurface Impacts (Historic Fill; Petroleum Impacts)

10,000 Yd³

Site Challenges......Is That It? (Shallow Groundwater; Vapor Risk)

Case Study

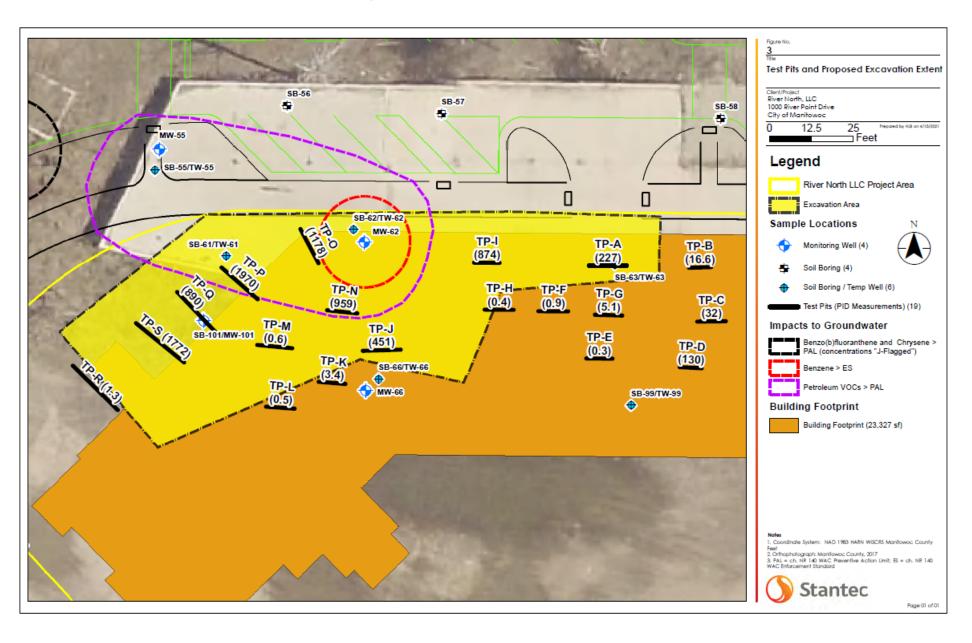
GW = 587'Slab = 586'

How to Install SSDS?

How Manage Pet. Impacted GW?

ABCA / RAOE

Case Study


Remedial Options.....

- 1. Natural Attenuation Not Effective
- 2. Remediate All Impacts (Excavation) Too Expensive (>\$2MM)
- 3. Focused
 - 1. Excavation of Source Area (VOLUNTARY)
 - 2. Construct Engineered Barriers
 - 3. Continuing Obligation (Cap Maintenance; Groundwater)
 - 4. Passive SSDS (Also a Best Practice!!)

Excavation of Source Area

Case Study

780 Tons of Soil

Source Removal

Construction of Passive Sub-Slab Venting System

Sub-Grade Pipes

Vapor Barrier

Concrete Slab

Post-Construction Sub-Slab Vapor

Vapor Pins

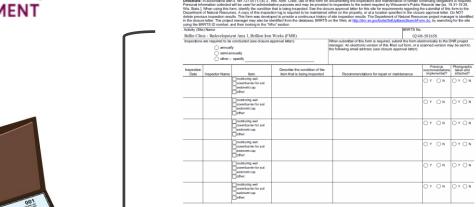
Sampling

Outcome = Healthy Housing With Reduced Continuing Obligations

Case Study

Onsite Cleanup (Short-Term)

~\$80,000



Post-Development (Long-Term)

WISCENSIN

ECONOMIC DEVELOPMENT

But of Viscours (Will a No. 100 Term of the containing with a No. 1727 (5) (1) (1) (3). We dain. Code, use of the form for documentary containing the required in an interference of cartining designant of No. 1827 (170) (1) (3). We dain. Code, use of the form for documentary containing the required and interference of cartining designant of No. 1827 (170) (1) (3). We dain. Code, use of the form for documentary contained and interference and interfere

GENEPAL PERMIT TO DISCHARG, UNDER TO SCONSID FOLLUTANT DISCHARGE ELIN WATION Balancing Remediation Approach And Long-Term Continuing Obligations

OUTLINE

- 1. ABCA/RAOR
- 2. Case Study
- 3. Questions

Elements of a Complex Site Remediation WDNR Back to Basics

Leo Linnemanstons, PG AECOM Senior Hydrogeologist

October 29, 2025

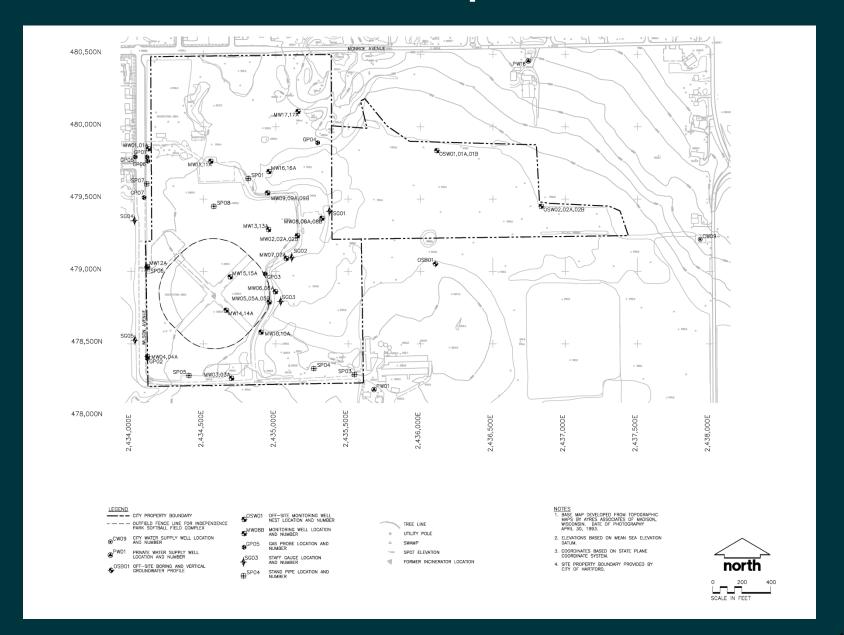
Overview

- Case Study of RAOR for Former Municipal Landfill
- Brief History of Landfill
- Review of the Site Conditions and Conceptual Site Model
- Development of the Remedial Alternative Options
- Remedial Design and Implementation

Site Chronology

- 1951 '77 Municipal landfill operations.
- 1977 Landfill closure activities begin.
- 1987 Landfill officially abandoned.
- 1989 WDNR detects vinyl chloride and TCE in City Well
- 1993 WDNR issues Consent Order
- 1993 '97 Groundwater and methane investigations are conducted with
 - WDNR input. (NR716 Site Investigations)
- 1998 Installed passive landfill gas migration trench along west side of
 - site. (NR708 Interim Action)

Site Chronology

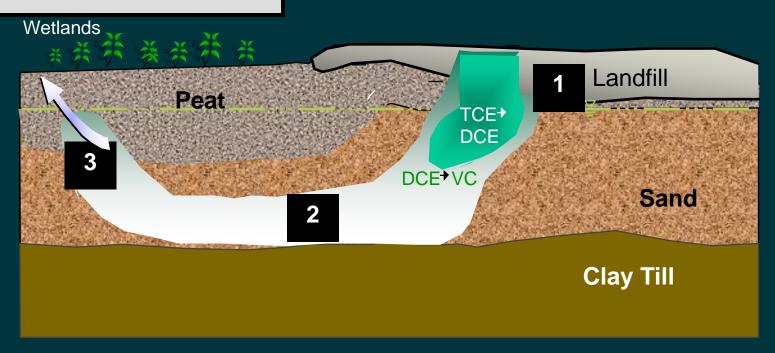

- 1999 '00 RAOR submitted and approved by WDNR. (NR722)
- 1999 '02 Conducted pilot and full-scale source area remedies. (NR724)
- 2001 '02 Source Treatment and Waste material excavation. (NR724)
- 2003 Installed passive landfill gas migration trench along southside of site. (NR724)
- 2008 Construction of Concession Stand and Restroom Building on landfill (WDNR approval). (NR718)
- 2019 '22 Vapor Intrusion Assessment and Investigation (NR716)
- 2002 '24 Annual Groundwater Monitoring.

Landfill Location and Vicinity Map



Former Landfill Site Features Map

Former Landfill Site Conditions


AECOM

Former Landfill Conceptual Site Model

- Degradation of Parent CVOCs to DCE and VC in and below anaerobic landfill
- 2 Limited degradation of VC in anaerobic subsurface
- Probable discharge to wetlands. Lack of aerobic recharge maintains anaerobic conditions.

Remedial Action Objectives

- 1. Obtain final closure of the former landfill through a Chapter NR722, Wis. Adm. Code, source control action.
- 2. Minimize the affects of the remediation on the use of the park, preserving the investment in the park, and continuous use of the park.
- 3. Achieve Objective 1 and 2 in the most cost-effective manner.

Remedial Action Options Plan, August 1999

Range of Remedial Options Considered

PROCESS OPTIONS FOR EACH MEDIA ALTERNATIVE 1 ALTERNATIVE 2 ALTERNATIVE 3 ALTERNATIVE 4 ALTERNATIVE 5 ALTERNATIVE 6 ALTERNATIVE 7

LANDFILL GAS

Migration Control Trench SOIL/WASTE

CLL/WAST

No Action

Monitoring/Natural Attenuation Maintain S oil Layer Cover

Maintain Vegetation

Enhanced Biodegradation Soil Vapor Extraction

Excavate and Dispose at Off-site Landfill

GROUNDWATE R

Monitoring

Monitoring/Natural Attenuation

Slurry Wall

Sheet Piles

Extraction Wells and Treatment

Enhanced Biodegradation

Permeable Treatment Wall

			LANDFILL GAS			
X	X	X	X	X	X	X
			SOIL/WASTE			
X			X			X
X	X	X	X	X	X	X
X	X	X	X	X	X	X
				X		
	X	X			X	
			GROUNDWATE R			
X	X	X	X	X	X	X
X	X					
				Х	X	
		X	X			
						X

1. Landfill Gas

- Investigation indicated some methane and little CVOCs
- Permeable soil cap allowed venting of landfill gas
- Potential migration pathway with frozen ground
- Landfill gas collections systems are very disruptive to install and expensive to maintain
- Passive perimeter collection system minimize disruption, addresses migration concern, minimal O&M
- Potential added benefit of active LFG system is reduction of groundwater plume
- LFG system may require air permit or have destruction requirements (supplemental fuel)

2. Soil Source Area

- Investigation identified source area underneath existing baseball fields (don't want to destroy fields).
- Conducted geophysics to determine if buried drums may be present (test pits conducted at anomaly locations).
- Installation of impermeable cap (NR500) are very disruptive to install and expensive to construct.
- Limited vadose zone and presence of saturated organic peat layer below buried landfill waste material.
- Buried waste material was heterogeneous, and impractical to remove.

3. Groundwater Plume

- Investigation identified CVOC plume under park and migrating to wetland where groundwater discharged.
- Strong anerobic conditions driving almost complete conversion of TCE to DCE to VC from source area to wetland.
- Pump and treat may generate high volumes and degrade wetland by lowering water table and may cause land subsidence if peat layer compresses.
- High capacity permit may be needed (Greater than 70 gpm system).

3. Groundwater Plume

- Treatment systems would require longterm O&M.
- Air-stripping or carbon filtration are expensive.
- Discharge either to POTW or through WPDES permit.
- Permeable treatment wall (or funnel and gate) may not be constructable at identified plume depth (20 to 45 ft bgs).
- Indefinite remediation time frame if source area could not be successfully reduced.
- No public or private water supply receptors.

Economic Feasibility of Alternatives

	ECONOMIC FEASIBILITY													
Alternative		A. Capital costs		B. Annual O&M costs	Estimated Time to Closure (yrs)		D. Potential future liability							
	Expected	Minimum	Maximum			Expected	Minimum	Maximum						
Alternative 1 - Gas Migration Control Trench, No Action with Soil/Waste, and Groundwater Monitoring	\$77,550	\$77,550	\$77,550	\$45,860	20,10,30	\$527,808	\$385,275	\$593,833	\$1,000,000					
Alternative 2 - Gas Migration Control Trench, Soil/Waste Excavation and Off-site Disposal, and Groundwater Monitoring	\$767,745	\$450,285	\$1,085,205	\$45,860	8,5,20	\$1,075,470	\$633,390	\$1,535,463	\$500,000					
Alternative 3 - Gas Migration Control Trench, Soil/Waste Excavation and Off-site Disposal, and Groundwater Enhanced Biodegradation	\$1,099,461	\$782,001	\$1,416,921	\$80,780	6,5,20	\$1,472,891	\$1,104,531	\$2,210,027	\$250,000					
Alternative 4 - Gas Migration Control Trench, No Action with Soil/Waste, and Groundwater Enhanced Biodegradation	\$409,266	\$409,266	\$409,266	\$80,780	15,10,30	\$1,100,694	\$951,308	\$1,318,671	\$750,000					
Alternative 5 - Gas Migration Control Trench, Soil/Waste Vapor Extraction, and Source and Perimeter Groundwater Extraction and Treatment	\$587,125	\$587,125	\$587,125	\$93,640	6,5,20	\$1,020,004	\$961,001	\$1,506,492	\$250,000					
Alternative 6 - Gas Migration Control Trench, Soil/Waste Excavation and Off-site Disposal, and Perimeter Groundwater Extraction and Treatment	\$956,560	\$639,100	\$1,274,020	\$92,140	6,5,20	1,382,505	1,006,987	2,178,660	\$250,000					
Alternative 7 - Gas Migration Control Trench, No Action with Soil/Waste, and Groundawter Permeable Treatment Wall	\$1,192,919	\$919,530	\$1,595,639	\$67,720	10,5,20	\$1,647,327	\$1,463,305	\$2,286,244	\$250,000					

Evaluation of Ranges of Costs

Capital Costs

Annual O&M Costs

Estimated Duration (Time to Closure)

Total Net Present Worth

Potential Future Liability

Detailed Analysis of Alternatives (NR 722 Criteria)

AECOM

NR 722.07 Criteria for Evaluation of Alternative I TECHNICAL FEASIBILITY	Alternative 1 - Gas Migrat Control Trench, No Action Soil/Waste, and Groundwa Monitoring	with	Alternative 2 - Gas Migrat Control Trench, Soil/Was Excavation and Off-site Disp and Groundwater Monitor	ste posal,	Alternative 3 - Gas Migrat Control Trench, Soil/Was Excavation and Off-site Dispos Groundwater Enhanced Biodegradation	te al, and	Alternative 3A - Gas Migra Control Trench, Soil/Waste V Extraction, and Groundwa Enhanced Biodegradatio	/apor iter n	Alternative 4 - Gas Migrat Control Trench, No Action: Soil/Waste, and Groundwa Enhanced Biodegradatio	with iter	Alternative 5 - Gas Migr Control Trench, Soil/Waste Extraction, and Source Perimeter Groundwal Extraction and Treatm	e Vapor and ter	Alternative 6 - Gas Migr Control Trench, Soil/W Excavation and Off-site Di and Perimeter Groundw Extraction and Treatm	iste sposal, ater	Alternative 7 - Gas Migra Control Trench, No Action Soil/Waste, and Groundw Permeable Treatment V	n with water
A Long Term Effectiveness	Description	Rating	Description	Ratins	Description	Rating		Rating		Ratina	Description	Ratins	Description	Rating	Description	Rating
A Long Term Effectiveness	No volume or mobility	rating	Soil volume reduction, no	Muli	Soil volume reduction.	Kaung	Soil volume reduction.	Parting	No soil volume reduction, no	Manuag	Soil volume reduction.	Muni	Soil volume reduction.	raung	No soil volume reduction.	Rating
Degree the toxicity, mobility, and volume of contamination is expected to be reduced	reduction except through natural attenuation, toxicity increases due to vinyl chloride.	1	groundwater reduction in mobility or volume, toxicity increases due to vinyl chloride.	3	reduction in groundwater mobility, reduced volume and toxicity in groundwater.	9	reduction in groundwater mobility, reduced volume and toxicity in groundwater.	7	reduction in groundwater mobility, reduced volume and toxicity in groundwater.	4	reduction in groundwater mobility, reduced volume and toxicity in groundwater.	7	reduction in groundwater mobility, reduced volume and toxicity in groundwater.	7	control groundwater mobility, reduced volume and toxicity in groundwater.	8
Degree the remedial action option will protect public health, safety, welfare, and the environment	Protective of public health, safety, and welfare, existing contaminants may pose threat to the environment.	5	Protective of public health, safety, and welfare, existing contaminants may pose threat to the environment.	6	Protective of public health, safety, and welfare, system may reduce threat to the environment. Exposure risk during	9	Protective of public health, safety, and welfare, system may reduce threat to the environment.	9	Protective of public health, safety, and welfare, system may reduce threat to the environment. Exposure risk during	7	Protective of public health, safety, and welfare, system may reduce threat to the environment.	9	Protective of public health, safety, and welfare, system may reduce threat to the environment. Exposure risk during	9	Protective of public health, safety, and welfare, system may reduce threat to the environment. Exposure risk during	9
B. Short Term Effectiveness (Risk)	None.	9	Exposure risk during excavation to workers and public.	2	excavation and system installation to workers and public.	1.5	Exposure risk during system installation to workers and public.	5	escavation and system installation to workers and public.	7	Exposure risk during system installation to workers and public.	2	excavation and system installation to workers and public	1.5	excavation and system installation to workers and public.	6
C. Implementability					,		IMPLEM	ENT/	ABILITY							
Technical feasibility of construction and implementation	No construction required.	9	Minimal feasibility limitations.	7	Minimal feasibility limitations. Need to establish anaerobic and aerobic zones.	5	Minimal feasibility limitations. Need to establish anaerobic and aerobic zones.	6	Minimal feasibility limitations. Need to establish anaerobic and aerobic zones.	5	Minimal feasibility limitations.	7	Minimal feasibility limitations.	7	Some physical constructions limitations.	5
Availability of materials, equipment, technologies, and services	Contractors and materials readily available.	9	Contractors and materials readily available.	8	Contractors, materials, and equipment readily available.	8	Contractors, materials, and equipment readily available.	8	Contractors, materials, and equipment readily available.	8	Contractors, materials, and equipment readily available.	8	Contractors, materials, and equipment readily available.	8	Contractors and materials readily available.	7
Potential difficulties with construction or off-site disposal and treatment	None.	9	Limits of soil/waste not clearly defined and types of waste may cause off-site disposal difficulties.	5	Limits of soil/waste not clearly defined and types of waste may cause off-site disposal difficulties.	4	Minimal off-site disposal, relatively simple construction.	7	Minimal off-site disposal, relatively simple construction.	8	Minimal off-site disposal, relatively simple construction.	7	Limits of soil/waste not clearly defined and types of waste may cause off-site disposal difficulties.	4	Minimal off-site disposal, some construction difficulties with depths.	6
4. Difficulties with monitoring effectiveness	Minimal, but it is a complex site.	8	Minimal, but it is a complex site.	8	Minimal, but need to monitor the biodegradation.	6	Minimal, but need to monitor the biodegradation.	6	Minimal, but need to monitor the biodegradation.	6	Minimal, but need to show system effectiveness.	7	Minimal, but need to show system effectiveness.	7	Minimal, but need to show wall effectiveness.	7
 Administrative feasibility, including time needed to obtain licenses, permits or approvals 	WDNR approval may be difficult and take a long time.	2	City approval for park construction, landfill disposal approvals, WDNR approval.	3	City approval for park construction, landfill disposal approvals, WDNR approval.	3	WDNR approval of enhanced biodegradation may be somewhat difficult.	7	WDNR approval of enhanced biodegradation may be somewhat difficult.	7	City approval for park construction, treatment permits, WPDES permit.	5	City approval for park construction, landfill disposal approvals, WPDES permit, WDNR approval	2	DNR approval of an innovative technology	7
 Presence of any federal or state threatened endangered species 	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-	None identified within 1 mile of the site.	-
 Technical feasibility of recycling, treatment, engineering controls, or disposal (O&M) 	Simple long-term monitoring,	8	Simple long-term monitoring.	8	Monitoring and O&M of system is relatively straight forward.	6	Monitoring and O&M of system is relatively straight forward.	6	Monitoring and O&M of system is relatively straight forward.	6	Monitoring and O&M of system is relatively straight forward, more equipment and components.	5	Monitoring and O&M of system is relatively straight forward, more equipment and components.	5	Monitoring of wall is relatively straight forward, O&M is more complex due to depth of wall.	6
8. Technical feasibility of natural biodegradation	Natural attenuation is occurring and this alternative relies on it heavily.	4	Natural attenuation is occurring and this alternative relies on it heavily.	4	Natural attenuation is occurring and this alternative relies on it heavily.	7	Natural attenuation is occurring and this alternative relies on it heavily.	7	Natural attenuation is occurring and this alternative relies on it heavily.	7	Natural attenuation is occurring and it enhances the effectiveness of this alternative.	6	Natural attenuation is occurring and it enhances the effectiveness of this alternative.	6	Natural attenuation is occurring and it enhances the effectiveness of this alternative.	6
D. Restoration Time Frame							RESTORATI	ON TI	ME FRAME							\Box
1. Estimated time to closure (years)	20	1	8	6	6	7	6	7	15	2.5	6	7	6	7	10	5
2. Acceptability of time frame for restoration	Low probability due to proximity to sensitive receptors, toxicity of contamination, and minimal reduction of contaminant magnitude and mobility.	1	Moderate probability. Waste removal reduces contaminant magnitude, but does not greatly affect groundwater contaminant mobility & toxicity leaving contamination adjacent to sensitive receptors	4	High probability. Contaminant magnitude, toxicity, and mobility reduced. Possible off- site sensitive groundwater receptors addressed through groundwater control.	9	High probability. Contaminant magnitude, toxicity, and mobility reduced. Possible off- site sensitive groundwater receptors addressed through groundwater control.	9	Moderate probability. Waste removal reduces contaminant magnitude, but does not greatly affect groundwater contaminant mobility & toxicity leaving contamination adjacent to sensitive receptors	5	High probability. Contaminant magnitude, toxicity, and mobility reduced. Possible off-site sensitive groundwater receptors addressed through groundwater control.	9	High probability. Contaminant magnitude, toxicity, and mobility reduced. Possible off-site sensitive groundwater receptors addressed through groundwater control.	9	High probability. Contaminant magnitude, toxicity, and mobility reduced. Possible off-site sensitive groundwater receptors addressed through groundwater control.	9
Technical Feasibility Rating Subtotals		66		64		74.5		84		72.5		79		72.5		81
II. ECONOMIC FEASIBILITY	9142 EDE		\$822.745		01 000 441		0006.004		0400.044		\$587.125		9056 560		\$1,192,919	-
A. Capital costs B. Annual O&M costs	\$143,605 \$50,860		\$822,745 \$50,860	\vdash	\$1,099,461 \$80,780		\$556,886 \$86,140		\$409,266 \$80,780		\$587,125 \$93.640		\$956,560 \$92,140		\$1,192,919 \$67,720	\vdash
C. Total present net worth	\$642,954	9	\$1,164,021	5	\$1,472,891	2	\$955,094	7	\$1,100,694	5	\$1,020,004	6	\$1,382,505	3	\$1,647,327	1
D. Increased potential for future liability		1	***************************************	2.5		8		7		4		7	***************************************	8		8
Economic Feasibility Rating Subtotals		10		7.5		10		14		9		13		11		9
Total Rating		76		71.5	ı	84.5	<u> </u>	98	J l	81.5	l	92	l	83.5	l	90

Selected Remedial Alternative

The RAOR analyzed seven alternatives and presented the preferred remedy:

- Landfill Gas Migration Control (installed and maintained)
- Source Area Chemical Injection (performed with mixed results)
- Downgradient Enhanced Groundwater Biodegradation (subsequently replaced with long-term monitoring)

Remedial Design and Implementation Documentation

Landfill Gas Migration Control (installed and maintained)

- West Trench installed as Interim Action (1998)
- Southern Trench installed to complete remedy (2003)
 - Low maintenance passive venting
 - Installed with additional piping and valving to upgrade to active operation if required in the future.
 - Monitoring program began with monthly monitoring and has been reduced to quarterly.

Remedial Design and Implementation Documentation

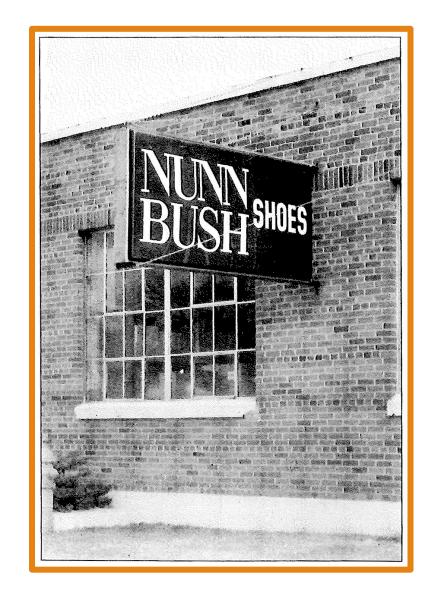
<u>Downgradient Enhanced Groundwater Biodegradation</u> (later replaced with longterm monitoring)

- Pilot test was performed for low-volume air sparging (AS) at downgradient end of the CVOC plume.
 - Results indicated that AS was a feasible technology, but its implementation would be disruptive. In addition, long term O&M would be necessary if the source could not be reduced.
- Pilot test was performed for soil vapor extraction (SVE) in source area
 - Results indicated that SVE would be difficult to implement in the buried waste material (preferential pathways disrupted the vacuum field, especially with limited vadose zone from which to extract vapors).

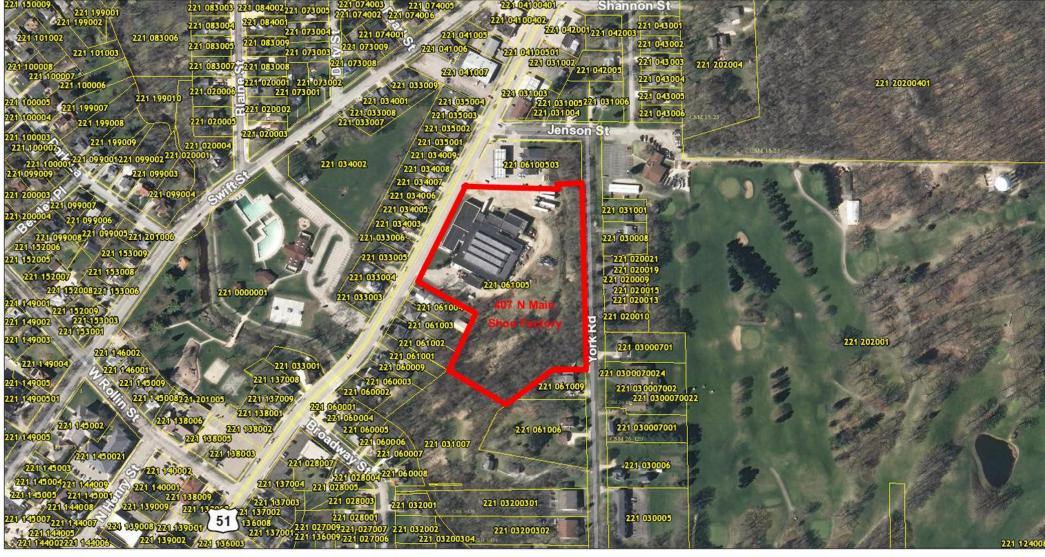
Remedial Design and Implementation Documentation

Source Area Chemical Injection (performed with mixed results)

- Detailed soil probe investigation of proposed treatment area to define treatment area and chemical injection plan
- Pilot test was performed to confirm effectiveness of proposed chemical treatment (BiOx[®])
- Three full-scale treatments applied in source area (2001-2002)
- Temporary VOC plume reduction, plume rebounded in 12 months
 (some mass reduction was achieved but did not significantly reduce the
 remediation time frame.
- Chemical Injection was designed based on groundwater concentrations, and underestimated contaminant mass contained in underlying peat.
- Chemical injection design did not account for preferentially treating residual BETX contamination (BETX was present in the source area, but not a constituent of concern in the chlorinated GW plume).

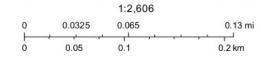

Long Term Monitoring over past 20 years

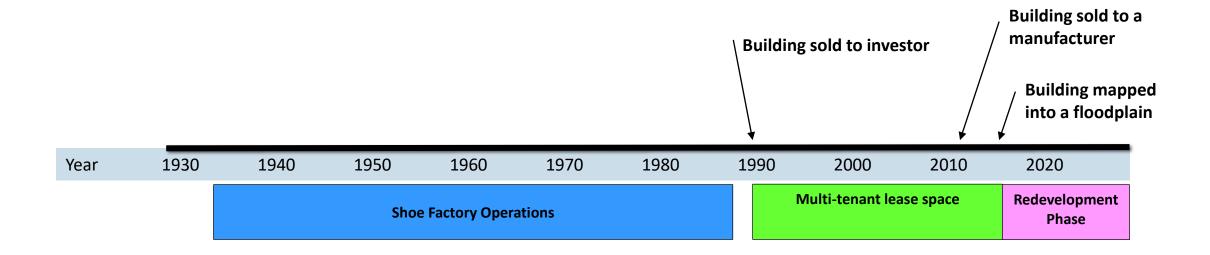



- The park has continued to be a high value asset for the community with high-use throughout the year.
- Landfill gas monitoring at the perimeter gas probes and the passive trenches continues to indicate no landfill gas migration.
- Annual groundwater monitoring indicates that the groundwater plume remains stable with little change since source area chemical injections.
- Periodically alternatives are revisited to evaluate if the remediation time frame can be shortened.

Nunn Bush Shoe Factory Redevelopment

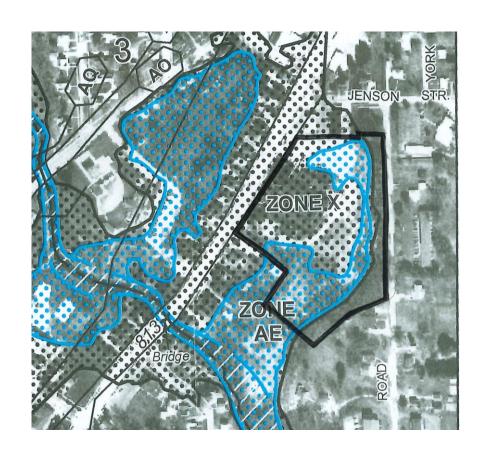
Ramona Flanigan, City of Edgerton

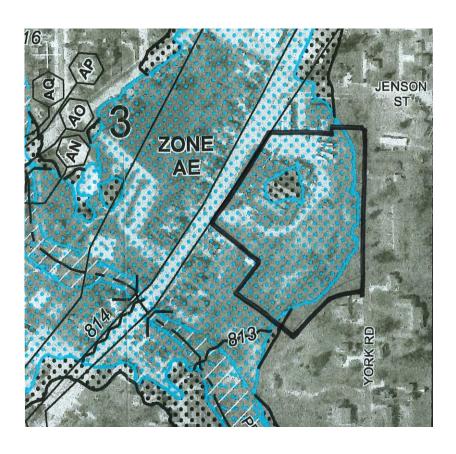




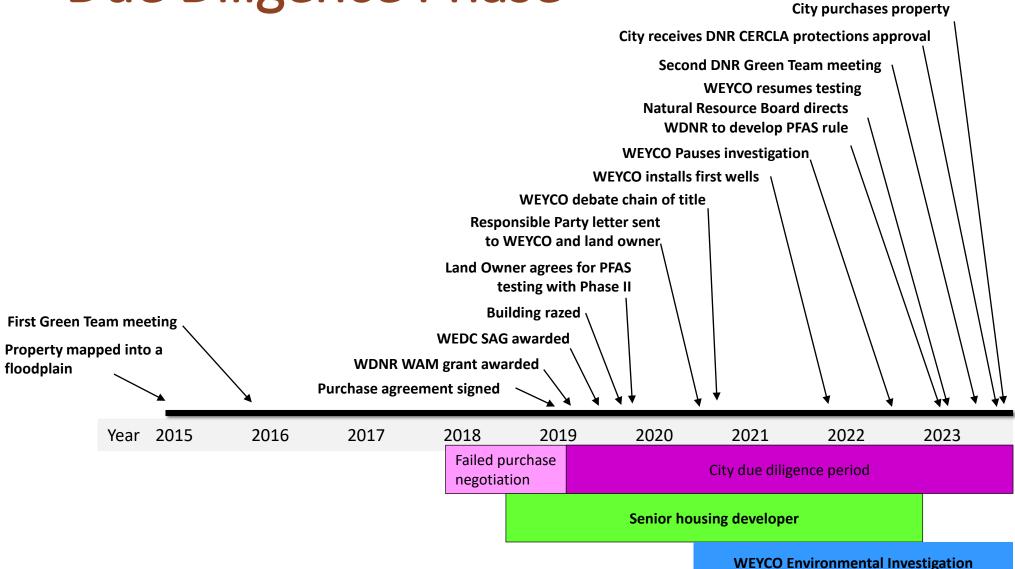
January 7, 2019

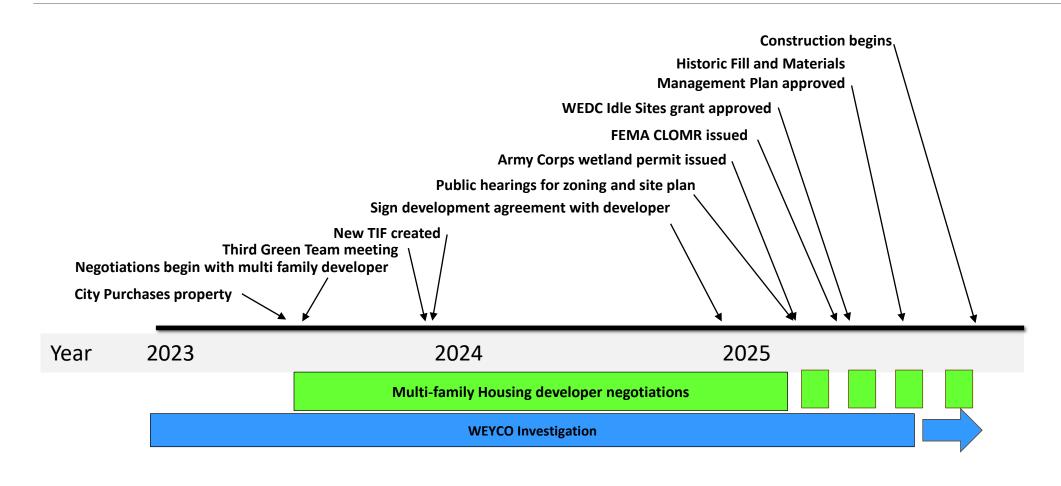
Parcels




The Life of a Shoe Factory

2008 Floodplain Map


2015 Floodplain Map


Due Diligence Phase

Wetland and Leather Scraps

Redevelopment Phase

Take Aways

- Seller
- Responsible party
- Good consultants
- Permitting agencies
- City Council and committees
- Economics
- TIF
- Willing Developer
- Grants
- Right place –right time
- Patience

Questions?

Case Study

Todd Schmidt and Sue McDade Village of Waunakee

Tips, Tricks and Examples

Karen Campoli, DNR

Fee reviews & DNR Feedback

Recommend submittal of a review fee

- With SIWP, SIR and RAP to get feedback sooner in the SI process
- Can catch issues sooner before reaching closure

Recommend submission of a RAOR

- Outline the decision for the chosen remedy, especially for complex sites
- Explain why certain options were or were not chosen (too expensive, ineffective, construction needs, etc.)

Reach out to DNR early

Can help determine if site is ready for development

What is the Site's End Use?

Understand the end use of the site.

What COs will be applied at closure?

Residential building with parking lots?

Park/green space?

Imported soil to raise the grade/ capping?

On-site COs often mean more work in the future.

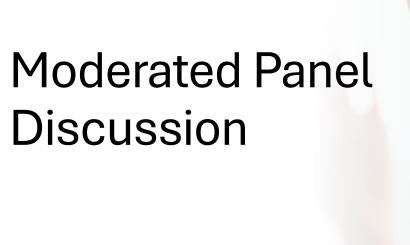
Think hard about the long-term costs associated with COs (NR 722.07(5)(b)).

Think About Vapor Early

- Assess early in the SI process to prepare for remediation (RR-800).
- Criteria for case closure at sites with vapor contamination available (NR 726.05(8)).
- Exceedance of a VRSL requires a remedial action to reduce the mass and concentration of volatile compounds to the extent practicable.
- Installation of VMS is not considered a remedial action.
- Think about off-site notifications. Talk to owners about COs before the 30-day notice letter and before submitting the closure packet.

Monitored Natural Attenuation (MNA) as a Remedy

Justify use with the collection and interpretation of MNA parameters


Consider collecting MNA parameters during the SI to establish pre-remedial conditions

Field Parameters:

Specific conductance
pH
temperature
oxidation reduction potential (ORP)
dissolved oxygen (DO)

Recommended parameters:

Nitrate, Manganese Ferrous Iron Sulfate

Derek Punches, Godfrey & Kahn

Schedule: Back to Basics Sessions

Back to Basics Training: Planning for Remediation Oct 29, 2025

January 23, 2026

- Applying for Closure and Maintaining Continuing Obligations
- Madison, Milwaukee, TBD & virtual

April 21, 2026

- Notifying Affected Parties and the Public
- Locations TBD

Thank you!

https://forms.office.com/g/40ejbZuE2e

Back to Basics Training: Planning for Remediation Oct 29, 2025

CONNECT WITH US

Jodie Thistle, PG

Section Manager - Brownfields, Outreach and Policy Remediation & Redevelopment Program

(608) 259-6557

Jodie.Thistle@wisconsin.gov