Presentation to the Wisconsin Department of Natural Resources
Air Management Study Group
May 4, 2022

Paul Meier & Tracey Holloway
University of Wisconsin – Madison
Acknowledgements

UW research was supported by a grant from the McKnight Foundation.

Wisconsin DNR background research and guidance:
David Bizot, Chris Bovee, Emma Cleveland, Brianna Denk, Jonathan Loftus, Jason Treutel

https://hollowaygroup.org/project/health-benefits-of-clean-energy
What is the influence of 2030 light duty EVs on Wisconsin emissions?

Examined two EV penetration scenarios

- 13% of miles travelled - based on EPA’s analysis for Light-Duty Vehicle GHG Emissions Standards
- 40% of miles travelled - 3X EPA’s projection for Light-Duty Vehicle GHG Emissions Standards

Note that the Biden-Harris Electric Vehicle Charging Action Plan target is for 50% of EV sales (as opposed to miles travelled) in the U.S. by 2030.
Analysis was conducted with consideration of transportation and electricity sectors.

- **Heavy Duty Vehicles**
- **Light Duty Vehicles**
- **EV Scenarios**
- **EGU Retirements & Carbon Commitments**
- **WI Power Plants**

Transportation sector
- Emission rates from USEPA MOVES model.

Electricity sector
- Based on historic WI emissions minus pending retirements and utility commitments.
MOVES model forecasts heavy-duty vehicle emissions decline due to improved emission controls and efficiency.

Annual heavy-duty miles travelled increase 18% from 2016 to 2032.

NOx and VOC emissions decline by over 60% over the same period.

Fuel mix remains constant at 91% diesel, 9% gasoline, and 0.2% CNG.

CO₂ emissions decline 8.9% (2016 to 2032) due to fuel efficiency improvements.
Annual heavy-duty miles travelled increase 16% from 2016 to 2032.

NOx and VOC emissions decline by 84% and 50%, respectively, over the same period.

Fuel mix changes from 97.5% gasoline in 2016 to 96.2% gasoline in 2032. EVs represent 0.24% of 2032 VMT.

CO₂ emissions decline 18.7% (2016 to 2032) due to fuel efficiency improvements.

Even without EVs, light-duty vehicle emissions decline due to improved emission controls and fuel efficiency.

Light Duty Vehicles
How do electricity sector emissions change based on planned retirements and stated commitments?

BASELINE 2021 - Planned retirements and commitments through 2021 are removed from the 2019 EPA-reported baseline.

REFERENCE CASE 2030 - Planned retirements through 2030 are removed from the emissions inventory. Emission reductions from retirements exceed commitments.

2030 emissions are based on an adjustment of historic emissions and not a forecast generated with a power sector model.
EV13 Scenario: 13% Penetration based on EPA Light- Duty Vehicle GHG Emissions Standards

Assumptions

- 2.5 % per year light duty car fleet penetration
- 3.1% light duty car fleet penetration
- %75/%25 BEV/PHEV split for cars and trucks
13% and 40% EV scenarios (million vehicle miles)
Any future EV impacts will occur alongside major emission changes for internal combustion engines, as well as a shift toward renewable electricity supply.
For light duty vehicles, on-road emission reductions are proportional to the increase in EV-miles travelled.

Electricity provides a cleaner transportation fuel than gasoline, assuming it is supplied from Wisconsin generators, except for SO$_2$. Electricity demand partially diminishes the vehicle’s emissions savings, depending on how the incremental electricity supply is sourced.
Emission Impacts From Wisconsin Electric Vehicle Adoption Scenarios

Presentation to the Wisconsin Department of Natural Resources
Air Management Study Group
May 4, 2022

Paul Meier & Tracey Holloway
University of Wisconsin - Madison

Please direct questions or comments to pmeier@wisc.edu